
THE FROBENIUS-PERRON THEOREM

SUYEON KHIM

1. Introduction

We begin by stating the Frobenius-Perron Theorem:

Theorem 1.1 (Frobenius-Perron). Let B be an n× n matrix with nonnegative real
entries. Then we have the following:

(1) B has a nonnegative real eigenvalue. The largest such eigenvalue, λ(B), domi-
nates the absolute values of all other eigenvalues of B. The domination is strict
if the entries of B are strictly positive.

(2) If B has strictly positive entries, then λ(B) is a simple positive eigenvalue, and
the corresponding eigenvector can be normalized to have strictly positive entries.

(3) If B has an eigenvector v with strictly positive entries, then the corresponding
eigenvalue λv is λ(B).

We will first illustrate the statement for 2-by-2 matrices (using very elementary
arguments), and then prove the theorem for the n-by-n case. Finally, we will con-
clude with examples of some of the applications of the theorem.

2. The Frobenius-Perron Theorem for n = 2

Consider the matrix

B =

[
a b
c d

]
.

with nonnegative entries. The characteristic polynomial

pB(t) = det(tI −B) = t2 − (a + d)t + (ad− bc).

has discriminant

(a− d)2 + 4bc ≥ 0

and roots

λ(B) =
(a + d) +

√
(a− d)2 + 4bc

2
, λ′(B) =

(a + d)−
√

(a− d)2 + 4bc

2
.

1
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(1). Since a, b, c, d ≥ 0, the discriminant is nonnegative, so the roots of the charac-
teristic polynomial can only take on real values. Hence there exists a real eigenvalue
for B. λ(B) is nonnegative, so B has a nonnegative real eigenvalue. Since

t2 − (a + d)t + (ad− bc) =

[
t− (a + d)

2

]2

−
[
(a− d)2

4
+ (ad− bc)

]
and (a+d)

2
is nonnegative, λ(B) ≥ |λ′(B)|. If B has strictly positive entries, then

(a+d)
2

is strictly positive and the domination is strict.

(2). If B has strictly positive entries, then the discriminant is greater than 0, so the
characteristic polynomial must have two distinct real solutions. Of these, λ(B) is
positive and greater than λ′(B). Hence, λ(B) is a simple positive eigenvalue.

We now show that the eigenvector corresponding to λ(B) can be normalized to
have strictly positive entries. Define

D := (a− d)2 + 4bc, λ := λ(B).

There exists an eigenvector x with eigenvalue λ. This eigenvector must be unique
up to scaling, because there are two distinct eigenvalues, each with at least one
corresponding eigenvector, and each with at most one corresponding eigenvector
(up to scaling), since the number of linearly independent eigenvectors of a matrix
cannot exceed its size. We have:(

a b
c d

)
·
(

x1

x2

)
=

(
λx1

λx2

)
,{

ax1 + bx2 = λx1

cx1 + dx2 = λx2
.

By definition, either x1 6= 0 or x2 6= 0. Suppose x1 6= 0. Then

a + b · x2

x1

= λ ⇔ x2

x1

=
λ− a

b
,

c + d · x2

x1

= λ · x2

x1

⇔ x2

x1

· (λ− d) = c > 0.

We want to prove that x2

x1
> 0. It is enough to show that either λ > a or λ > d.

This is indeed true, because λ > a+d
2

. The same method proves the result for x2 6= 0.

(3). Suppose B has an eigenvector v with strictly positive entries. We have:(
a b
c d

)
·
(

v1

v2

)
=

(
λvv1

λvv2

)
,

which we know from the proof of (2) gives us

a + b · v2

v1

= λv, c + d · v2

v1

= λv ·
v2

v1

.
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From this, we obtain
v2

v1

· b = λv − a,
v2

v1

· (λv − d) = c ≥ 0.

Since v2

v1
is positive, we must have λv ≥ a and λv ≥ d. Then λv ≥ a+d

2
, hence

λv = λ(B).

3. Proof of the Frobenius-Perron Theorem for n-by-n matrices

Now that we understand the theorem for n = 2, we will prove the general case.
We will begin by proving (3), and furthermore show that if the entries of B are
strictly positive, then the domination is strict. We will then show that λv is a
simple positive eigenvalue, and the corresponding eigenvector can be normalized
to have strictly positive entries. Next, we will show that the proof of (1) can be
reduced to the case for B with strictly positive entries. Then by the above, it will
suffice to prove the existence of an eigenvector v with strictly positive entries for B
with strictly positive entries to conclude the proof of (1) and (2). We will prove the
existence of such a v.

