
Categories and Natural Transformations

Ethan Jerzak

17 August 2007

1 Introduction

The motivation for studying Category Theory is to formalise the underlying similarities
between a broad range of mathematical ideas and use these generalities to gain insights into
these more specific structures. Because of its formalised generality, we can use categories
to understand traditionally vague concepts like “natural” and “canonical” more precisely.
This paper will provide the basic concept of categories, introduce the language needed to
study categories, and study some examples of familiar mathematical objects which can
be categorized. Particular emphasis will go to the concept of natural transformations, an
important concept for relating different categories.

2 Categories

2.1 Definition

A category C is a collection of objects, denoted Ob(C), together with a set of morphisms,
denoted C (X,Y), for each pair of objects X,Y ∈ Ob(C). These morphisms must satisfy
the following axioms:

1. For each X,Y, Z ∈ Ob(C), there is a composition function

◦ : C (Y,Z)× C (X,Y)→ C (X,Z)

We can denote this morphism as simply g ◦ f

2. For each X ∈ Ob(C), there exists a distinguished element 1X ∈ C (X,X) such that
for any Y, Z ∈ Ob(C) and f ∈ C (Y,X), g ∈ C (X,Z) we have

1X ◦ f = f and g ◦ 1X = g

3. Composition is associative: h ◦ (g ◦ f) = (h ◦ g) ◦ f

Remark: We often write X ∈ C instead of X ∈ Ob(C)
Remark: We say a category C is small if the collection Ob(C) forms a set.

1

2.2 Examples

We discover categories in many areas of mathematics. The most obvious examples follow:

1. Sets: The objects are simply sets, and the morphisms are functions between sets.

2. Groups: The objects are groups, and the morphisms are homomorphisms.

3. Abelian Groups: The objects are abelian groups, and the morphisms are homo-
morphisms.

4. Topological Spaces: In this non-algebraic example, the objects are topological
spaces, and the morphisms are continuous maps.

5. Monoid: This example is less intuitive. Consider a category with one object,
Ob(C) = ?. The set of morphisms C (?, ?) form a structure which has an identity
morphism along with an associative composition function. Such a category, then,
is exactly a monoid in which the elements are the morphisms of the object in this
category.

6. Group: We again consider a category with one object. If we require, in addition to
the normal categorical axioms, that each morphism have an inverse morphism, we
obtain a single group, the elements of which are the morphisms from this one object
to itself.

And so on. Most algebraic structures with the obvious designations given to objects and
morphisms form categories, although it is not always entirely obvious how to write the
extra structure they exhibit in categorical terms. Note that only examples five and six are
small categories; examples one through four are large (since, for example, there is no set
of all sets).

2.3 Commutative Diagrams

Sometimes it is more useful to state the axioms of categories in terms of commutative
diagrams instead of equivalent functions. The axioms, stated thus, follow:

1. Identity Axiom: For each X ∈ Ob(C), there exists a distinguished element 1X ∈
C (X,X) such that for any Y, Z ∈ Ob(C) and f ∈ C (Y,X), g ∈ C (X,Z) the following
diagram commutes:

Y

f
��

f // X

g

��
1X

}}
}

~~}}}

X
g // Z

2

2. Associativity Axiom: For all X,Y,W,Z ∈ C , and f : X → Y, g : Y → W , and
h : W → Z, the following diagram commutes:

X

g◦f B
BB

BB
BB

B
f // Y

g

��

h◦g

 A
AA

AA
AA

A

W
h
// Z

2.4 Isomorphisms

A morphism f : X → Y is an isomorphism if there exists a morphism g : Y → X such
that f ◦ g = IdY and g ◦ f = IdX .

3 Functors

As we would expect, in order to make this study a fruitful one, some extra structure and
sorting are required. In this section we will define and describe maps between categories,
which give us grounds on which to finally define “naturality” and formalise the notion of
“sameness.”

