AN ANALYTIC PROOF OF THE ROGERS-RAMANUJAN
IDENTITIES

EUGENE EYESON

ABSTRACT. The Rogers-Ramanujan Identities were discovered independently
by Leonard James Rogers and Srinivasha Ramanujan; the 1st identity was
found by Rogers in 1894 and by Ramanujan in 1913. These identities were
stepping stones towards building a general theory of Rogers-Ramanujan contin-
ued fractions and certain elliptic modular equations appearing in Ramanujan’s
lost notebook. G.H. Hardy believed in the inexistence of a simple proof of the
results. This remains the case even as of today.
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1. PRELIMINARIES

Definition 1.1. Let n be a nonnegative integer. A partition of n is a representation
of n as an unordered sum of nonnegative integers. The summands are the parts of
the partition.

Examples. There are seven partitions of six, namely 5, 4+ 1,3+ 141, 3 + 2,
242+4+1,24141+41,and 1+1+1+1+1. The partition 242+ 1 of 5 has three
parts. 5+ 3+ 1 is a partition of 9 into odd parts, while 24+ 2 4+ 2 + 3 is a partition
of 9 into an odd number of even parts.

The following theorem two theorems will be the most useful and most important
in understanding and proving the Rogers-Ramanujan identities.

Theorem 1.2. Let p(n|A) denote the number of partitions of n taken from a set
A of nonnegative integers. If |q| < 1, then

oo

> ) =] 1_1

n=0 neA

q

Proof. This proof is an imitation of the one given in ([2], 3-5). Write A = {a1, a2, ...}.
Then
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1T 1_1qn =[[a+a+¢"+.)

neA neA
(1.3) = (14+¢" + ¢ + .1+ ¢+ %2+ )
— Z Z _..qa1h1+a2h2+...
a1>0as>0

Observe that the exponent on ¢ is the partition aihi + ashs + .... Therefore the
appearance of ¢" in the expansion is once for every partition into parts belonging
to A. Without loss of generality, suppose 0 < g < 1. Notice that

M n
S p(lAye < J[0 - )
(1.4) =0 Z':
< H(l — q‘“)_1 < 00
i=1
and
> opilA)g > [ —q)
(1.5) =0 =
— [[a-q¢9
i=1
Therefore
1.6 ilA) g’ = 1 gu) 1 = )
(1.6) ;OP(JI )g };[1( q™) neHAl_qn

Theorem 1.7 (Jacobi’s Triple Product Identity). For |¢| <1 and z # 0,

> (n+1)
n(n+1
g g T =

n—=—oo n

Proof. Define

(1—¢")(1+azg")(1+2""¢" ).

3

1

e}

Fa)= [[a+zg") (1 +a27"g" ).

n=1
F admits a Laurent series expansion about 0, say

oo

F(z) = Z an(q)z".

n=—oo
By definition of F, F satisfies the functional equation F(zq) = x~1¢~1F(x). If
we compare coefficients of ™ on both sides of the functional equation, we get

q"an(q) = ¢ 'ans1(q)
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Iterating this recursion formula yields

n(n+1)

an(q) = q = ao(q).
If p(n) denotes the number of partitions of n, then by Theorem 1.2, we have

o0 o0 1
ao(q) =D p(n)" =[] 1——-
n=0 n=1 q
Hence
(o]
[0 +aq)( +a7q") = Fla)
n=1
e p  nntD)
(1.8) —aolg) Y a"q *
Tl o n(n4n)
=l > "¢
n=1 q n=-—oo

O

The proof of the Rogers-Ramanujan Identities will be much smoother and look
less intimidating if we introduce some compact notation.

Definition 1.9. Let a¢ and @ be real numbers, and let n be a nonnegative integer.
We define (a;q)o =1 and for n > 1,

n—1

(@;Q)n=(1—a)(1-aQ)...(1—aQ""") = [T (1 - a@’).

j=1
Also we define (a; Q)oo = limp—oo(a; Q).

With this compact notation, Jacobi’s Triple Product Identity can be written as

(1.10) 3 2T = (1 y)oo (a5 Y)oo(—(@y) ).

n=—oo

Corollary 1.11 (Euler’s Pentagonal Number Theorem). If |¢| < 1, then

o0

(1.12) 3 D" = ()

n=—oo

Remark 1.13. Note that the numbers 1,5,12,22,35,...,n(3n —1)/2, ... are the pen-
tagonal numbers. Recall the series-product identity

(1.14) ;p(”) €= };[1 1—q" (490’

where p(n) denotes the number of partitions of n. By Euler’s Pentagonal Number
Theorem, we obtain a remarkable transformation formula
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oo

n, 2En=1 _ 1
(1.15) Z (-1)"q S

n=—oo

Proof. (Corollary 1.7). In Equation (1.6), set z = —¢~2 and y = ¢° to obtain

e n nGn-1)
S0 T =(0%1¢%)00(0%6%) oo (@1 ¢%) o

n=—oo

(1.16)
=(¢; Q) oo

since each symbol (; )., respectively contains a distinct congruence class modulo
3 (so then the product will have the exponents of q range through all the positive
integers). O

This proof illustrates the usefulness and chiqueness of Jacobi’s Triple Product
Identity.

