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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.

References:
1. Jänich, Klaus and Silvio Levy (translator).  Topology.  New York, NY: Springer-Verlag New York Inc., 1984.

2. Lawson, Terry.  Topology: A Geometric Approach.  New York, NY: Oxford University Press, 2003.

3. Munkres, James R.  Topology: A First Course.  Englewood Cliffs, NJ: Prentice-Hall, Inc., 2000.

Printed by Mathematica for Students



William Leeb
VIGRE REU
July 2007

The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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The Nagata-Smirnov Metrization Theorem

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces.  In other
words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric.
As a motivational example, consider the discrete topology on some space (every subset of the space is open).  Though it might
not be apparent to the untrained observer, this topology is actually defined by the following metric:

d(x, y) = : 1 when x ≠ y
0 when x = y

The open balls of radius 1/2 under this metric each contain only a single point (the point around which the ball is centered); using
these open balls as a basis, we define the discrete topology.  Hidden in the discrete topology is the underlying metric defined
above.  The Nagata-Smirnov Metrization Theorem lists the exact conditions that any topology must have in order for there to be
such an underlying metric.  Before proving the full metrization theorem, we will start with a more specific result: the characteriza-
tion of compact metric spaces.

Part I: We will prove that a topological space X is a compact metric space if and only if X is compact Hausdorff with a countable
basis.

We will begin with some relatively simple preliminary results that occur often in the lemmas and theorems to follow.
When used, these results will not be cited by name.

Result 1: In a topological space X, suppose A is a compact set and C Õ A is closed.  Then C is compact.
Proof: Take any open cover of C.  This cover and the open set X\C form an open cover of A.  Because A is compact, there is a
finite subcover, which must also cover C, because C Õ A.  Thus any open cover of C can be reduced to a finite subcover, so C is
compact. ·

Result 2: Suppose f: XØY is continuous, and A Õ X is compact.  Then f(A) is compact.
Proof: Take an open cover  = {U} of f(A).  Take x œ A.  Then f(x) œ f(A), so f(x) œ U for some U œ , so x œ  f-1(U).  Thus the
pre-images of the sets in , which themselves are open because f is continuous, cover A.  Because A is compact, some finite
subcover f-1(U1),. . ., f-1(Un) covers A.  Take f(x) œ f(A).  Then x œ A, so x œ f-1(Ui) for some i, 1 § i § n.  Therefore f(x) œ Ui,
and the open sets U1, . . . Un cover f(A).  Thus any open cover of f(A) can be reduced to a finite subcover, so f(A) is compact. ·

Result 3: Suppose X is Hausdorff and A Õ X is compact.  Then A is closed.
Proof: To prove that A is closed, we will prove that X\A is open.  Take some point x œ X\A.  For every point y œ A, we know
that x ≠ y because X\A is by definition disjoint from A, so by Hausdorffness there exist disjoint open sets U(x, y) and V(x, y)
with x œ U(x, y) and y œ V(x, y).  Then ‹yœAV(x, y) is an open cover of A, so because A is compact there is a finite subcover,

V1(x),. . ., Vn(x).  Each Vi(x) is disjoint from an open set Ui(x)  containing x, so U(x) = ›i=1
n Ui(x) is an open set containing x that

is disjoint from the open set V(x) =  ‹i=1
n Vi(x) containing C.  So U(x) is also disjoint from C, hence U(x) Õ X\C.  Taking the

union of all U(x), for all x œ X, must therefore also be contained in X\C, but also cover X\C; therefore X\C is the union of open
sets, hence is open. ·

Result 4: The function f: XØY is continuous if and only if for each x œ X and open set U Õ Y containing f(x), there exists an
open set V Õ X such that x œ V and f(V) Õ U.
Proof: Suppose first that f is continuous.  Take x œ X and an open set U containing f(x).  Then f-1(U) is open by continuity, x œ
f-1(U), and f(f-1(U)) = U Õ U.

Now we will prove the converse.  Take an open set U Õ Y, and x œ f-1(U).  So f(x) œ U, therefore there is an open set
V(x) Õ X containing x with f(V) Õ U.  Take y œ V(x); then f(y) œ f(V(x)) Õ U, so y œ f-1(U).  Therefore V(x) Õ f-1(U).  There-
fore f-1(U) = ‹xœ f -1 IUMV(x), which is open because it is the union of open sets.  So when U Õ Y is open, then f-1(U) is open,

proving that f is continuous. ·

Lemma 1.1 (Urysohn's Lemma): Suppose X is a topological space, and that any two disjoint closed sets A, B  in X can be
separated by open neighborhoods.  Then there is a continuous function f: XØ[0,1] such that f»Aª1 and f»Bª0.
Proof: We will define f as the pointwise limit of a sequence of functions, but before we can define this sequence we need some
terminology and preliminary results.  Call any collection of sets r = (A0, A1,. . . , Ar) an "admissible chain" if A = A0 Õ A1 Õ. . . Õ

ArÕ X\B and Ak-1 Õ A
Î

k, 0 § k § r.  Call the set A
Î

k+1 \Ak-1 the "kth step domain" of r, where Ar+1 = X and A-1 = «.

Figure 1: An admissible chain.  Each pair of adjacent shaded regions represents a step domain.

Fact 1: Each x œ X lies in some step domain for any r.

Proof: Take x œ X and any admissible chain r.  Let k, 0 § k § r+1, be the smallest number such that x œ A
Î

k.  Then x œ

A
Î

k\Ak-2.

Fact 2: Each step domain is open.

Proof: A
Î

k+1 \Ak-1 = A
Î

k+1›(X\Ak-1), which is the finite intersection of open sets, hence open.