Proof of (3). Suppose B has an eigenvector v with strictly positive entries, and let
λv denote the corresponding eigenvalue, so that Bv = λvv. Observe that

v =

 v1
...

vn

 =


v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...
0 0 . . . vn

 ·


1
1
...
1

 = C ·

 1
...
1

 ,

where we denote the diagonal matrix by C in the last equality. Then

B · C ·

 1
...
1

 = λvC ·

 1
...
1

 =⇒ C−1BC

 1
...
1

 = λv ·

 1
...
1

 .

Since

C−1 =


v−1

1 0 . . . 0
0 v−1

2 . . . 0
...

...
. . .

...
0 0 . . . v−1

n

 ,

the matrix CBC−1 has only nonnegative entries. Similar matrices have the same
eigenvalues, so we may assume without loss of generality that

v =

 1
...
1

 .
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We then have λv =
∑n

j=1 bij for each 1 ≤ i ≤ n. Hence λv is a nonnegative real
number, and it is strictly positive unless B = 0.

Let us equip Cn with the `∞ norm, i.e.,

||z|| = max
i=1,··· ,n

|zi| for z =

 z1
...
zn

 .

For any z ∈ Cn, the i-th entry of the vector Bz is equal to bi1z1 + bi2z2 + · · ·+ binzn.
We have

|bi1z1 + · · ·+ binzn| ≤ |bi1||z1|+ · · ·+ |bin||zn|(3.1)

≤
n∑

j=1

bij · max
i=1,...,n

|zi|(3.2)

= λv||z||.

Therefore,

||Bz|| ≤ λv||z||.

Hence, if z′ is an eigenvector with eigenvalue λ′, then

||Bz′|| = |λ′| · ||z′|| ≤ λv||z′||.

Therefore, λv ≥ |λ′|. Hence, by definition, λv = λ(B), as claimed.

Remark 1. Now suppose that all entries of B are strictly positive. Then ||Bz|| <
λv||z||, unless z1 = z2 = · · · = zn, which is the same as saying

z = c ·

 1
...
1

 = c · v,

where c ∈ C. This is the only case for which we have equality, hence v is the unique
(up to scale) eigenvector with eigenvalue λv. This is because if zi 6= zj for some
1 ≤ i, j ≤ n, then one of the inequalities (3.1) or (3.2) will be strict. Then ||z||
cancels on both sides (||z|| is greater than 0 by the definition of an eigenvector),
and we see that λv strictly dominates the absolute values of all other eigenvalues of
B. Hence, we have strict inequality for all eigenvalues corresponding to eigenvectors
other than v.
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Remark 2. We will now prove by contradiction that the “algebraic” multiplicity of
λv (i.e., the multiplicity of λv as a root of the characteristic polynomial of B) is
exactly 1. Suppose the multiplicity of λv is greater than 1. By the Jordan theorem,
there exists an invertible matrix C such that CBC−1 is upper triangular and looks
like the following matrix: 

. . . 0
λv 1

λv

0
. . .

 ,

with a Jordan block of size at least 2. Note that we may exclude the case with two
1-by-1 Jordan blocks with the same λv, because then we would have two independent
eigenvectors for λv, but we proved in Remark 1 that v is unique up to scalar multiple.
We make the following claim:

Claim 1.

(i) There exist entries of ( 1
λv

CBC−1)n such that the absolute values of these
entries approach ∞ as n →∞.

(ii) Hence, the same is true for ( 1
λv

B)n.

Proof. (i)

1

λv

·


λv 1 0

λv
. . .
. . . 1

0 λv

 =


1 0

1
. . .

0 1

 +


0 1

λv
0

0
. . .
. . . 1

λv

0 0

 .

Let 
1 0

1
. . .

0 1

 = I,


0 1

λv
0

0
. . .
. . . 1

λv

0 0

 = A.

We need only look at this particular Jordan block, because when we multiply the
Jordan block decomposed matrix CBC−1 by itself, each Jordan block is only affected
by its corresponding Jordan block. Furthermore, for k > 1, each Ak affects only its
particular diagonal line of entries, from a1(k+1) to an(n−k). By the binomial theorem,
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we have that

(I + A)n =
n∑

k=0

(
n
k

)
In−kAk

=
n∑

k=0

(
n
k

)
Ak

= I + nA +

(
n
2

)
A2 + · · ·

=


1 n

λv
∗

1
. . .
. . . n

λv

0 1

 .

