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Abstract. This paper outlines a proof of the Jordan Normal Form Theorem.

First we show that a complex, finite dimensional vector space can be decom-

posed into a direct sum of invariant subspaces. Then, using induction, we
show the Jordan Normal Form is represented by several cyclic, nilpotent ma-

trices each plus an eigenvalue times the identity matrix – these are the Jordan

Blocks.
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Introduction

Any matrix over an algebraically closed field (we will work over C here) is similar
to an upper triangular matrix, but is not necessarily similar to a diagonal matrix.
The motivation behind Jordan Normal Form is the latter. Since not all matrices can
be diagonalized, we demand that any matrix still has a ’nice’ form; this form is the
Jordan Normal Form. Jordan Normal Form has applications in solving problems
in physics, engineering, computer science, and applied mathematics. For example,
systems of differential equations that describe anything from population growth to
the stock market can be represented by matrices – putting this matrix into Jordan
Normal Form simplifies the task of finding solutions to the system. In this paper
we will outline a proof of the Jordan Normal Form Theorem.

Jordan Normal Form

Theorem 0.1. Jordan Normal Form: Let T be a linear mapping of a finite-
dimensional vector space U to itself, and assume either that U is a complex vector
space or else that all the eigenvalues to T are real. Then U can be decomposed into
a direct sum of subspaces each of which is mapped into itself by T, the action of T
in that subspace being described, with respect to a suitable basis, by a cyclic matrix
plus an eigenvalue, λi, times an identity matrix of the appropriate size; in other
words, by a matrix of the form:
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λj 1 0 · · · 0
0 λj 1 · · · 0
0 0 · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · λj

 mj ×mj, where mj is the multiplicity of eigenvalue

λj

First, we must show U can be decomposed into a direct sum of subspaces, i.e.
U = U1

⊕
· · ·

⊕
Ur Let Uj = Ker(T-λjI)mj where T is the matrix associated

with T with respect to some basis and mj is the multiplicity of λj . These are the
characteristic subspaces of T.

Next, define the polynomial gj(x) = fT (x)
(x−λj)

mj j= (1, · · · , r) where fT (x) is
the characteristic polynomial of the matrix of T. Note that the gj have no non-
constant factors common to all the gj since we divide out a term corresponding
to a different λj for each j. Therefore, there exists hj(x) j = (1, · · · , r) such that
g1(x)h1(x) + · · ·+ gr(x)hr(x) = 1.

We now define the linear mappings Pj = gj(T )hj(T ) = hj(T )gj(T ). Note
that this commutes because g and h are polynomials. Similarly, P1 + · · · + Pr =
I. Furthermore, Pj : U −→ Uj by the following: (T − λjI)mj Pj(x) = (T −
λjI)mj [gj(T )hj(T )](x) for x ∈ U . Recall gj(x) = fT (x)

(x−λj)
mj ; gj(T) = fT (T )

(T−λjI)mj

so (T − λjI)mj Pj(x) = fT (T )hj(T )(x) but fT (T ) = 0 by the Cayley-Hamilton
Theorem. Therefore, Pj(x) ∈ Ker(T − λjI)mj = Uj .

We can also show that Pj(u) =
{

x if x ∈ Uj

0 if x ∈ Uk, j 6= k
If x ∈ Uk, j 6= k, then Pj = gj(T )hj(T ) contains (T − λkI)mk . This factor maps

everything in Uk to 0. If x ∈ Uj , then x = P1(x) + · · ·Pr(x), and by the previous,
the only non-zero term on the right is Pj(x) =⇒ Pj(x) = x

Recall U = U1

⊕
· · ·

⊕
Ur ⇐⇒ for all x ∈ U there exists a unique x1 · · ·xr such

that x = x1 + · · · + xr where xj ∈ Uj for j = 1, · · · , r. So let xj = Pj(x).x =
x1 + · · ·+ xr.

To show uniqueness, suppose x = x′1 + · · ·+ x′r for xj ∈ Uj . Then the difference
xj − x′j = yj ∈ Uj . Therefore, y1 + · · ·+ yr = 0. Now applying Pj to both sides we
get yj = 0 for each j so xj = x′j . Hence the first assertion.

The next assertion, T maps Uj −→ Uj is easily shown. Clearly, T commutes
with (T − λjI)mj . Let x ∈ Uj . (T − λjI)mj T (x) = T (T − λjI)mj (x) = 0 So for
x ∈ UjT (x) ∈ Ker(T − λjI)mj = Uj

The last assertion of Jordan Normal Form theorem, that the restriction of T to
Uj , call it Tj , has a matrix with respect to a suitable basis, which in fact does not
depend of the choice of basis for Uj , and that can be represented by Tj = Dj + Nj

where Dj is a diagonal matrix with λj on the diagonal and Nj is a nilpotent
matrix. We need to show that on any Uj , the Jordan normal form of any nilpotent
mapping can be represented by a matrix, or sum of matrices, of the following form

in a suitable basis


0 1 0 · · · 0
0 0 1 · · · 0
0 0 · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0


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Definition 0.2. Given a linear transformation T from V to itself, we call (v0, v1, . . . , vd)
a d-string if T (vi) = vi−1 for all 0 < i ≤ d.