For any r, define the "uniform step function" fr: XØ[0,1] as follows: fr»A ª 1, fr»(X\Ar) ª 0, and fr»(Ak \Ak-1) ª 1 - k/r, 1 § k §
r.

Fact 3: If x and y are in the same step domain, then » fr(x)- fr(y)» § 1/r.

Proof: Suppose x, y œ A
Î

k+1\Ak-1.  If both x and y are in A
Î

k+1 or Ak, then by definition of fr, fr(x) = fr(y), hence » fr(x)- fr(y)»
= 0.  If x œ A

Î

k+1 and y œ Ak, then fr(x) = 1 - (k+1)/r and fr(y )= 1 - k/r, so » fr(x)- fr(y)» = 1/r.

These first three facts will be used in the last step of the proof.  Proceeding, let a "refinement" of the admissible chain r  =
(A0, A1,. . . , Ar) be the admissible chain 2 r-1  = (A0, A1' , . . . , Ar

' , Ar).  In other words, the refinement 2 r-1  of the admissible
chain r contains every set in r, and for every i ¥ 1 contains a set Ai

'  such that Ai-1 Õ Ai
'  Õ Ai.  Intuitively, refinements place

new sets "between" each pair of sets in the original admissible chain.

Fact 4: Every admissible chain has a refinement.

Proof: It suffices to show that for any subsets M, N of X, with M  Õ N
Î
, there exists L Õ X with M  Õ  L

Î
 Õ L Õ N

Î
.  Because

M  Õ N
Î
, M›(X\N

Î
) = «; and because (X\N

Î
) is the complement of an open set, hence closed, there exist disjoint open sets U, V,

with M Õ U and (X\N
Î
) Õ V.  Because U and V are disjoint, U Õ (X\V); because (X\V) is closed and U is contained in every closed

set containing U, U Õ (X\V).  Furthermore, (X\N
Î
) Õ V implies (X\V) Õ N

Î
.  Putting all this together gives: M  Õ U

Î
 Õ U Õ (X\V) Õ

N
Î
; let L = U, and we're done.

Fact 5: If r is an admissible chain with r+1 elements and s is a refinement (with 2r + 1 elements), then » fr(x)- fs(x)» §
1/(2r).

Proof: Suppose x œ Ak \Ak-1, where Ak, Ak-1 œ r.  Then fr(x) = 1 - k/r.  Also, s= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' ,

Ak) = (A0, A1', A2',. . ., AH2 k-1L', A2 k,. . .,AH2 r-1L', A2 r'), and x is either in Ak\Ak
'  = A2 k'\AH2 k-1L'  or in Ak

' \Ak-1  =  AH2 k-1L'\AH2 k-2L'.
Therefore, fs(x) = 1 - (2k)/(2r) = fr(x), or fs(x) = 1-(2k-1)/(2r) = fr(x)+1/(2r).  Either way we get the desired result.

Now we will define the sequence.  Let 0 = (A, X\B), and let n+1 be a refinement of n; by Fact 4, every admissible chain has
a refinement.  We thus get a sequence of admissible chains.  Let fn be the uniform step function on the nth admissible chain.

Fact 6: For each x œ X, the sequence { fn(x)} converges.
Proof: It is clear from the definition of the uniform step functions that the sequence is bounded above by 1.  Now we want

to prove that the sequence is non-decreasing.  Note first that 0  contains one term excluding A itself, and so by definition of a
refinement 1 will contain 2 terms excluding A; proceeding by induction, n contains 2n terms excluding A.  Also note that for x
– A j\A j-1  "A j, A j-1  œ k, fk(x) is constant (either 0 or 1), and constant sequences converge.  Suppose x œ A j \A j-1, where A j,

A j-1  œ k.  Then fk(x) = 1 - j/k.  Furthermore,  k+1= (A0, A1' , A1,. . ., A j
' , A j,. . ., Ak

' , Ak) = (A0, A1', A2',. . ., AH2 j-1L', A2 j,. .

.,AH2 k-1L', A2 k'), and x is either in A j\A j
'  = A2 j'\AH2 j-1L'  or in A j

' \A j-1= AH2 j-1L'\AH2 j-2L'.  This means that fk+1(x) = 1 - (2j)/(2k) =
fk(x),  or  fk+1(x)  = 1 -  (2j-1)/(2k)  ¥  fk(x),  proving that  the sequence is  non-decreasing,  hence convergent,  because bounded
monotonic sequences converge.

For each x, let f(x) = limnz¶ fn(x).  Because each fn is constantly 1 on A and 0 on B, f will also have this property, as desired.  To
prove that f is continuous, it suffices to show that if we take any f(x) œ [0,1] and any open set (a,b) Õ [0,1] containing f(x), there
is an open set U Õ X such that x œ U and f(U) Õ (a,b).  More specifically, if we take 0 < ε < min(f(x)-a, b-f(x)), and find an open
U Õ X such that x œ U and f(U) Õ (f(x) - ε, f(x) + ε), we will be done.  Before doing this, we have to prove one more fact, the
sixth step of which follows from Fact 5.

Fact 7: For fixed x and any n, »f(x)- fn(x)» § 1/2n.
Proof:  »f(x)  - fn(x)»  = »limkz¶

k¥n
fk(x) - fn(x)»  = »limkz¶

k¥n
( fk(x) - fn(x))»  = limkz¶

k¥n
» fk(x) - fn(x)»  = limkz¶

k¥n
»( fk(x) - fk-1(x)) +

( fk-1(x) - fk-2(x)) +. . .+ ( fn+1(x) - fn(x))» § limkz¶
k¥n

(» fk(x) - fk-1(x)» + » fk-1(x) - fk-2(x)» +. . .+ | fn+1(x) - fn(x)») § limkz¶
k¥n

(1/2k  +

1/2k-1+...+ 1/2n+1) = ⁄
k=n+1

¶
1/2k = 1/2n(⁄k=1

¶ 1/2k) = 1/2n.