This shows that ( 1
λv

CBC−1)n has entries whose absolute values approach ∞ as
n →∞.

(ii) To show that ||Bn|| → ∞ as ||(CBC−1)n|| → ∞, note that (CBC−1)n =

CBnC−1. Think of these n-by-n matrices as elements of Cn2
. Consider the function

f : Cn2 → Cn2
, where f(X) = CXC−1. This function is continuous. Its inverse,

f−1 : Cn2 → Cn2
is also continuous, where f−1(X) = C−1XC. Therefore, the entries

of (CBC−1)n are bounded iff Bn is bounded.
�

However, observe that the entries of ( 1
λv

B)n cannot approach ∞, since

||Bz|| ≤ λv||z|| ⇔ 1

λv

||Bz|| =
∣∣∣∣∣∣∣∣ 1

λv

Bz

∣∣∣∣∣∣∣∣ ≤ ||z||,

and therefore

(3.3)

∣∣∣∣∣∣∣∣( 1

λv

B

)n

z

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣ 1

λv

[(
1

λv

)n−1

Bn

]
z

∣∣∣∣∣
∣∣∣∣∣ ≤ ||z||

for any ||z||, since ( 1
λv

)n−1Bn is just another matrix with strictly positive entries and

therefore can be substituted for B in the inequality (3.3). For any matrix A that
has the property ||Az|| ≤ ||z||, if a ∈ Cn is any row vector of A, then ||a · z|| ≤ ||z||.
Then we have that the entries of A are bounded, since |aij| ≤ 2||z||

|zj | , Therefore, the

entries of ( 1
λv

B)n must be bounded. We have a contradiction, which shows that the
algebraic multiplicity of λv cannot be greater than 1.
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Proof of (1) and (2). We will reduce the proof of (1) to the case where all entries of
B are strictly positive. The idea is that we may “approximate” B by matrices with
strictly positive entries. Consider B with nonnegative entries. Define Br to be the
same matrix with the 0 entries replaced by 1

r
, where r ∈ R and r > 0. We will:

(i) show that the eigenvalues of Br approach the eigenvalues of B as r →∞;
(ii) prove the existence of an eigenvector for Br with strictly positive entries, and

hence a positive eigenvalue for Br, by our proof of (3) and the remarks; and
(iii) prove that this positive eigenvalue is precisely λv = λ(B) and satisfies the

properties stated in parts (1) and (2) of Theorem 1.1.

Since the eigenvalues of a matrix are the roots of its characteristic polynomial, if
we show that as polynomials approach polynomials, roots approach roots, then we
will have proved (i). We will use the following lemma:

Lemma 1. Let f(x) = xn + an−1x
n−1 + · · · + an, ai ∈ C, |a1|, · · · , |an| < M . If

z ∈ C is a root of f, then |z| < 1 + nM .

Proof. Suppose |z| ≥ 1 + nM . If f(x) = 0, then

xn = −an−1x
n−1 − an−2x

n−2 − · · · − a0.

Taking the absolute values of both sides,

|xn| = | − an−1x
n−1 − an−2x

n−2 − · · · − a0|
= |an−1x

n−1 + an−2x
n−2 + · · ·+ a0|.

We divide by xn and obtain

1 = |an−1x
n−1/x + an−2x

n−2/x + · · ·+ a0/x|

≤
∣∣∣an−1

x

∣∣∣ +
∣∣∣an−2

x2

∣∣∣ + · · ·+
∣∣∣∣ a0

xn

∣∣∣∣
<

∣∣∣∣Mx
∣∣∣∣ +

∣∣∣∣Mx2

∣∣∣∣ + · · ·+
∣∣∣∣Mxn

∣∣∣∣
≤

∣∣∣∣ M

1 + nM

∣∣∣∣ +

∣∣∣∣ M

(1 + nM)2

∣∣∣∣ + · · ·+
∣∣∣∣ M

(1 + nM)n

∣∣∣∣
≤ n

∣∣∣∣ M

1 + nM

∣∣∣∣
< 1.

Contradiction.
�

This lemma establishes an upper bound for the absolute values of the roots.

Arrange the eigenvalues of Br in any order; call them λ
(r)
1 , · · · , λ

(r)
n . Since the
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sequence
{(

λ
(r)
1 , · · · , λ

(r)
n

)
∈ Cn

}∞
r=1

is bounded, it has a convergent subsequence.

