AN ANALYTIC PROOF OF THE ROGERS-RAMANUJAN IDENTITIES

EUGENE EYESON

Abstract

The Rogers-Ramanujan Identities were discovered independently by Leonard James Rogers and Srinivasha Ramanujan; the 1st identity was found by Rogers in 1894 and by Ramanujan in 1913. These identities were stepping stones towards building a general theory of Rogers-Ramanujan continued fractions and certain elliptic modular equations appearing in Ramanujan's lost notebook. G.H. Hardy believed in the inexistence of a simple proof of the results. This remains the case even as of today.

Contents

1. Preliminaries 1
2. Rogers-Ramanujan Identities 4
References 7

1. Preliminaries

Definition 1.1. Let n be a nonnegative integer. A partition of n is a representation of n as an unordered sum of nonnegative integers. The summands are the parts of the partition.

Examples. There are seven partitions of six, namely $5,4+1,3+1+1,3+2$, $2+2+1,2+1+1+1$, and $1+1+1+1+1$. The partition $2+2+1$ of 5 has three parts. $5+3+1$ is a partition of 9 into odd parts, while $2+2+2+3$ is a partition of 9 into an odd number of even parts.

The following theorem two theorems will be the most useful and most important in understanding and proving the Rogers-Ramanujan identities.

Theorem 1.2. Let $p(n \mid A)$ denote the number of partitions of n taken from a set A of nonnegative integers. If $|q|<1$, then

$$
\sum_{n=0}^{\infty} p(n \mid A) q^{n}=\prod_{n \in A} \frac{1}{1-q^{n}}
$$

Proof. This proof is an imitation of the one given in ([2], 3-5). Write $A=\left\{a_{1}, a_{2}, \ldots\right\}$. Then

$$
\begin{align*}
\prod_{n \in A} \frac{1}{1-q^{n}} & =\prod_{n \in A}\left(1+q^{n}+q^{2 n}+\ldots\right) \\
& =\left(1+q^{a_{1}}+q^{2 a_{1}}+\ldots\right)\left(1+q^{a_{2}}+q^{2 a_{2}}+\ldots\right) \tag{1.3}\\
& =\sum_{a_{1} \geq 0} \sum_{a_{2} \geq 0} \ldots q^{a_{1} h_{1}+a_{2} h_{2}+\ldots}
\end{align*}
$$

Observe that the exponent on q is the partition $a_{1} h_{1}+a_{2} h_{2}+\ldots$. Therefore the appearance of q^{n} in the expansion is once for every partition into parts belonging to A. Without loss of generality, suppose $0<q<1$. Notice that

$$
\begin{align*}
\sum_{j=0}^{M} p(j \mid A) q^{j} & \leq \prod_{i=1}^{n}\left(1-q^{a_{i}}\right)^{-1} \tag{1.4}\\
& \leq \prod_{i=1}^{\infty}\left(1-q^{a_{1}}\right)^{-1}<\infty
\end{align*}
$$

and

$$
\begin{align*}
\sum_{j=0}^{\infty} p(j \mid A) q^{j} & \geq \prod_{i=1}^{n}\left(1-q^{a_{i}}\right)^{-1} \tag{1.5}\\
& \longrightarrow \prod_{i=1}^{\infty}\left(1-q^{n}\right)^{-1}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\sum_{j=0}^{\infty} p(j \mid A) q^{j}=\prod_{i=1}^{\infty}\left(1-q^{a_{i}}\right)^{-1}=\prod_{n \in A} \frac{1}{1-q^{n}} \tag{1.6}
\end{equation*}
$$

Theorem 1.7 (Jacobi's Triple Product Identity). For $|q|<1$ and $x \neq 0$,

$$
\sum_{n=-\infty}^{\infty} x^{n} q^{\frac{n(n+1)}{2}}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1+x q^{n}\right)\left(1+x^{-1} q^{n-1}\right)
$$

Proof. Define

$$
F(x)=\prod_{n=1}^{\infty}\left(1+x q^{n}\right)\left(1+x^{-1} q^{n-1}\right)
$$