3.1 Definition

Let C and D be categories. A (covariant) functor F : C → D is a morphism that makes
the following associations: to each C ∈ Ob(C), it associates an object F (C) ∈ D , and to
each morphism f ∈ C (C,C ′) it associates a morphism F (f) ∈ D(F (C), F (C ′)) such that:

1. F (1C) = 1F (C) for all C ∈ Ob(C)

2. F (g ◦ f) = F (g) ◦ F (f) for all f : C → C ′, g : C ′ → C ′′

3.2 Examples

1. Constant Functor This functor maps every object C ∈ Ob(C) to one object D ∈
Ob(D), and every morphism in C to the identity morphism on D.

2. Forgetful Functor Generally, the forgetful functor is one which goes from a category
with more structure to one with less, “forgetting” that extra structure. For example,
the forgetful functor which takes groups to sets takes the elements of groups to their
underlying sets, and the homomorphisms between the groups to generic functions,
stripping away the group structure and leaving only the set underneath. This functor
is defined for almost all of the examples we mentioned: We could take abelian groups
to groups, or groups to monoids.

3

3. Free Functor This is the opposite notion of a forgetful functor. Free functors
impose extra structure on categories with less. For example, a free functor could
take the category of sets to the category of groups by taking each set to the free
group generated by that set, and the functions to homomorphisms between these
free groups.

3.3 Contra-variant functors

The difference between a contra-variant functor and a (covariant) functor is the morphism
that F associates f ∈ C (C,C ′). The same axioms hold, except that each f ∈ C (C,C ′)
gets sent to a morphism, F (f) ∈ D(F (C ′), F (C)). That is, a covariant functor preserves
the direction of our arrows, while a contravariant functor reverses them.

3.4 Example

Let X ∈ Sets. Consider the functor F (−, X) : Sets → Sets, where “−” denotes any
set, defined on objects by F : Y 7→ {functions : Y → X}. Now for morphisms, suppose
we have F (Y,X) and F (Z,X). The question is how to define this relationship, given a
function f : Y → Z. We want to know, given this function, is it more natural to define
F (Y,X) → F (Z,X) or F (Y,X) ← F (Z,X)? Looking at the following diagram which
states this relationship more explicitly, the answer becomes clear:

Y

g◦f
��

f // Z

g∈{functions:Z→X}~~~~
~~

~~
~

X

That is, given a map f : Y → Z, and a map g : Z → X, we can induce a map g◦f : Y → X.
The correct way to define the relationship between F (Y,X) and F (Z,X), then, is

F (Y,X)←− F (Z,X)

g ◦ f ←− [g,

forming a perfectly acceptable contra-variant functor.

3.5 Elementary Properties

We can derive some properties immediately from the axioms. For example:

1. F transforms each commutative diagram in C to a commutative diagram in D .
That all of the objects in the diagram in C get sent to objects in an equivalent
diagram in D is obvious from the definition of a functor. Similarly, for every arrow
C → C ′ in a commutative diagram in C , the functor F will associate a morphism

4

F (f) ∈ D(F (C), F (C ′)). Any property requiring the identity morphism in C will be
associated with the identity morphism in D , and any composition in C goes to an
equivilant composition in D . Thus every combination of maps between objects in C
is preserved in the equivalent diagram in D , making that diagram in D commute.

4 Natural Transformations

A morphism between categories is a functor; a map between functors (both of which must
have the same input and output categories) is a natural transformation.

4.1 Definition

Let F and G be functors from C to D . A natural transformation η : F → G is a
collection of maps ηC : F (C) → G(C), one for each C ∈ C , such that for any C,C ′ ∈ C
and any f ∈ C (C,C ′), the following diagram commutes:

F (C)

ηC

��

F (f) // F (C ′)

ηC′

��
G(C)

G(f) // G(C ′)

That is, whether we first take the functor F on an object C and then take η into G(C ′), or
whether we first take η into G and then use the functor G to go into G(C ′), is irrelevant;
we will obtain the same morphism from F (C).