Take n large enough so that 3/2n < ε, and suppose x lies in the kth step domain,  Sk = A
Î

k+1 \Ak-1 (by Fact 1, every x lies in some
step domain).  Furthermore, by Fact 2, this step domain is an open neighborhood of x.  Take any y œ Sk.  Then by Facts 3 and 6, »
f(x)-f(y)» = »f(x) - fn(x) + fn(x) - fn(y) + fn(y) - f(y)» § »f(x) - fn(x)» + » fn(x) - fn(y)» + » fn(y) - f(y)» § 1/2n + 1/2n + 1/2n = 3/2n < ε.
So every y œ Sk maps into (a,b), proving f is continuous. ·

Lemma 1.2: Suppose X is a compact Hausdorff space.  Then any disjoint closed sets A, B Õ X can be separated by open neighbor-
hoods.
Proof: Take a œ A and b œ B.  X is Hausdorff and a ≠ b (because A and B are disjoint), so there are disjoint open sets U(a,b) and
V(a,b) with a œ U(a,b) and b œ V(a,b).  ‹bœBV(a,b) is an open cover of B (each b œ B is contained in the corresponding V(a,b), and
the union of an arbitrary number of open sets is open).  Because B is compact (B is a closed subset of the compact space X), there
is a finite subcover V(a) = ‹1§i§rV(a, bi).  Each V(a, bi) is disjoint from the open set U(a, bi) containing a, so U(a) = ›1§i§rU(a, bi)
contains a and is disjoint from V(a).

‹aœAU(a) is an open cover of A, so because A is compact there is a finite subcover U = ‹1§ j§sU(a j).  Each U(a j) is disjoint
from the open set V(a j) containing B, so V = ›1§ j§sV(a j) contains B and is disjoint from U.  Thus, U and V are disjoint open
neighborhoods separating A and B. ·

Lemma 1.3: Suppose X is compact, Y is Hausdorff, and f: XØY is a continuous bijection.  Then  f-1: YØX is also continuous.

Proof: To prove continuity of f-1, it suffices to show that if C Õ X is closed, then If-1M-1
(C) = f(C) is closed.  Because X is

compact and C is a closed subset of X, C is also compact.  Compactness is preserved by continuous functions, so f(C) is also
compact.  Furthermore, in a Hausdorff space compact sets are closed; thus f(C) is closed, and f-1 is continuous. ·

Lemma 1.4: Suppose X is a topological space with topology  and (M, d) is a metric space.  Suppose also that f:XØM is a
homeomorphism.  Then X is a metric space.
Proof:  To prove that X is a metric space, we must first define its metric, denoted d'. For x, y œ X, let d'(x, y) = d(f(x), f(y)).
Using the fact that d is a metric, it is trivial to show that d' is also a metric:

1. d'(x, y) = d(f(x), f(y) ¥ 0.  If x = y, then f(x) = f(y), so 0 = d(f(x), f(y)) = d'(x, y).  Conversely, if d'(x, y) = 0, then d(f(x),
f(y)) = 0, so f(x) = f(y), which means that x = y because f is injective.

2. d'(x, y) = d(f(x), f(y)) = d(f(y), f(x)) = d(y, x).
3. d'(x, z) = d(f(x), f(z)) § d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) +d'(y, z).

Let  be the topology generated by d'.  We must show that  = .  Take U œ , and take x œ U.  Because f is a homeo-
morphism, f(U) Õ M is open; thus there is an open ball B(f(x), r) Õ f(U).  Now take any y œ B(x, r) œ ; then d'(x, y) < r, which
means that d(f(x), f(y)) < r; thus f(y) œ B(f(x), r) Õ f(U), so y œ U, and B(x, r) Õ U.  Therefore, V = ‹xœXB(x, rx) = U, and V œ 
because it is the union of open sets in .  Thus every element of  is also an element of .

Now we must prove the converse.  It suffices to prove that every open ball B(x, r) œ  is an element of , because the
open balls are a basis for .  We know that B(f(x), r) is open in M, so because f is continuous,  f-1(B(f(x), r)) is open in .  Take
y œ B(x, r).  Then d'(x, y) < r, so d(f(x), f(y)) < r, which means that f(y) œ B(f(x), f(y)), implying that y œ f-1(B(f(x), r)).  Con-
versely, suppose y œ f-1(B(f(x), r)).  Then f(y) œ (B(f(x), r)), so d(f(x), f(y)) < r, so d'(x, y) < r, so y œ B(x, r).  Thus, f-1(B(f(x),
r)) = B(x, r), so every open ball in  is an open set in .  Because the open balls are a basis of , each open set in  is the union
of elements of , and therefore is itself an element of , concluding the proof. ·

Theorem 1.1: Suppose X is a compact Hausdorff space with a countable basis.  Then X is a metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, whose metric d is defined as:

d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2.

This is well-defined, because 0 § … xi - yi … § 1, implying 0 § … xi - yi … ë i2§ 1/i2, and ⁄i=1¶ 1 ë i2 converges, so by the comparison

test, ⁄i=1¶ … xi - yi … ë i2 also converges.  It is also trivial to check that d is in fact a metric:

1. Each term … xi - yi … ë i2 ¥ 0, so d({xi}, {yi}) ¥ 0.  Because terms cannot cancel, the only way for d({xi}, {yi}) to equal

zero would be if each term … xi - yi … ë i2 = 0, which is only possible if {xi} = {yi}.  The converse is obviously true.