F admits a Laurent series expansion about 0 , say

$$
F(x)=\sum_{n=-\infty}^{\infty} a_{n}(q) x^{n}
$$

By definition of F , F satisfies the functional equation $F(x q)=x^{-1} q^{-1} F(x)$. If we compare coefficients of x^{n} on both sides of the functional equation, we get

$$
q^{n} a_{n}(q)=q^{-1} a_{n+1}(q)
$$

Iterating this recursion formula yields

$$
a_{n}(q)=q^{\frac{n(n+1)}{2}} a_{0}(q)
$$

If $p(n)$ denotes the number of partitions of n, then by Theorem 1.2 , we have

$$
a_{0}(q)=\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

Hence

$$
\begin{align*}
\prod_{n=1}^{\infty}\left(1+x q^{n}\right)\left(1+x^{-1} q^{n-1}\right) & =F(x) \\
& =a_{0}(q) \sum_{n=-\infty}^{\infty} x^{n} q^{\frac{n(n+1)}{2}} \tag{1.8}\\
& =\prod_{n=1}^{\infty} \frac{1}{1-q^{n}} \sum_{n=-\infty}^{\infty} x^{n} q^{\frac{n(n+1)}{2}}
\end{align*}
$$

The proof of the Rogers-Ramanujan Identities will be much smoother and look less intimidating if we introduce some compact notation.

Definition 1.9. Let a and Q be real numbers, and let n be a nonnegative integer. We define $(a ; q)_{0}=1$ and for $n \geq 1$,

$$
(a ; Q)_{n}=(1-a)(1-a Q) \ldots\left(1-a Q^{n-1}\right)=\prod_{j=1}^{n-1}\left(1-a Q^{j}\right)
$$

Also we define $(a ; Q)_{\infty}=\lim _{n \rightarrow \infty}(a ; Q)_{n}$.
With this compact notation, Jacobi's Triple Product Identity can be written as

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} x^{n} y^{\frac{n(n+1)}{2}}=(y ; y)_{\infty}(-x ; y)_{\infty}\left(-(x y)^{-1} ; x\right)_{\infty} \tag{1.10}
\end{equation*}
$$

Corollary 1.11 (Euler's Pentagonal Number Theorem). If $|q|<1$, then

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{n(3 n-1)}{2}}=(q ; q)_{\infty} \tag{1.12}
\end{equation*}
$$

Remark 1.13. Note that the numbers $1,5,12,22,35, \ldots, n(3 n-1) / 2, \ldots$ are the pentagonal numbers. Recall the series-product identity

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}=\frac{1}{(q, q)_{\infty}} \tag{1.14}
\end{equation*}
$$

where $p(n)$ denotes the number of partitions of n. By Euler's Pentagonal Number Theorem, we obtain a remarkable transformation formula

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{n(3 n-1)}{2}}=\frac{1}{\sum_{n=0}^{\infty} p(n) q^{n}} \tag{1.15}
\end{equation*}
$$

Proof. (Corollary 1.7). In Equation (1.6), set $x=-q^{-2}$ and $y=q^{3}$ to obtain

$$
\begin{align*}
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{n(3 n-1)}{2}} & =\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{2} ; q^{3}\right)_{\infty}\left(q ; q^{3}\right)_{\infty} \tag{1.16}\\
& =(q ; q)_{\infty}
\end{align*}
$$

since each symbol $(;)_{\infty}$ respectively contains a distinct congruence class modulo 3 (so then the product will have the exponents of q range through all the positive integers).

This proof illustrates the usefulness and chiqueness of Jacobi's Triple Product Identity.

2. Rogers-Ramanujan Identities

The following is the combinatorial version of the Rogers-Ramanujan Identity:
Theorem 2.1. The number of partitions of n whose parts differ by at least two is equinumerous with the number of partitions on n whose parts are congruent to 1 or 4 mod 5. The number of partitions of n where the difference between parts is at least two and 1 is excluded as a part is equinumerous with the number of partitions of n whose parts are congruent to 2 or 3 mod 5 .

In the first part of the theorem, notice that if $x_{1}+x_{2}+\ldots+x_{k}$ is such a partition of n, then $1 \leq x_{1} \leq x_{2}-2, x_{2} \leq x_{3}-2, \ldots, x_{k-1} \leq x_{k}-2$. Thus there are unique numbers $y_{1}, y_{2}, \ldots, y_{k}$, such that

$$
\begin{align*}
x_{1} & =1+y_{1} \\
x_{2} & =3+y_{2} \\
x_{3} & =5+y_{3} \tag{2.2}\\
\quad & \\
x_{k} & =(2 k-1)+y_{k}
\end{align*}
$$