Remark: Unsurprisingly, a natural transformation is a natural isomorphism when each
ηC is an isomorphism.

4.2 Example

Consider the statement “every group is naturally isomorphic to its opposite group.” (The
opposite group Gop of G has the same underlying set, and the operations reversed: a ∗ b ∈
G 7→ b∗op a ∈ Gop) This can clearly be defined in terms of a functor from groups to groups,
such that fop = f for any group homomorphism f : G → H. In order for this to define a
functor, we need fop : Gop → Hop to be a homomorphism. To see that this is in fact the
case, we observe that, for all a, b ∈ G and f : G→ H:

fop(a ∗op b) = f(b ∗ a) = fop(a) ∗op fop(b)

This statement also shows us clearly what we need to do to verify naturality: we must show
that the identity functor between groups is naturally isomorphic to the opposite functor,

5

defined above. Thus we must give an isomorphism ηG : G → Gop such that the relevant
diagram defining naturality commutes.

Proof: Let ηG(a) = a−1 for all a ∈ G. We have (ab)−1 = b−1a−1 and (a−1)−1 = a, showing
that our ηG is its own inverse. Now set f : G → H, a group homomorphism. We can
write the following diagram, keeping in mind that fop = f and f(a)−1 = f(a−1) for group
homomorphisms.

G

ηG

��

f // H

ηH

��
Gop

fop
// Hop

Showing naturality. Now, to show that this is not only a natural transformation but an
isomorphism, we must show that each ηG actually has an inverse. Consider the morphism
ηGop . This must be defined on group elements as ηGop(b) = b−1. But by our definition
of Gop, b−1 ∈ G. Thus, η−1

G = ηGop for all G, showing that this transformation is an
isomorphism.

5 Products of Categories

Suppose we have two categories, C and D . The product, C ×D , gives us another category,
defined as follows:

The objects Ob(C ×D) are Ob(C)×Ob(D)

For all pairs of objects (C1, D1), (C2, D2), the set (C×D)[(C1, D1), (C2, D2)] = C (C1, C2)×
D(D1, D2)

The identity morphism Id(C,D) we define as (IdC , IdD)

Composition is defined componentwise as expected.

6 Arbitrary Categories, Applications

We can define categories indiscriminately, by representing objects as graph vertices and
morphisms as edges. Recall that in our definition of a monoid as a category, we had a
category with one object and morphisms from that object to itself. We can represent this
graphically as one vertex, with many arrows pointing from that vertex to itself (necessarily
including the identity arrow), plus an additional composition definition. Now consider the
following arrangement:

6

0 α
//

Id0
-- 1

Id1

RR

This certainly defines a category E : we have two objects, each with an identity morphism,
and a set of morphisms C (0, 1) = {α}, and the set C (1, 0) = {∅}. This graph also imposes
all of the compositions of morphisms: for example, Id1 ◦ α is forced to be α.

Proposition: Let C ,D be categories. The following are equivalent:

1. Two functors, C
F //

G
// D , and a natural transformation η : F → G

2. C × E
H // D , for H a functor, and E the category with two objects defined above.

Proof: Let H(C, 0) = F (C) and H(C, 1) = G(C) for all C ∈ C . This is all we need
to define operations of objects; as we can see, all the information contained in those two
functors F,G : C → D is represented by this definition; for F , look at what H does with
any C together with 0 object, and for G, look at C with 1.

Now, make the following equalities, for f : C → C ′:

1. H(C, 0) = F (C)

2. H(C ′, 0) = F (C ′)

3. H(f, Id0) = F (f)

4. H(C, 1) = G(C)

5. H(C ′, 1) = G(C ′)

6. H(f, Id1) = G(f)

7. H(IdC , α) = ηC

With these definitions in hand, we shall first show that (2) implies (1), and then that (1)
implies (2).

