
AN ANALYTIC PROOF OF THE ROGERS-RAMANUJAN
IDENTITIES

EUGENE EYESON

Abstract. The Rogers-Ramanujan Identities were discovered independently

by Leonard James Rogers and Srinivasha Ramanujan; the 1st identity was

found by Rogers in 1894 and by Ramanujan in 1913. These identities were
stepping stones towards building a general theory of Rogers-Ramanujan contin-

ued fractions and certain elliptic modular equations appearing in Ramanujan’s

lost notebook. G.H. Hardy believed in the inexistence of a simple proof of the
results. This remains the case even as of today.
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1. Preliminaries

Definition 1.1. Let n be a nonnegative integer. A partition of n is a representation
of n as an unordered sum of nonnegative integers. The summands are the parts of
the partition.

Examples. There are seven partitions of six, namely 5, 4 + 1, 3 + 1 + 1, 3 + 2,
2 + 2 + 1, 2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1. The partition 2 + 2 + 1 of 5 has three
parts. 5 + 3 + 1 is a partition of 9 into odd parts, while 2 + 2 + 2 + 3 is a partition
of 9 into an odd number of even parts.

The following theorem two theorems will be the most useful and most important
in understanding and proving the Rogers-Ramanujan identities.

Theorem 1.2. Let p(n|A) denote the number of partitions of n taken from a set
A of nonnegative integers. If |q| < 1, then

∞∑
n=0

p(n|A)qn =
∏
n∈A

1
1− qn

.

Proof. This proof is an imitation of the one given in ([2], 3-5). Write A = {a1, a2, ...}.
Then
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∏
n∈A

1
1− qn

=
∏
n∈A

(1 + qn + q2n + ...)

= (1 + qa1 + q2a1 + ...)(1 + qa2 + q2a2 + ...)

=
∑
a1≥0

∑
a2≥0

...qa1h1+a2h2+... .

(1.3)

Observe that the exponent on q is the partition a1h1 + a2h2 + .... Therefore the
appearance of qn in the expansion is once for every partition into parts belonging
to A. Without loss of generality, suppose 0 < q < 1. Notice that

M∑
j=0

p(j|A)qj ≤
n∏

i=1

(1− qai)−1

≤
∞∏

i=1

(1− qa1)−1 < ∞

(1.4)

and

∞∑
j=0

p(j|A)qj ≥
n∏

i=1

(1− qai)−1

−→
∞∏

i=1

(1− qn)−1

(1.5)

Therefore

(1.6)
∞∑

j=0

p(j|A)qj =
∞∏

i=1

(1− qai)−1 =
∏
n∈A

1
1− qn

.

�

Theorem 1.7 (Jacobi’s Triple Product Identity). For |q| < 1 and x 6= 0,

∞∑
n=−∞

xnq
n(n+1)

2 =
∞∏

n=1

(1− qn)(1 + xqn)(1 + x−1qn−1).

Proof. Define

F (x) =
∞∏

n=1

(1 + xqn)(1 + x−1qn−1).

F admits a Laurent series expansion about 0, say

F (x) =
∞∑

n=−∞
an(q)xn.

By definition of F, F satisfies the functional equation F (xq) = x−1q−1F (x). If
we compare coefficients of xn on both sides of the functional equation, we get

qnan(q) = q−1an+1(q)
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Iterating this recursion formula yields

an(q) = q
n(n+1)

2 a0(q).
If p(n) denotes the number of partitions of n, then by Theorem 1.2, we have

a0(q) =
∞∑

n=0

p(n)qn =
∞∏

n=1

1
1− qn

.

Hence

∞∏
n=1

(1 + xqn)(1 + x−1qn−1) = F (x)

= a0(q)
∞∑

n=−∞
xnq

n(n+1)
2

=
∞∏

n=1

1
1− qn

∞∑
n=−∞

xnq
n(n+1)

2 .

(1.8)

�

The proof of the Rogers-Ramanujan Identities will be much smoother and look
less intimidating if we introduce some compact notation.

Definition 1.9. Let a and Q be real numbers, and let n be a nonnegative integer.
We define (a; q)0 = 1 and for n ≥ 1,

(a;Q)n = (1− a)(1− aQ) . . . (1− aQn−1) =
n−1∏
j=1

(1− aQj).

Also we define (a;Q)∞ = limn→∞(a;Q)n.

With this compact notation, Jacobi’s Triple Product Identity can be written as

(1.10)
∞∑

n=−∞
xny

n(n+1)
2 = (y; y)∞(−x; y)∞(−(xy)−1;x)∞.

Corollary 1.11 (Euler’s Pentagonal Number Theorem). If |q| < 1, then

(1.12)
∞∑

n=−∞
(−1)nq

n(3n−1)
2 = (q; q)∞.

