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Abstract

This paper examines the mathematics of the RSA code through a
simple example.
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1 A Brief Introduction to Cryptography

In the classical explanation of cryptography, Alice wishes to write a message
to Bob, but Eve continues to intercept her messages. Alice and Bob decide to
encrypt their messages.

Alice and Bob can meet in person and exchange a key. With this informa-
tion, they can both encrypt and decrypt messages to each other. Even if Eve
manages to intercept a message, she will not be able to gain any information
from it, seeing as it is encoded and she does not know the key necessary for
decryption. This scenario uses private-key cryptography.

Now, however, let us assume that it is impossible for Alice and Bob to meet,
and that they are therefore unable to exchange the key. Obviously, Alice cannot
send Bob the key, seeing as their messages are being intercepted by Eve, who
would then know the key as well. To overcome this barrier, Alice and Bob must
use public-key cryptography. Bob selects both an encryption function and a cor-
responding decryption function. He sends only the encryption function to Alice.
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She then uses the encryption function to encrypt her message. Once her message
is encrypted, Alice herself is unable to decrypt it. She then sends the message
to Bob, who is the only one able to decrypt it. Assuming Eve intercepted Bob’s
message and learned the encryption function, she is in the same position as
Alice: knowing both the encryption function and the encrypted message, she
remains unable to decrypt it. This scenario uses public-key cryptography.

RSA is one example of an algorithm for public-key cryptography, discovered
in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman.

2 RSA

2.1 Keys needed in RSA

RSA’s public key is used for encrypting messages. Messages encrypted with this
public key must then be decrypted using a private key. Below are the steps that
one must follow in order to obtain a public and private key.

1. Let p and q be two random large prime numbers of one’s choice.

2. Calculate n = pq

3. Calculate φ(n) = (p− 1)(q − 1)

4. Choose an integer e such that:

(a) 1 ≤ e ≤ φ(n)

(b) e and φ(n) are coprime

5. Find d such that ed ≡ 1(mod φ(n))

The public key consists of n and e (for encryption).
The private key consists of n and d (for decryption).

2.2 RSA Encryption

To begin using RSA, each letter of the alphabet must be associated its own
number. However, using the letter’s position in the alphabet (A = 1 ... Z = 26)
would mean some letters were being coded by one-digit numbers, and others by
two-digit numbers. The message would not be able to be decrypted. Therefore,
each letter is associated with a two-digit number.

A B C D E F G H I J K L M
10 11 12 13 14 15 16 17 18 19 20 21 22
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N O P Q R S T U V W X Y Z
23 24 25 26 27 28 29 30 31 32 33 34 35

Let’s encrypt ‘Math’

M A T H
22 10 29 17

Therefore, the numeric message is 22102917.

Let p = 11

and q = 17

In this example of RSA encryption, we will use primes with small values for
simplicity. However, when aiming for a secure code, the larger the primes the
better.

n = pq = 11 * 17 = 187

Now, we will divide the numeric message into segments. Each segment must
be the largest number possible, all the while remaining lesser than n, therefore
lesser than 187.

S1= 22 S2 = 102 S3 = 91 S4 = 7

φ(n) =(p-1) (q-1)= (11− 1)(17− 1) = 10 ∗ 16 = 160

φ(n) must not be divulged if the code is to remain secure.

Let e = 7
This fulfills both of the restrictions on choosing an e:
1 ≤ e ≤ φ(n) and e and φ(n) are indeed coprime.

The public key (n, e), is in this case (187 , 7).

Let S denote a segment of the message such that 1 ≤S≤n-1
E(S) denotes the encryption of S
E(S) = Se (mod n)
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Therefore:

E(S1) = 227 (mod 187) = 44
E(S2) = 1027 (mod 187) = 119
E(S3) = 917 (mod 187) = 31
E(S4) = 77 (mod 187) = 182

Let E(m) denote the encryption of the entire message.
E(m) = E(S1) + ES2) + ... + E(S4)
E(m)= 44 119 31 182

2.3 RSA decryption

We use d, the number such that

ed ≡ 1 (mod φ(n)) and 1 ≤e≤ φ(n)

⇔ ed− 1 = k ∗ φ(n) (1)

The value of e was publicized.
However, only the person for whom the message is intended knows the value of
(p− 1)(q − 1) = φ(n) = 160

Therefore, the person for whom the message is intended can plug these val-
ues into the equation (1) and obtain:
7d− 1 = 160k

However:

160 = 7 ∗ 22 + 6⇔ 6 = 160− 7 ∗ 22 (2)

1 = 7− 6 (3)
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From the equations (2) and (3):

1 = 7 - (160 - 7*22)
⇔ 1 = 7 ∗ 23− 160
⇔ 7 ∗ 23− 1 = 160 where :
7 = e 23 = d 160 = φ(n) and k = 1
ed ≡ 1(mod φ(n))

The private key (n, d), is in this case (187 , 23).

Let Ti = E(Si)
D(T ) denotes the decryption of T

D(T ) = Sd (mod n)

Therefore,
D(T1) = 4423(modn) = 22
D(T2) = 102
D(T3) = 91
D(T4) = 7

The deciphered message is 22102917.
One knows that each letter corresponds to a two-digit number.
22 →M
10→ A
29→ T
17→ H

The message ’Math’ has been decoded.
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