Based on the definition of a functor, the following diagram commutes in (2):

H(C, 0)

H(IdC ,α)

��

H(f,Id0)// H(C ′, 0)

H(IdC′ ,α)

��
H(C, 1)

H(f,Id1)// H(C ′, 1)

7

But observe that, simply by definition, those diagram is exactly:

F (C)

ηC

��

F (f) // F (C ′)

ηC′

��
G(C)

G(f) // G(C ′)

Which is what we wanted. To see that (1) implies (2), simply start with the bottom
diagram, look at our definitions table, and see that it is exactly the top diagram.

7 Another Natural Isomorphism

Proposition: Every finite dimensional vector space is naturally isomorphic to its double
dual. (The dual of a vector space is the set of linear transformations from the vector space
to its ground field. This actually forms a vector space, the dual of which is the double dual
for the original space.) In categorical terms, this states that there is a natural isomorphism
between the identity functor Id : V ectk → V ectk and the functor DD : V ectk → V eckk,
where k is the ground field of V and DD denotes the function sending V to its double dual,
DDV (which is also a vector space over k).

Let us define a function ηV : Id(V) → DD(V), i.e. ηV : V → DDV . Given a λ ∈ DV (a
linear transformation from V to its ground field k) and v ∈ V , define

ηV (v)(λ) = λ(v)

For convenience, denote ηV (v) = evalv. First, we will show that this is an isomorphism,
and then we will show that it is natural.

To get a better grasp of the types of functors we are looking at, suppose we have a D :
V 7→ DV . The natural way to define the composition is:

V

T◦f
��

f // V ′

T∈DV ′
~~}}

}}
}}

}}

k

Thus D(f(T)) = T ◦ f . This shows that functors D : V 7→ DV are contra-variant. Taking
that same functor twice, into DDV , yields a covariant functor.

Let e1...ek be a basis of V , and define Tei by

Tei(ej) =
{

1 i = j
0 i 6= j.

8

The set of Tei forms a basis for DV , which shows that V and DV have the same dimension.
Suppose v 6= 0. We can write v in terms of a chosen basis: v = a1e1 + ... + anen. At
least one of these coefficients must be nonzero, since v 6= 0. So if ai 6= 0, let T = Tei .
Then Tei(v) = T (a1e1 + ...+ anen) = ai 6= 0. Thus evalv is nonzero. This also shows that
ηV : V → DDV is injective since every nonzero vector gets sent to something nonzero. We
have shown that V and DDV are finite dimensional with the same dimension, so ηV must
be an isomorphism.

To show that η is natural, suppose we have f : V → V ′. Now the consider the diagram

V

ηV

��

f // V ′

ηV ′

��
DDV

DDf // DDV ′

We must show that this commutes. Suppose, then, that we have a v ∈ V . We must show
that whichever way we go round the diagram, we get the same element of DDV ′. Going
clockwise, we obtain f(v) ∈ V ′ and then evalf(v). Going counterclockwise, we obtain
first evalv, and then DDf(evalv). But DDf(evalv) = evalv ◦ Df . For any T ∈ DV ′,
(evalv ◦Df)(T) = evalv(Df(T)) = evalv(T ◦ f) = T ◦ fv = Tf(v).

Note that for any T ∈ DV ′, evalf(v)(T) = Tf(v). Therefore we obtain the same element of
DDV ′ going either way around the diagram; the diagram commutes. Amen.

8 Further Possibilities

This paper has given the merest of introductions to category theory, with a few examples
and statements. We can accomplish much more, relating more sophisticated concepts in
mathematics, using this branch; for that, however, you shall have to consult the textbooks,
as I have none of the required background.

References

[1] Berrick and Keating, “Categories and Modules”, 2000, 2-34.

[2] Guillou and Skiadas, “WOMP 2004: Category Theory”, 2004.

[3] Peter May’s lectures, class notes.

9