Call it
{(

λ
(rj)
1 , · · · , λ

(rj)
n

)}∞
r=1

. Then

Brj
→ B =⇒ p(Brj

) → p(B)

as j →∞, where p(B) denotes the characteristic polynomial of B. If we put

λk := lim
j→∞

λ
(rj)
k ,

this implies that

p(B) =
n∏

k=1

(t− λk),

because

p(Brj
) =

n∏
k=1

(t− λ
(rj)
k )

for every j. Therefore, there exists a subsequence such that the n-tuple of roots

λ
(r)
1 , · · · , λ

(r)
n converge to the n-tuple of roots of B (i.e., the eigenvalues). Hence, the

λk’s are the eigenvalues of B.

We will now prove the existence of an eigenvector with strictly positive entries for
B with strictly positive entries. We will use the following claim:

Claim 2. If Bv′ = λv′v′ with the entries of v′ being nonnegative, v′ 6= 0, and the
entries of B being strictly positive, then each entry of v′ must be positive.

Proof. Since all entries of v′ are nonnegative, the same is true of Bv′. Furthermore,
all entries of B are positive, so the entries of Bv′ are all positive, since there is at
least one nonnegative, non-zero entry in v′. However, v′ is an eigenvector, so Bv′ is
a scalar of multiple v′, which requires it to have zero entries in the same locations
as v′. Hence, none of the entries of v′ can be zero.

�

So we may prove the existence of an eigenvector v′ with nonnegative entries for
B with strictly positive entries, which by the claim is equivalent to proving the ex-
istence of an eigenvector v with strictly positive entries.

Let us consider the cube D : {d ∈ D | 0 ≤ di ≤ 1, ∀i = i, · · · , n}. For the
matrix B, we will write ||B|| = maxi=1,...,n

∑n
j=1 |bij|. Consider the function f(d) =

||dBd−1||, where we consider d = (d1, · · · , dn) ∈ D as a diagonal matrix

d =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 .
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Note that f is only defined in the “interior”, Dint, of the cube D, where d ∈ Dint if
di 6= 0 for all i = 1, . . . , n. Moreover, f is clearly continuous on Dint.

For each ε > 0, let us define a set Dε by d ∈ Dε iff di ≥ ε for all i and
∑n

i=1 di = 1.
Note that Dε ⊂ Dint and is closed and bounded, hence compact. We claim that
there exists d ∈ Dint such that f(d′) ≥ f(d) for all d′ ∈ Dint.

Claim 3. For any sufficiently small ε > 0, there exists d′′ ∈ Dε such that f(d′) ≥
f(d′′) for all d′ ∈ Dint.

Proof. Without loss of generality, we can assume
∑n

i=1 d′i = 1, since we can rescale
the sum of the coordinates of the vector to equal 1. Assume d′ does not lie in Dε. (If
it does, then since Dε is compact, the function f achieves a minimum on Dε and we
are done.) Then for some i, we have d′i < ε and d′1+· · ·+d′i−1+d′i+1+· · ·+d′n > 1−ε.

So there exists j 6= i such that d′j > 1−ε
n−1

. Take the ji-th entry of f(d′) = ||d′Bd′−1||:

f(d′) ≥ d′jd
′
i
−1

bji >
(1− ε)bji

(n− 1)ε
.

If we take ε → 0, i.e., if one of the coordinates of d ∈ D approaches 0, then
f(d) → ∞, so f achieves its smallest value on some d′′ ∈ Dε ⊂ Dint. Therefore,
f(d) ≥ f(d′′), ∀d ∈ Dint.

�

Claim 4. d′ is an eigenvector for B with eigenvalue f(d′) = λ.

Proof. Replacing B by d′Bd′−1, we may assume without loss of generality that d′ =
(1, · · · , 1), by the same line of reasoning as given in the proof of (3). We have

max
i

n∑
j=1

bij = λ

(1.1) max
i

n∑
j=1

didj
−1bij ≥ λ, such that dk > 0, ∀k.

Let S = {i |
∑n

j=1 bij < λ}. We only need to show that S = ∅. We will prove

this by contradiction. By our condition, ∀ d1, · · · , dn, there exists i ∈ {1, · · · , n}
such that di

∑n
j=1 dj

−1bij ≥ λ, and at the very least
∑n

j=1 dj
−1bij ≥ λ. So if we take

(d1, · · · , dn) “very close” to (1, · · · , 1), then i /∈ S. For instance, we could take

di =

{
1− ε (i /∈ S)
1 (i ∈ S).