From this point on we assume that we have fixed a transformation and any
d-string is relative to this fixed transformation.

Definition 0.3. If (v0, . . . , vd) is a d-string, we will say that it has length l if there
are precisely l non-zero vectors in the string.

Lemma 0.4. If s = (v0, . . . , vd) is a string for T of length l < d+1 then T l(vi) = 0
for all 1 ≤ i ≤ d.

Proof. This lemma follows directly from the definition of string and length. �

Proposition 0.5. If Nd = 0 then there is a collection of M d-strings, each of
which has its first vector 0, such that the non-zero vectors in the strings form a
basis of V .

We prove this proposition by induction on d. Base Case d = 1. Here we have
N = 0 So let v1, . . . , vn be a basis of V . The 1-strings (0, vi) satisfy the proposition.
We will assume the proposition is true for d− 1 and produce the result for d, i.e.,
assume Nd = 0 and Nk 6= 0 for all k < d. Let W = ker(Nd−1). Then by
the induction hypothesis, there exists M̃ (d − 1)-strings such that the non-zero
vectors in these strings are a basis for W . Let us assume that M of these strings
{s1, . . . , sM} have length d − 1. We define the set Bk to be the collection of non-
zero vectors contained in any of the M strings {s1, . . . , sM} that are in the k-th
position. For example, if we had two strings s1 = (0, v1, v2) and s2 = (0, 0, w2) then
B1 = {v1} and B2 = {v2, w2}. Let us also denote by B the basis of W appearing
as the non-zero vectors in all M̃ strings. We now prove a lemma.

Lemma 0.6. If v 6∈ W then N(v) 6∈ Span(B −Bd−1).

Proof. Note that for every vector w in B − Bd−1 we have that Nd−2(w) = 0.
Indeed, either w is in one of the M strings {s1, . . . , sM} in the k-th position where
k < d− 1 implying Nd−2(w) = 0 (since v0 = 0 for each string), or w is in a string
whose length is less than d− 1, implying again that Nd−2(w) = 0 by the previous
lemma. Thus if N(v) were in the span of B−Bd−1 then Nd−2(N(v)) = 0 implying
that v ∈ ker(Nd−1) = W . This is a contradiction and proves the lemma. �

Let us now extend the basis B of W to a basis of V by adding the vectors
{u1, . . . , um}
Corollary 0.7. m ≤ M .

To see that this must be true, we observe that N maps the span of {u1, . . . , um}
to W . Composing N with the projection to the span of Bd−1 we have a map from
an m-dimensional space to an M -dimensional space. If this map has a non-trivial
kernel, then there is a v 6∈ W (i.e. in the span of {u1, . . . , um} such that N(v) is in
the span of B −Bd−1 contradicting the lemma. Thus this map has a trivial kernel
implying that m ≤ M .

Lemma 0.8. Suppose A = (aij) is an invertible r × r-matrix and {t1, . . . , tr}
are strings of equal length l whose non-zero entries are linearly independent. Let
t̃i =

∑r
j=1 aijtj where we simply sum each k-th entry when we add strings. Then

{t̃1, . . . , t̃r} are strings of equal length whose non-zero entries are linearly indepen-
dent.
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The proof of this lemma is clear. A maps the span of the non-zero vectors
in the strings (of dimension r · l) to itself and A−1 is an inverse map, implying
the spaces have the same dimension. Multiplying by matrices is not the only
operation we can perform on strings with linearly independent entries. Given a
string s = (0, v1, . . . , vl) we can shift k terms to the right to obtain Shk(s) =
(0, . . . , 0, v1, . . . , vl−k).

Lemma 0.9. Suppose s is a string of length l and {t1, . . . , tp} are strings whose
length are less than or equal to l and all of the non-zero entries in the strings are
linearly independent. If T is a linear combination of the ti along with any shifts
Shk(ti) or Shk(s) (so long as k > 0), then {s + T, t1, . . . , tp} is a set of strings
whose non-zero entries are linearly independent.

Proof. One only needs to see that the span of the non-zero entries of {s, t1, . . . , tp}
is equal to that of the span of the non-zero entries of {T + s, t1, . . . , tp}. But this is
clear. Any non-zero vector in T + s is a linear combination of one vector in s and
those appearing in {t1, . . . , tp}. Subtracting off this combination implies that each
vector in s is contained in the span of the non-zero entries of {T + s, t1, . . . , tp}.
Reversing this argument we see that the spans are equal. As the length of s is
maximal, we see that the number of non-zero vectors in each of these collections is
equal, and since the first is assumed to be linearly independent, a dimension count
shows the second must be as well. �

These last two lemmas are the basic ingredients in the proof of our proposition,
which we now complete.