Remark 1.13. Note that the numbers 1, 5, 12, 22, 35, ..., n(3n− 1)/2, ... are the pen-
tagonal numbers. Recall the series-product identity

(1.14)
∞∑

n=0

p(n) qn =
∞∏

n=1

1
1− qn

=
1

(q, q)∞
,

where p(n) denotes the number of partitions of n. By Euler’s Pentagonal Number
Theorem, we obtain a remarkable transformation formula
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(1.15)
∞∑

n=−∞
(−1)nq

n(3n−1)
2 =

1∑∞
n=0 p(n) qn

.

Proof. (Corollary 1.7). In Equation (1.6), set x = −q−2 and y = q3 to obtain

∞∑
n=−∞

(−1)nq
n(3n−1)

2 = (q3; q3)∞(q2; q3)∞(q; q3)∞

= (q; q)∞

(1.16)

since each symbol (; )∞ respectively contains a distinct congruence class modulo
3 (so then the product will have the exponents of q range through all the positive
integers). �

This proof illustrates the usefulness and chiqueness of Jacobi’s Triple Product
Identity.

2. Rogers-Ramanujan Identities

The following is the combinatorial version of the Rogers-Ramanujan Identity:

Theorem 2.1. The number of partitions of n whose parts differ by at least two is
equinumerous with the number of partitions on n whose parts are congruent to 1
or 4 mod 5. The number of partitions of n where the difference between parts is at
least two and 1 is excluded as a part is equinumerous with the number of partitions
of n whose parts are congruent to 2 or 3 mod 5.

In the first part of the theorem, notice that if x1 +x2 + . . .+xk is such a partition
of n, then 1 ≤ x1 ≤ x2− 2, x2 ≤ x3− 2, . . . , xk−1 ≤ xk− 2. Thus there are unique
numbers y1, y2,. . . ,yk, such that

x1 = 1 + y1

x2 = 3 + y2

x3 = 5 + y3

...

xk = (2k − 1) + yk

(2.2)

Given a partition of n into positive k 2-distinct parts (difference between parts is
at least two), there corresponds therefore a partition of n−(1+3+5+...+(2k−1)) =
n− k2 into at most k positive parts. Let A(n) denote the number of partitions of n
into 2-distinct parts. Then its generating function is given by
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∑
n≥0

A(n) qn =
∑

0≤y1≤y2≤...≤yk

q(1+y1)+(3+y2)+...((2k−1)+yk)

= qk2 ∑
0≤y1≤y2≤...≤yk

qy1+y2+...+yk

= qk2 ∑
0≤y1≤y2≤...≤yk−1

qy1+y2+...+yk−1
qyk−1

1− q

=
qk2

1− q

∑
0≤y1≤y2≤...≤yk−2

qy1+y2+...+yk−2
q2yk−2

1− q2

=
qk2

(1− q)(1− q2)

∑
0≤y1≤...≤yk−3

qy1+y2+...+yk−3
q3yk−3

1− q3

...

=
qk2

(1− q)(1− q2) . . . (1− qk)

=
qk2

(q; q)k

(2.3)

Following the above argument, we have, in Theorem 2, for every partition of n
into 2-distinct parts excluding 1 as a part, there corresponds a partition of n− (2+
4 + 6 + ... + 2k) = n− (k2 + k) into at most k parts. Therefore if B(n) denotes the
number of such partitions, then similarly, we would obtain the generating function

(2.4)
∑
n≥0

B(n) qn =
qk2+k

(q; q)k

By Theorem 1.3, it follows that this combinatorial version is equivalent to the
following theorem:

Theorem 2.5. (Rogers-Ramanujan Identities, Analytic Version)
(1) [1st Rogers-Ramanujan Identity]

∞∑
n=0

qn2

(q; q)n
=

1
(q; q5)∞(q4; q5)∞

.

(2) [2nd Rogers-Ramanujan Identity]
∞∑

n=0

qn2+n

(q; q)n
=

1
(q2; q5)∞(q3; q5)∞

.

Proof. Define

(2.6) Qk,i(q) =
1

(q; q)∞

∞∑
n=0

(−1)nq(2k+1)
n(n+1)

2 −in(1− q(2n+1)i).

Then
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Qk,i(q) =
1

(q; q)∞

∞∑
n=0

(−1)nq(2k+1)
n(n+1)

2 −in

+
1

(q; q)∞

−1∑
n=−∞

(−1)nq(2k+1)
(−n−1)(−n)

2 −i(−n−1)+i(2(−n−1)+1)

=
1

(q; q)∞

∞∑
n=−∞

(−1)nq(2k+1)
n(n+1)

2 −in.

(2.7)

Recall Jacobi’s Triple Product Identity in Section 1:

∞∑
n=−∞

x
n(n+1)

2 yn = (y; y)∞(x; y)∞((xy)−1;x)∞.

Taking x = q−i and y = −q2k+1, it follows that

Qk,i(q) =
1

(q; q)∞

{
(q2k+1; q2k+1)∞(q2k+1−i; q2k+1)∞(qi; q2k+1)∞

}
=

∏
n 6=0,±i (mod 2k+1)

1
1− qn

(2.8)

Taking k = 2 and i = 1, (1) follows. Taking k = 2 and i = 2, (2) follows. �
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