If S 6= ∅ and ε > 0 is sufficiently small then maxi

∑n
j=1 didj

−1bij < λ, contrary to

(1.1).
�
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Since we have shown that an eigenvector v with strictly positive entries indeed
exists for B with strictly positive entries, and we know it has the corresponding
eigenvalue λv by (3), we have that limr→∞ Br = B has a nonnegative real eigenvalue.
By our previous lemma, there exists a subsequence such that the eigenvalues of Br

converge to the eigenvalues of B. For every r, Br has a positive real eigenvalue

that strictly dominates all the other ones, by (3’). Call this eigenvalue λ
(r)
1 , and

arrange the other eigenvalues of Br in any order; call them λ
(r)
2 , · · · , λ

(r)
n . We know

the sequence {(λ(r)
1 , · · · , λ

(r)
n ) ∈ Cn}∞r=1 converges to {(λ(rj)

1 , · · · , λ
(rj)
n )}∞r=1

We conclude that:

(1) λ
(rj)
1 > 0 by construction ⇒ λ1 is real and nonnegative; and

(2) for any 2 ≤ k ≤ n, λ
(rj)
1 > |λ(rj)

k |, ∀j. By passing to the limit as j → ∞, we
obtain λ1 ≥ |λk|, ∀2 ≤ k ≤ n.

This completes the proof of Theorem 1.1.

4. Applications

The Frobenius-Perron theorem has a natural interpretation in the theory of Markov
chains, which in turn has applications in population modeling and biophysics, to
name but a few. We will illustrate a few of these.

Suppose we have any vector u0 = (x, 1− x), which we multiply over and over by
the “transition matrix”

A =

[
.8 .3
.2 .7

]
,

Then u1 = Au0, u2 = Au1, · · · , uk = Aku0. The claim is that the vectors u0, u1, . . .
will approach a “steady state”, i.e., multiplying A will eventually cease to change
the vector. The limit state for this particular example is u∞ = (.6, .4). Observe that
Au∞ = u∞: [

.8 .3

.2 .7

] [
.6
.4

]
=

[
.6
.4

]
.

u∞ is an eigenvector with eigenvalue 1, and this makes it steady. But what is
significant is that the final outcome does not depend on the starting vector ; for any
u0, Aku0 will always converge to (.6, .4) as k →∞.

Having a steady state does not alone imply that all vectors u0 lead to u∞. For
example,

B =

[
1 0
0 2

]
has the steady state

B

[
1
0

]
=

[
1
0

]
,
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but the starting vector u0 = (0, 1) will give u1 = (0, 2) and u2 = (0, 4). B has λ = 1
but it also has λ = 2. Any |λ| > 1 means blowup.

The explanation for the phenomenon that for some matrices, all vectors u0 lead
to u∞, forms the basis for the theory of Markov chains. There are two special
properties of A that guarantee a steady state u∞. These properties define what is
called a Markov matrix, and A above is just one particular example:

1. Every entry of A is nonnegative.

2. Every column of A adds to 1.

Two facts are immediate for any Markov matrix A:

(i) multiplying a nonnegative u0 by A produces a nonnegative u1 = Au0; and
(ii) if the components of u0 add to 1, so do the components of u1 = Au0.

Statement (ii) follows from the fact that the components of u0 add to 1 when
[1, · · · , 1] u0 = 1. This is true for each column of A by Property 2. Then by matrix
multiplication, it is true for Au0:

[1, · · · , 1] Au0 = [1, · · · , 1] u0 = 1.

The same applies to u2 = Au1, u3 = Au2, etc. Hence, every vector uk = Aku0 is
nonnegative with components adding to 1. These are “probability vectors”. The
limit u∞ is also a probability vector, but first we must prove that a limit exists. We
will show that λ = 1 is an eigenvalue of A and estimate the other eigenvalues.

Theorem 4.1. If A is a positive Markov matrix, then λ1 = 1 is larger than any
other eigenvalue. The eigenvector x1 is the steady state: uk = x1 + c2(λ2)

kx2 + . . .+
cn(λn)kxn always approaches u∞ = x1.

Every column of A− I adds to 1− 1 = 0. The rows of A− I add up to the zero
row. Those rows are linearly dependent, so A−I is singular. Its determinant is zero,
hence λ1 = 1 must be an eigenvalue of A. Strict domination, and hence uniqueness,
follows from (2) of the Frobenius-Perron theorem. The other eigenvalues gradually
disappear because |λ| < 1. The more steps we take, the closer we come to u∞.