2. d({xi}, {yi}) = ⁄i=1¶ … xi - yi … ë i2 = ⁄i=1¶ … yi - xi … ë i2 = d({yi}, {xi}).
3. To prove the triangle inequality,  it  is  sufficient to prove it  for each term, and it  clearly follows from the triangle

inequality for absolute values: … xi - zi … ë i2 § … xi - yi … ë i2 + … yi - zi … ë i2.

Before we can define the function between X and this metric space, we must prove a critical fact.

Fact 1: There is a countable subset {fn} of the set {f: XØ[0,1] » f continuous} with the property that if x ≠ y, then there
exists n such that fn(x) ≠ fn(y).

Proof: X has a countable basis  = {Bn}.  The set of all pairs of elements of  is also countable, so any subset of this set

must also be countable.  In particular, the set * = {{Bm, Bn} » Bm›Bn= «} is countable.  By Urysohn's Lemma, which applies

to X by Lemma 1.2, for every element in * there exists a continuous function f: XØ[0,1] such that f»Bm ª 1 and f»Bn ª 0.  Let 
= {fn} denote the set of all such functions, the subscript indicating that the set is countable.  Take x, y œ X, x ≠ y.  If we can find
a function fn œ   such that fn(x) ≠ fn(y), we will be done.  Because X is Hausdorff, we know there are disjoint open sets U, V,
with x œ U and y œ V.  Also by Hausdorffness, the single-point sets {x} and {y} are closed.  From the proof of Fact 4 in the
Urysohn Lemma, there exist open sets Ux and Uy  such that {x} Õ Ux Õ Ux  Õ U and {y} Õ Uy Õ Uy Õ V, where Ux and Uy are

disjoint because U and V are disjoint.  Because  is a basis, there are Bx, By œ  with x œ Bx Õ Ux  y œ By Õ Uy; hence x œ Bx Õ

Ux and y œ By Õ Uy, with Bx and By disjoint because Ux and Uy are disjoint.  Thus there is fnœ  such that fn»Bx ª 1 and fn»By ª
0, so fn(x) = 1, fn(y) = 0, and we're done.

We are ready to define the embedding g: XØ@0, 1D.  Because  is countable, we can arrange the elements of  in a sequence, f1,
f2,. . .,.  We then let g(x) = {fn(x)}.  To prove that g is an embedding, we must prove injectivity, continuity, and continuity of g-1:
g(X)ØX.

Fact 2: g is injective.
Proof: Take x, y œ X, x ≠ y.  Then there exists  fn œ  such that fn(x) ≠ fn(y), hence {fn(x)} ≠ {fn(y)}, hence g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, it suffices to show that for any x œ X and any open set V Õ @0, 1D containing g(x),

there is an open set U Õ X containing x such that g(U) Õ V.  In particular, if we take ε such that B(g(x), ε) Õ V (such an ε-ball
must exist by definition of openness in a metric space) and find U Õ X containing x such that g(U) Õ B(g(x), ε), we will be done.
First, pick n sufficently large so that ⁄i=n+1

¶ 1 ë i2 < ε/2.  Next, consider the functions f1, f2,. . .,fn œ ; these functions are continu-

ous, so for each fi, 1 § i § n, there is an open set Ui containing x such that fi(Ui) Õ B(fi(x), 3ε/p2).  Let U = ›i=1
n Ui.  Then U is the

finite intersection of open sets, hence is also open; and U contains x, because each Ui  contains x.  It is also clear that fi(U) Õ
B(fi(x), 3ε/p2, so for any y œ U, » fiHxL - fiHyL » < 3ε/p2.  Take y œ U.  We want to show that g(y) œ B(g(x), ε).  d(g(x), g(y)) =

⁄i=1¶ … fiHxL - fiHyL … ë i2 = ⁄i=1n … fiHxL - fiHyL … ë i2 + ⁄i=n+1
¶ … fiHxL - fiHyL … ë i2 § ⁄i=1n I3 ε ëp2M ë i2 + ⁄i=n+1

¶ 1 ë i2 < (3ε/p2)×(p2/6) +
ε/2 = ε/2 + ε/2 = ε.  Thus g(y) œ B(g(x), ε) as desired, and g is continuous.

Fact 4: g-1 is continuous.
Proof: This follows immediately from Lemma 1.3.

By Facts 2-4, g is a homeomorphism between X and its image, so X is metrizable.  By Lemma 1.4, this means that X is itself a
metric space. ·

Theorem 1.2: Suppose X is a compact metric space.  Then X is Hausdorff with a countable basis.
Proof: First we will show that X is Hausdorff.  Take any points x, y œ X, x ≠ y.  Suppose that d(x, y,) = r.  Then the open balls of
radius r/2 surrounding x and y, respectively, will be disjoint open neighborhoods separating x and y.