Proof. Recall that {u1, . . . , um} was an extension of our basis of W to one for V .
Let us denote by U the span of these vectors. By the proof of the corollary, we saw
that πd−1 ◦N : U → Span(Bd−1) was injective, where πd−1 is the projection in W
to the span of Bd−1. Since this is an injective map, we have {πd−1◦N(u1), . . . , πd−1◦
N(um)} are linearly independent vectors in the span of Bd−1. Recall that Bd−1

is the collection of the last vector entries in the M strings {s1, . . . , sM}. Now we
extend the collection {πd−1 ◦ N(u1), . . . , πd−1 ◦ N(um), w1, . . . , wM−m} to a basis
of the span of Bd−1 and examine the change of basis matrix A = (aij) from Bd−1

to this basis. By Lemma 0.7, we obtain a new collection of strings {s̃1, . . . , s̃M}
where s̃i =

∑M
j=1 aijsj , and whose non-zero vectors span the same space as those

of {s1, . . . , sM} and are linearly independent. By the proof of Lemma 0.7, we
also see that the span of each Bk is equal to the span of the new B̃k (here the
B̃k is defined as before with these new strings). Now, as this process does not
affect any of the strings whose length is less than d− 1, we have a new collection,
{s̃1, . . . , s̃M , t1, . . . , tM̃−M} which satisfies our proposition for W . Furthermore,
πd−1 ◦N(ui) = wi where wi is the last entry in s̃i.

Let B̃ be the collection of non-zero vectors in these strings. We see that W =
Span(B̃d−1)⊕ Span(B̃−B̃d−1). In this direct sum we have N(ui) = wi+vi where vi

is a linear combination of elements in B̃− B̃d−1. As such, we can view vi as the last
vector in some string which is a linear combination of the strings {t1, . . . , tM̃−M}
along with their shifts as well as positive shifts of the strings {s̃1, . . . , s̃M}. This
follows since, by shifting enough, we can place any vector in B̃ − B̃d−1 in the d− 1
position of a string. Multiplying by constants and adding the resulting string gives
a string Ti such that vi is in the d−1-st position. By repeated application of Lemma
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0.8, we see that the collection {s̃1 + T1, . . . , s̃m + Tm, s̃m+1, . . . , s̃M , t1, . . . , tM̃−M}
spans W and the non-zero vectors in these strings form a basis of W . Finally, by
construction we see that N(ui) = wi + vi is the d − 1-st vector in the i-th string
si + Ti.

After having done the difficult work, we now complete the induction step. For
each of the d − 1-strings, {s̃1 + T1, . . . , s̃m + Tm} we will create a d-string Si by
placing ui in the d-th position of s̃i + Ti. By our construction we see that this
is indeed a string since s̃i + Ti is a string and N(ui) is the d − 1-st vector in this
string. For all other d−1-strings {s̃m+1, . . . , s̃M , t1, . . . , tM̃−M} in our collection, we
shift them up by one and add a zero in the zeroth position to make them d-strings
{Sm+1, . . . , SM̃}. I.e., if d = 3 and (0, v1, v2) is one of our strings, then we replace
it with (0, 0, v1, v2). Clearly, each of these is still a d-string relative to N . Now,
since the non-zero vectors of {s̃1 + T1, . . . , s̃m + Tm, s̃m+1, . . . , s̃M , t1, . . . , tM̃−M}
formed a basis for W and the non-zero vectors that were added to form the d-strings
{S1, . . . , SM̃} were just the extended basis elements {u1, . . . , um}, we see that the
non-zero elements of these strings form a basis for V and the induction step is
complete. �

To connect our proposition to Jordan Normal form is easy. We see that for each
string Si, the non-zero vectors form a basis for a subspace Vi and V = V1⊕· · ·⊕VM̃ .
Putting the transformation N into matrix form for each Vi using the basis from Si

we see that N is a direct sum of matrices of the form:

0 1 0 · · · 0
... 0 1

...
...

. . . . . . . . . 0
... 0 1
0 · · · 0


Thus if we let V = Uj where Uj is the characteristic eigenspace of λj , d = mj

and N = T − λjI then we see that T = λjI + N and the matrix form for T on
each direct summand of Uj (corresponding to the Vi’s in our decomposition of V )
is just: 

λj 1 0 · · · 0
... λj 1

...
...

. . . . . . . . . 0
... λj 1
0 · · · λj


This is precisely the form we wanted for Jordan Normal Form, and thus our

proposition yields the result.

Conclusion

The Jordan Normal Form is a powerful tool because it assures us that any matrix
over an algebraically closed field has a ”nice” form, through which we can find the
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solutions to complicated equations. For the same reason, Jordan Normal form is
also an interesting mathematical object.
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