Example. The fraction of Illinois’s wild raccoons in Chicago starts at 1
50

= .2. The
fraction outside Chicago is .98. Every month 80% of raccoons in Chicago leave
Chicago, while 20% of raccoons in Chicago remain in Chicago. Furthermore, 5%
of raccoons outside Chicago arrive in Chicago, while 95% of raccoons outside of
Chicago remain outside Chicago. Hence, the probability vector is multiplied by the
Markov matrix

A =

[
.80 .05
.20 .95

]
,

which gives us

u1 = Au0 = A

[
.02
.98

]
=

[
.065
.935

]
.
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In one month, the fraction of raccoons in Chicago is up to .065. What is the eventual
outcome?

Since every column of A adds to 1, nothing is gained or lost - we are simply
moving a fixed number of raccoons. The fractions add to 1 and the matrix A keeps
them that way. We want to know how they are distributed after k time periods -
which leads us to Ak.

Solution. To study the powers of A we diagonalize it:

|A− λI| =
∣∣∣∣ .80− λ .05

.20 .95− λ

∣∣∣∣ = λ2 − 1.75λ + .75 = (λ− 1)(λ− .75).

A

[
.2
.8

]
=

[
.2
.8

]
, A

[
−1
1

]
= .75

[
−1
1

]
.

We have eigenvalues λ1 = 1 and λ2 = .75 with corresponding eigenvectors x1 =
(.2, .8) and x2 = (−1, 1). The eigenvectors are the columns of S, where S is the
eigenvector matrix, Ak = SΛkS−1. The starting vector u0 is a combination of x1

and x2:

u0 =

[
.02
.98

]
=

[
.2
.8

]
+ .18

[
−1
1

]
.

Now multiply by A to find u1. The eigenvectors are multiplied by λ1 = 1 and
λ2 = .75:

u1 = 1

[
.2
.8

]
+ (.75)(.18)

[
−1
1

]
uk = Aku0 =

[
.2
.8

]
+ (.75)k(.18)

[
−1
1

]
.

The eigenvector x1 with λ = 1 is the steady state u∞. The other eigenvector x2

gradually disappears because |λ| < 1. In the limit, 2
10

of the raccoons are in Chicago

and 8
10

are outside.

Although we arrived at this particular conclusion using diagonalization, Jordan
decomposition can be used to justify the statement for non-diagonalizable matrices.
With a positive Markov matrix, the powers Ak approach the rank one matrix that
has the steady state x1 in every column.

It is of interest to biophysicists to derive approximate analytic expressions for the
fraction of mutant proteins that fold stably to their native structure as a function
of the number of amino acid substitutions, and estimate the asymptotic behavior of
this fraction for a large number of amino acid substitutions. Using Markov chain
approximation, it is possible to model how such a fraction decays.
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5. Appendix

There is also an alternate proof of the existence of an eigenvector with strictly
positive entries for B with strictly positive entries, which is faster than the one we
gave in §3, but uses a rather nontrivial result, namely, Brauer’s fixed point theorem,
stated as Theorem 5.1 below. (Note that the proof we presented in §3 is much more
elementary.)

Proof. Let us consider the subset ∆ ⊂ Rn defined by z ∈ ∆ iff zi ≥ 0 for all
i = 1, · · · , n and

∑n
i=1 zi = 1. This is what is called an (n− 1)-dimensional simplex

(for n = 2, we get an interval, for n = 3, a triangle, and so on). Then, let us consider
the map Φ : ∆ → ∆, defined as follows:

Φ(z) =
Bz

(Bz · (1, 1, · · · , 1))
,

where Bz · (1, 1, · · · , 1) denotes the dot product of the vectors Bz and (1, 1, · · · , 1)
(i.e., the sum of the coordinates of the vector Bz). Clearly, Φ is a continuous map,
so by Brauer’s fixed point theorem, there exists z ∈ ∆ such that Φ(z) = z. Hence,
z = Bz

Bz·(1,··· ,1)
⇒ Bz = (Bz · (1, · · · , 1))z, so z is an eigenvector with nonnegative

entries.
�

Theorem 5.1 (Brauer’s fixed point theorem). Let f : ∆n → ∆n be a continuous
map from an n-dimensional simplex to itself. Then, it has a fixed point (i.e., there
exists z ∈ ∆n such that f(z) = z).
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