Now we will prove that X has a countable bais.  For each natural number n, let n = {B(x, 1/n) » x œ X}.  The elements of
n form an open cover of X, so because X is compact there is a finite subcover, n*.  Let  = {B(x, 1/n) œ n*  » n œ }.  Then the
elements of  are countable, because there are a finite number of elements for each natural number.  Our claim is that  is a basis
for X.  To prove this, it suffices to show that for any open set U Õ X and x œ U, there exists V œ  such that x œ V Õ U; in
particular, it is enough to show that for any open ball B(x, ε) and y œ B(x, ε), there exists V œ  such that y œ V Õ B(x, ε),
because the set of all open balls is a basis for X, and if the elements of  can generate a basis then they are themselves a basis.
Suppose d(x, y) = r.  Choose n sufficiently large so that 1/n < (ε - r)/2.  Because n*  covers X, there is an open ball B(z, 1/n)
containing y, for some z.  We must prove that B(z, 1/n) Õ B(x, ε).  Take any element w œ B(z, 1/n).  By definition of the open
ball, d(z, w) < 1/n < (ε - r)/2; also, because y œ B(z, 1/n), d(z, y) < (ε - r)/2.  Thus by the triangle inequality, d(w, y) < ε - r.  We
also know that d(x, y) = r; so again by the triangle inequality, d(w, x) < (ε - r) + r = ε, proving that w œ B(x, ε), proving that B(z,
1/n) Õ B(x, ε), proving that  is a basis. ·

Conclusion: Taken together, Theorems 1.1 and 1.2 give a complete characterization of compact metric spaces.

Part II: Now we will prove the Nagata-Smirnov Metrization Theorem: a topological space X is a metric space if and only if X is
regular with a countably locally finite basis.  Following Munkres, we will prove the necessity and sufficiency conditions as two
separate theorems; but first, some lemmas.

Lemma 2.1: Suppose  is a locally finite collection of subsets of a topological space X.  Let Y = ‹AœA.  Then Y = ‹AœA.

Proof: First, we will show that ‹AœA Õ Y, which is generally true.  For each A œ , it is true that A Õ Y Õ Y.  A is the intersec-

tion of all closed sets containing A and Y is a closed set containing A; thus if x œ A, it must be that x œ Y, so A Õ Y; thus ‹AœA

Õ Y as desired.
Now we will prove that  Y Õ ‹AœA.  Take x œ Y; by local finiteness, there exists an open neighborhood U containing x

that intersects only a finite subset of elements of ; denote these elements as A1, . . ., Ak.  Suppose that x was not contained in

any of A1, . . ., Ak, i.e., x – ‹j=1
k Aj, which is a closed set.  Then x œ U\ (‹j=1

k Aj), which is an open neighborhood of x that is

disjoint from every element of .  Thus x itself must be disjoint from every element of , contradicting the fact that x œ Y.
Therefore x must be contained in some Aj, 1 § j § k, and Y Õ ‹AœA, implying that Y = ‹AœA. ·

Lemma 2.2: Suppose X is a regular space with a countably locally finite basis .  Then X is normal.
Proof: We will prove this in two steps.

Step 1: Suppose W Õ X is open.  Then there is a countable collection of open sets {Un} such that W = ‹nœUn = ‹nœUn.
Proof: Because  is countably locally finite,  = ‹nœn where each n is a locally finite collection of subsets of X.  For

each n œ , let n = {B œ n | B Õ W}.  Then n Õ n, so n must also be locally finite.  Let Un = ‹BœnB.  Because each B is

open, Un is also open.  Furthermore, by Lemma 2.1, Un = ‹BœnB, because n is locally finite.  Each B Õ W, so  Un = ‹BœnB Õ

W; therefore, ‹nœUn Õ ‹nœUn Õ W.
Now we need to show that W Õ ‹nœUn, and we'll be done.  Take x œ W.  Then {x} is disjoint from X\W and both sets

are closed ({x} is closed by definition of regularity), so by regularity there exist disjoint open sets U and V such that {x} Õ U and
X\W Õ V.  Then x œ {x} Õ U Õ X\V Õ W.  For some n œ , there exists a basis element B œ n  such that x œ B Õ U Õ X\V;

because X\V is closed, B Õ X\V Õ W.  Therefore B œ n.  This means that x œ B Õ ‹BœnB = Un Õ ‹nœUn; hence W Õ ‹nœUn,
as desired.

Step 2: X is normal.
Proof: Take disjoint closed subsets C, D Õ X.  Then X\D is open, so by Step 1 there exists a countable collection of open

sets {Un} such that X\D = ‹nœUn  = ‹nœUn.   Of course, every Un  is disjoint from D, and because C is disjoint from D, C Õ

‹nœUn.  By the exact same reasoning, there exists a collection of open sets {Vn} that cover D such that each  Vn is disjoint from
C.

‹nœUn and ‹nœVn are open covers of C and D, respectively; the problem is that we cannot guarantee they are disjoint.

For each n œ , let Un
'  = Un\(‹j=1

n Vj) and let Vn
'  = Vn\(‹j=1

n Uj); these sets are open.  Then let U '= ‹nœUn
'  and let V '= ‹nœVn

' .  U '

and V ' are clearly open, because they are the union of open sets.  Our claim is that they are disjoint covers of C and D.
Take x œ C.  Then x œ Un for some n, because C Õ ‹nœUn; furthermore, x – Vn for all n.  Therefore x œ Un\(‹j=1

n Vj) =

Un
'  Õ U ', so C Õ U '.  Similarly, D Õ V '.

Now suppose that U '  and V 'are not disjoint.  Then there exists some x œ X such that x œ U '= ‹nœUn
'  and x œ V '=

‹nœVn
' .  This implies that for some m, n, x œ Um

'  = Um\(‹j=1
m Vj) and x œ Vn

'  = Vn\(‹j=1
n Uj), i.e., x œ Um, Vn, but x – V1,. . ., Vm,

U1,. . ., Un.  Suppose m § n.  Then x œ Um; but x –  U1,. . .,Um,. . ., Un, which is a contradiction.  Similarly, we get a contradic-

tion if n § m.  Therefore, U ' and V 'are disjoint open covers of C and D, proving that X is normal. ·

Now we are ready to prove the first half of the Nagata-Smirnov Theorem.