Given a partition of n into positive k 2-distinct parts (difference between parts is at least two), there corresponds therefore a partition of $n-(1+3+5+\ldots+(2 k-1))=$ $n-k^{2}$ into at most k positive parts. Let $A(n)$ denote the number of partitions of n into 2-distinct parts. Then its generating function is given by

$$
\begin{align*}
\sum_{n \geq 0} A(n) q^{n} & =\sum_{0 \leq y_{1} \leq y_{2} \leq \ldots \leq y_{k}} q^{\left(1+y_{1}\right)+\left(3+y_{2}\right)+\ldots\left((2 k-1)+y_{k}\right)} \\
& =q^{k^{2}} \sum_{0 \leq y_{1} \leq y_{2} \leq \ldots \leq y_{k}} q^{y_{1}+y_{2}+\ldots+y_{k}} \\
& =q^{k^{2}} \sum_{0 \leq y_{1} \leq y_{2} \leq \ldots \leq y_{k-1}} q^{y_{1}+y_{2}+\ldots+y_{k-1}} \frac{q^{y_{k-1}}}{1-q} \\
& =\frac{q^{k^{2}}}{1-q} \sum_{0 \leq y_{1} \leq y_{2} \leq \ldots \leq y_{k-2}} q^{y_{1}+y_{2}+\ldots+y_{k-2}} \frac{q^{2 y_{k-2}}}{1-q^{2}} \tag{2.3}\\
& =\frac{q^{k^{2}}}{(1-q)\left(1-q^{2}\right)} \sum_{0 \leq y_{1} \leq \ldots \leq y_{k-3}} q^{y_{1}+y_{2}+\ldots+y_{k-3}} \frac{q^{3 y_{k-3}}}{1-q^{3}} \\
& \vdots \\
& =\frac{q^{k^{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)} \\
& =\frac{q^{k^{2}}}{(q ; q)_{k}}
\end{align*}
$$

Following the above argument, we have, in Theorem 2, for every partition of n into 2-distinct parts excluding 1 as a part, there corresponds a partition of $n-(2+$ $4+6+\ldots+2 k)=n-\left(k^{2}+k\right)$ into at most k parts. Therefore if $B(n)$ denotes the number of such partitions, then similarly, we would obtain the generating function

$$
\begin{equation*}
\sum_{n \geq 0} B(n) q^{n}=\frac{q^{k^{2}+k}}{(q ; q)_{k}} \tag{2.4}
\end{equation*}
$$

By Theorem 1.3, it follows that this combinatorial version is equivalent to the following theorem:

Theorem 2.5. (Rogers-Ramanujan Identities, Analytic Version)
(1) [1st Rogers-Ramanujan Identity]

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

(2) [2nd Rogers-Ramanujan Identity]

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\frac{1}{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}
$$

Proof. Define

$$
\begin{equation*}
Q_{k, i}(q)=\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty}(-1)^{n} q^{(2 k+1) \frac{n(n+1)}{2}-i n}\left(1-q^{(2 n+1) i}\right) \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{align*}
Q_{k, i}(q)= & \frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty}(-1)^{n} q^{(2 k+1) \frac{n(n+1)}{2}-i n} \\
& +\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{-1}(-1)^{n} q^{(2 k+1) \frac{(-n-1)(-n)}{2}-i(-n-1)+i(2(-n-1)+1)} \tag{2.7}\\
= & \frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{(2 k+1) \frac{n(n+1)}{2}-i n}
\end{align*}
$$

Recall Jacobi's Triple Product Identity in Section 1:

$$
\sum_{n=-\infty}^{\infty} x^{\frac{n(n+1)}{2}} y^{n}=(y ; y)_{\infty}(x ; y)_{\infty}\left((x y)^{-1} ; x\right)_{\infty}
$$

Taking $x=q^{-i}$ and $y=-q^{2 k+1}$, it follows that

$$
\begin{align*}
Q_{k, i}(q) & =\frac{1}{(q ; q)_{\infty}}\left\{\left(q^{2 k+1} ; q^{2 k+1}\right)_{\infty}\left(q^{2 k+1-i} ; q^{2 k+1}\right)_{\infty}\left(q^{i} ; q^{2 k+1}\right)_{\infty}\right\} \\
& =\prod_{n \neq 0, \pm i(\bmod 2 k+1)} \frac{1}{1-q^{n}} \tag{2.8}
\end{align*}
$$

Taking $k=2$ and $i=1$, (1) follows. Taking $k=2$ and $i=2$, (2) follows.

References

[1] G.E. Andrews. Integer Partitions. Cambridge University Press, Cambridge, 2004
[2] G.E. Andrews. The Theory of Partitions. Cambridge University Press, Cambridge, 1984