2. ROGERS-RAMANUJAN IDENTITIES

The following is the combinatorial version of the Rogers-Ramanujan Identity:

Theorem 2.1. The number of partitions of n whose parts differ by at least two is
equinumerous with the number of partitions on n whose parts are congruent to 1
or 4 mod 5. The number of partitions of n where the difference between parts is at
least two and 1 is excluded as a part is equinumerous with the number of partitions
of n whose parts are congruent to 2 or 3 mod 5.

In the first part of the theorem, notice that if x1+x2+. ..+ xy is such a partition
of n, then 1 <x1 <ax9—2, 20 <x3—2, ..., 1 < 2 — 2. Thus there are unique
numbers Y1, yY2,. . . Yk, such that

1 =141y
To =3+ Yo

l‘k:(2k’71)+yk

Given a partition of n into positive k 2-distinct parts (difference between parts is
at least two), there corresponds therefore a partition of n—(14+3+5+...+(2k—1)) =
n —k? into at most k positive parts. Let A(n) denote the number of partitions of n
into 2-distinct parts. Then its generating function is given by
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Z An)q" = Z gy +E+y2)+ (k=D tur)

n>0 0<y1<y2<...<yk

— qkz § qy1+y2+4..+yk
0<y1<y2<...<yx

1

Yk —
_K? yi+yat..+yr_1 4
=q q 1—g
0<y1<y2<...<yg—1

k2 2y
q Yk—2

= Z qy1+y2+---+yk72q7
— _ 02
(2.3) L9 ocyicpect s 1-a

k2 3y
qyks

_ q Z y1+yet.tyr_3
=7 — 3 q — 3
-9 =-¢*) T2, . 1-4q

2
qk

1-q¢(1—¢*)...(1—-4q")

2
qk

(¢ D)k
Following the above argument, we have, in Theorem 2, for every partition of n
into 2-distinct parts excluding 1 as a part, there corresponds a partition of n — (2 +
446+ ...+ 2k) = n— (k* + k) into at most k parts. Therefore if B(n) denotes the
number of such partitions, then similarly, we would obtain the generating function

E2+k

(2.4) S Bn)¢" =1

= (4 )k

By Theorem 1.3, it follows that this combinatorial version is equivalent to the
following theorem:

Theorem 2.5. (Rogers-Ramanugjan Identities, Analytic Version)
(1) [1st Rogers-Ramanugjan Identity]

e’} 2

qn - 1
DY

(@G D)n (60°)se(@h¢%)s0

(2) [2nd Rogers-Ramanujan Identity]
n2+n

>4 1

(@G Dn (6%6°)0(@®¢%)00

n=0
Proof. Define
1 > (nt1) .
(2.6) Qk,z’(Q) = @0 Z(_l)nq(2k+1)T7m(1 - q(2n+1)z).
b o0 n=0

Then
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Q’m’(Q) = (_1)nq(2k+1)%_in

1

(cn—1)(=n) . )

(_l)nq(2k+l)f—z(—n—l)—m@(—n—l)—&-l)
(¢ @)oo ,Z

n=—oo

(2.7) +

oo

1 n(n+l) .
_ (_1)nq(2k+1)T—zn.
(4 9) oo 2

Recall Jacobi’s Triple Product Identity in Section 1:

n=—oo

> e = )59 (09) i)

n=—oo

Taking = ¢~% and y = —¢?**1, it follows that

1 —1
Qk,z(q) = (q q) {(q2k+1; q2k+1)oo(q2k+l ;
yd)oco

(2.8) 1
- H 1— qn

n#0,£¢ (mod 2k+1)
Taking £k =2 and ¢ = 1, (1) follows. Taking k = 2 and i = 2, (2) follows.

2k+1)oo( 2k+1)00}

qq

q




AN ANALYTIC PROOF OF THE ROGERS-RAMANUJAN IDENTITIES

REFERENCES

[1] G.E. Andrews. Integer Partitions. Cambridge University Press, Cambridge, 2004
[2] G.E. Andrews. The Theory of Partitions. Cambridge University Press, Cambridge, 1984