Theorem 2.1: Suppose X is a regular space with a countably locally finite basis .  Then X is metric space.
Proof: We will show that X can be embedded in the metric space @0, 1D, with the following metric:

Suppose p, q œ @0, 1D.  Then let d(p, q) = sup
Bœ

{|p(B) - q(B)|}.

We need to prove this is a metric:

1. Each term |p(B) - q(B)| ¥ 0, so d(p, q) = sup
Bœ

{|p(B) - q(B)|} ¥ 0 as well.  If d(p, q) = sup
Bœ

{|p(B) - q(B)|} = 0, then for

every B œ  we have 0 § |p(B) - q(B)| § 0, so p(B) = q(B), hence p = q.  Conversely, if p = q, then |p(B) - q(B)| = 0 for all B œ ,
so d(p, q) = sup

Bœ
{|p(B) - q(B)|} = 0.

2. d(p, q) = sup
Bœ

{|p(B) - q(B)|} = sup
Bœ

{|q(B) - p(B)|} = d(q, p).

3. It is generally true that if W and Y are sets of real numbers, then sup(W) + sup(Y) = sup(W + Y), where W + Y = {w +
y | w œ W, y œ Y}.  It is also true that if K Õ L, then sup(K) § sup(L).  Therefore, d(p, r) = sup

Bœ
{|p(B) - r(B)|} § sup

Bœ
{|p(B) - q(B)|

+ |q(B) - r(B)|} § sup
Bœ

{|p(B) - q(B)|} + sup
Bœ

{|q(B) - r(B)|} = d(p, q) + d(q, r).

Now we can proceed.

Fact 1: If W Õ X is open, then there exists a continuous function f: X Ø [0, 1] such that f|W > 0 and f|(X\W) ª 0.
Proof: By Step 1 of Lemma 2.2, W = ‹nœAn, where each An is closed.  Each An is disjoint from the closed set X\W.  By

Lemma 2.2 X is normal, so we may apply Urysohn's Lemma: for each An, there exists a continuous function fn: X Ø [0, 1] such
that fn|An  ª 1 and fn|(X\W) ª 0.  For each x œ X, let f(x) = ⁄n=1

¶ fn(x)/2n.  This is well-defined, because 0 § fn(x) § 1, so 0 §
fn(x)/2n § 1/2n; ⁄n=1

¶ 1/2n converges, so by the comparison test ⁄n=1
¶ fn(x)/2n also converges; in fact, by the Weierstrass M-Test it

converges uniformly.  Therefore, because each term fn/2n is a continuous function (fn is continuous, and 2n is just a constant), f is
also continuous.  Each fn is uniformly zero on X\W, hence f|(X\W) ª 0; and for x œ W, we know that x œ An for some n; there-
fore fn(x) = 1, so at least one term in the infinite sum ⁄n=1

¶ fn(x)/2n is greater than zero.  Because all the other terms cannot be less
than zero, this guarantees that f(x) > 0; so f|W > 0, as desired.

Now we are ready to define the embedding g: X Ø @0, 1D.  First, it should be briefly noted that while Fact 1 proved the existence
of a continuous function from any open set to the closed interval [0, 1], we could just as easily have replaced [0, 1] by any closed
interval [a, b], a, b œ , by defining a continuous function between [0, 1] and [a, b] and considering the composition of the
function we did define and this new function, using the fact that the composition of continuous functions is continuous.

Because  is countably locally finite, it is true that  = ‹nœn, where each n is locally finite.  We might as well assume

that for each m, n œ , m›n = «, because if there were some basis element B œ m, n, we could define m'  that contained all
the same elements as m except for B; m'  would still be locally finite, and  would still be a basis, because B is still contained in
n.

If we take any basis element B, we therefore know that B œ n for exactly one n; because B is open, we can, by Fact 1,
define a continuous function fB: X Ø [0, 1/n] such that fB|B > 0 and fB|(X\B) ª 0.  Now we will define the embedding g as
follows: let g(x) = {(B, fB(x)) | B œ }.  We must prove that this is an embedding by showing three things: g is injective, g is
continuous, and g-1 is continuous.

Fact 2: g is injective.
Proof: Suppose x ≠ y.  By definition of regularity, the single point sets {x} and {y} are closed, and they are obviously

disjoint.  By Lemma 2.2, X is normal; therefore, there are disjoint open sets U, V such that x œ {x} Õ U and y œ {y} Õ V.  There
must then exist a basis element B such that x œ B Õ U.  Then fB(x) > 0, but fB(y) = 0 because y – B.  Therefore, the function g(x)
contains the ordered pair (B, ε) where ε  > 0; but the function g(y) contains the ordered pair (B, 0).  Therefore, g(x) ≠ g(y).

Fact 3: g is continuous.
Proof: To prove that g is continuous, we must show that for any open set V around a point g(x), there is an open set U Õ

X such that x œ U and g(U) Õ V.  In particular, if we can find an open set U containing x such that g(U) Õ B(g(x), ε) Õ V, then
we will be done.

We know that  = ‹nœn, where each n is locally finite.  Take some n, and find an open neighborhood Un of x that
intersects only finitely many basis elements in n.  Suppose that B œ n does not intersect U; then it certainly does not contain x,
so fB(x) = 0; furthermore, fB(y) = 0 for all y œ Un.  Therefore, |fB(x) - fB(y)| = 0.

Now suppose B›Un ≠ «.  We know that fB: X Ø [0, 1/n] is continuous, so given the open set (fB(x) - ε/2, fB(x) + ε/2)›
[0, 1/n] Õ [0, 1/n], there will be an open set Wn Õ X containing x such that fB(Wn) Õ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n].  Let Vn =
Wn›Un, which is open because it is the finite intersection of open sets, and is not empty because both Wn  and Un  contain x.
Then for y œ Vn Õ Wn, fB(y) œ (fB(x) - ε/2, fB(x) + ε/2)›[0, 1/n], so |(fB(x) - fB(y)| < ε/2.  So for y œ Vn, |(fB(x) - fB(y)| < ε/2 for
all B œ n.

Take N large enough so that 1/N < ε/2.  Let V = V1›. . .›VN, which is open as it is the finite intersection of open sets.  If
y œ V, then y œ V1, . . ., VN, so for n § N and B œ n,  |fB(x) - fB(y)| < ε/2.  Furthermore, for n > N and B œ n, we know that
|fB(x) - fB(y)| < 1/n < 1/N < ε/2, because the maximum value of fB is 1/n, and the minimum value is 0, so the maximum difference
betwen any two values is 1/n.  So for y œ V, |fB(x) - fB(y)| < ε/2 for all B œ .  Therefore, d(g(x), g(y)) = sup

Bœ
{|fB(x) - fB(y)|} §

ε/2 < ε, implying that g(y) œ B(g(x), ε), proving that g is continuous.

Fact 4: g-1 is continuous.

Proof: To prove that g-1 is continuous, we need to show that if U Õ X is open, then g(U) = Ig-1M-1(U) is open in g(X).  It
suffices to show that for any z œ g(U), there exists a set W, open in g(X), such that W contains z and W Õ g(U).  Because z œ
g(U) and g is injective by Fact 2, there exists a unique x œ U such that g(x) = z.  Because U is open, there exists a basis element b
such that x œ b Õ U; therefore fb(x) > 0, and fb|(X\b) ª 0.

Let V = {h:  Ø [0, 1] | h(b) > 0} Õ @0, 1D, for b chosen above.  Our claim is that V is open.  To show this, we must
show that any function in V has an open neighborhood contained entirely within V.  Take some function h œ V, and consider the
open ball B(h, h(b)).  For any function h'œ B(h, h(b)), sup

Bœ
{|h(B) - h'(B)|} = d(h, h') < h(b), so |h(B) - h'(B)| < h(b) for all B œ ; in

particular,  |h(b) - h'(b)| < h(b), so h'(b) > 0; thus, h' œ V, and B(h, h(b)) Õ V, so V is open.
Let W = V›g(X).  Then W is open in g(X).  By our choice of b, fb(x) > 0; so g(x) contains the ordered pair (b, d) for d =

fb(x) > 0; thus g(x) œ V.  It is also true that g(x) œ g(X); therefore, g(x) œ V›g(X) = W.  Now we need to show that W Õ g(U),
and we will be done.  Take any function p œ W.  Then p = g(y) for some y œ X.  Because p œ W = V›g(X), p œ V, so fb(y) =
p(b) > 0.  This means that y œ b Õ U, so p = g(y) œ g(U).  Therefore W Õ g(U), implying that g(U) is open.  This shows that

Ig-1M-1(U) is open whenever U is open, hence g-1 is continuous.

Taken together, Facts 2-4 prove that g is an embedding.  By Lemma 1.4, this means that X itself is a metric space. ·

Before proving the converse, we should note that the proof relies on the Well-Ordering Theorem, a theorem that is equivalent to
the Axiom of Choice in set theory, and which states that any set can be well-ordered.  This is a somewhat bizarre statement
considering that no one has been able to find a well-ordering of the real numbers, and most people would find it rather tricky to
picture what such a well-ordering would look like.  Nevertheless, the Well-Ordering Theorem is necessary if we are to prove the
present theorem, so we will accept and use it without qualms.

Theorem 2.2: Suppose X is a metric space with metric d.  Then X is regular and has a countably locally finite basis.
Proof: We will break this into two steps.

Step 1: X is regular.
Proof: Take a closed set C Õ X and a point x œ X, x – C.  Let a = inf{d(x, y) | y œ C}.  Because d(x, y) > 0 for all y œ C,

a ¥ 0; we claim that a ≠ 0.  Suppose a = 0; then for any ε > 0, there would need to exist y œ C such that d(x, y) < ε.  This means
that the open ball B(x, ε) must intersect C, which in turn implies that every open neighborhood containing x must intersect C; but
X\C is open and x œ X\C, and clearly X\C does not intersect C; which is a contradiction.  Therefore, a > 0.  Our claim is that the
open sets B(x, a/2) and U = ‹yœCB(y, a/2) are disjoint open covers of x and C, respectively.  Take z œ B(x, a/2); then d(x, z) <
a/2, and for any y œ C, d(x, y) > a.  By the triangle inequality, d(x, y) § d(x, z) + d(z, y), so d(z, y) ¥ d(x, y) - d(x, z) > a - a/2 =
a/2; therefore, z – B(y, a/2), so z – ‹yœCB(y, a/2) = U.  Now suppose we have w œ U; then w œ B(y, a/2) for some y œ C, so
d(y, w) < a/2; we also know that d(x, y) > a.  Again by the triangle inequality, d(y, x) § d(y, w) + d(w, x), so d(w, x) ¥ d(y, x) -
d(y, w) > a - a/2 = a/2; so w – B(x, a/2).  Therefore, U and B(x, a/2) are disjoint open covers of C and x, proving that X is
regular.

Step 2: X has a countably locally finite basis.
Proof: Before beginning the proof, we must give a definition.  If  is a collection of subsets of X, then the collection  is

a refinement of  if each element of  is a subset of an element of .  Now we want to prove the following lemma: 

Lemma 2.3: For any open covering  of our metric space X, there is a countably locally finite collection  of open sets that
cover X and refine .
Proof: It is here that we will use the Well-Ordering Theorem.  Pick a well-ordering Ä of the elements in .  For a particular n œ
, take any open set U œ , and let Sn(U) = {x | B(x, 1/n) Õ U}.  Now let Sn

' (U) = Sn(U)\(‹VÄUV).   

Figure 2: Sn(U) is the dark region inside U (outer and inner regions), obtained by reducing U by 1/n.

Fact 1: Suppose V, W œ  and V ≠ W.  Take x œ Sn
' (V) and y œ Sn

' (W).  Then d(x, y) ¥ 1/n.

Proof: Without loss of generality, suppose V Ä W.  Because x œ Sn
' (V), it is true that x œ Sn(V), so B(x, 1/n) Õ V.  Further-

more, because y œ Sn
' (W) and V Ä W, it must be true that y – V.  Suppose d(x, y) < 1/n.  Then y œ B(x, 1/n) Õ V, which is not

true; so d(x, y) ¥ 1/n, as desired.

Now we will define yet another set modifying each U œ .  Let En(U) = ‹{B(x, 1/3n) | x œ Sn
' (U)}.

Fact 2: Suppose V, W œ  and V ≠ W.  Take x œ En(V) and y œ En(W).  Then d(x, y) > 1/3n.

Proof: By definition of En(V) and En(W), there is w œ Sn
' (V) and z œ Sn

' (W) such that d(x, w) < 1/3n and d(y, z) < 1/3n.
By the triangle inequality, d(w, z) § d(w, x) + d(x, z) § d(w, x) + d(x, y) + d(y, z).  By Fact 1, we know that d(w, z) ¥ 1/n;
therefore, d(x, y) ¥ d(w, z) - d(w, x) - d(y, z) > 1/n - 1/3n - 1/3n = 1/3n, as desired.

Fact 3: For every U œ , En(U) Õ U.

Proof: Take y œ En(U).  Then y œ B(x, 1/3n) for some x œ Sn
' (U).  By definition of Sn

' (U), this means that x œ Sn(U),
which means that B(x, 1/n) Õ U.  Because d(x, y) < 1/3n < 1/n, y œ B(x, 1/n) Õ U, implying that En(U) Õ U.

Let n= {En(U) | U œ }, and let  = ‹nœn.

Fact 4:  is a refinement of .
Proof: Any set in  will be En(U) œ n for some natural number n.  By Fact 3, En(U) Õ U œ .  Therefore  refines .

Fact 5:  is countably locally finite.
Proof: We must show that each n  is locally finite.  Take x œ X.  Suppose there were an open set U Õ X such that B(x,

1/6n)›En(U) ≠ «.  Then there would be some y œ En(U) such that d(x, y) < 1/6n.  Now take any V ≠ U, and z œ En(V).  Then by
Fact 2, d(y, z) > 1/3n.  By the triangle inequality, d(x, y) + d(x, z) ¥ d(y, z), so d(x, z) ¥ d(y, z) - d(x, y) > 1/3n - 1/6n = 1/6n.
This means that z – B(x, 1/6n); thus the open neighborhood B(x, 1/6n) can intersect at most one element of n, which means that
n is locally finite, which means that  is countably locally finite as desired.

Fact 6:  covers X.
Proof: Take x œ X, and let U be the first element of  that contains x, according to the well-ordering; we know that U

exists because  covers X.  U is an open set, so we can take n sufficiently large so that B(x, 1/n) Õ U; this means that x œ Sn(U)

and x – V for V Ä U, because U is the first element that contains x; therefore x œ Sn(U)\(‹VÄUV) = Sn
' (U).  Therefore x œ En(U) œ

n Õ , which means that  covers X.

By Facts 4-6,  is the desired collection. ·

Now we return to our original task of proving that X has a countably locally finite basis.  Take n œ , and let n = {B(x, 1/n) | x œ
X}.  Then n is an open covering of X, so by Lemma 2.3 there exists a countably locally finite open covering n that refines n.

Fact 7: Suppose D œ n, and a, b œ D.  Then d(a, b) < 2/n.
Proof: Because n is a refinement of n, D Õ B(x, 1/n) for some x œ X.  Take a, b œ D.  Then a, b œ B(x, 1/n), so d(a, x)

< 1/n and d(b, x) < 1/n.  By the triangle inequality, d(a, b) § d(a, x) + d(b, x) < 1/n + 1/n = 2/n, as desired.

Let  = ‹nœn.   is the countable union of countable sets, so  is also countable.  Each n is countably locally finite, i.e., is
the union of locally finite sets; therefore,  is also the union of locally finite sets.  Hence,  is countably locally finite.

All the remains to be shown is that  is a basis.  Take any open set U Õ X.  It suffices to show that for any x œ U, there is
an set D œ  such that x œ D Õ U.  We know there is an open ball B(x, ε) Õ U.  Choose n large enough so that 2/n < ε.  Because
n covers X, we know that there exists some D œ n containing x.  By Fact 7, if we take any y œ D, d(x, y) < 2/n < ε; therefore,
y œ B(x, ε).  This means that x œ D Õ B(x, ε) Õ U; therefore U is the union of elements of , which means that  is a basis for
X.  This completes the proof. ·

Conclusion: Taken together, Theorems 2.1 and 2.2 prove the Nagata-Smirnov Metrization Theorem.
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