DIFFERENTIABILITY OF BROWNIAN MOTION

MATT OLSON

Abstract

In this paper I will show that a Brownian Motion is with probability one nowhere differentiable on the interval $(0,1)$. The proof follows from an outline given in Billingsley, 1995.

1. Preliminaries

Proposition 1.1. If $f:(0,1) \rightarrow \boldsymbol{R}$. is differentiable at $x \in(0,1)$, then $\exists C>$ $0, \delta>0$ such that $|f(x)-f(s)| \leq C|x-s|$ for $s \in[x-\delta, x+\delta]$.

Proof. Since $\lim _{s \rightarrow x} \frac{f(x)-f(s)}{x-s}=f^{\prime}(x)<\infty$, we can choose $\delta^{\prime}>0$ such that $\left|\frac{f(x)-f(s)}{x-s}-f^{\prime}(x)\right|<1$ for $s \in\left(x-\delta^{\prime}, x+\delta^{\prime}\right)-\{x\} \equiv D$. Choose $\delta>0$ s.t. $\quad[x-\delta, x+\delta]-\{x\} \subset D$. Set $C=\left|1+\left|f^{\prime}(x)\right|\right|$. Trivially, when $\mathrm{x}=\mathrm{s}$ $|f(x)-f(s)|=C|x-s|=0$. Thus for $s \in[x-\delta, x+\delta],|f(x)-f(s)| \leq C|x-s|$.

Proposition 1.2. For A_{1}, A_{2}, \ldots, we have $P\left(\operatorname{limin} f_{n} A_{n}\right) \leq \liminf _{n} P\left(A_{n}\right)$.
Proof. Follows from Fatou's lemma with $\mathbf{I}_{A_{n k}} \rightarrow \mathbf{I}_{A_{n}}, \mathbf{I}_{A_{n k}} \geq 0$.

2. Main Result

Definition 2.1. A Brownian motion is a stochastic process $\left[W_{t}: t \geq 0\right]$ on some (Ω, F, P), with three properties:
(1) $P\left[W_{0}=0\right]=1$
(2) The increments are independent: If $0 \leq t_{0} \leq t_{1} \leq \cdots \leq t_{k}$, then $P\left[W_{t_{i}}-\right.$ $\left.W_{t_{i-1}} \in H_{i}, i \leq k\right]=\prod_{i \leq k} P\left[W_{t_{i}}-W_{t_{i-1}} \in H_{i}\right]$
(3) For $0 \leq s<t$ the increment $W_{t}-W_{s}$ is normally distributed with mean 0 and variance t-s.

Theorem 2.2. A Brownian Motion W_{t} is with probability one nowhere differentiable on $(0,1)$.

Proof. Let $M(k, n)=\max \left\{\left|W_{\frac{k}{n}}-W_{\frac{k-1}{n}}\right|,\left|W_{\frac{k+1}{n}}-W_{\frac{k}{n}}\right|,\left|W_{\frac{k+2}{n}}-W_{\frac{k+1}{n}}\right|\right\}$.
Let $M_{n}=\min \{M(1, n), \ldots, M(n, n)\}$.
Let $B=\{\omega \in \Omega \mid \exists t \in(0,1)$ s.t. $W(t, \omega)$ is differentiable at $t\}$. Take $\omega^{\prime} \in B$. Then by Proposition 1.1 we have $C>0, \delta>0$ s.t. $\left|W\left(t, \omega^{\prime}\right)-W\left(s, \omega^{\prime}\right)\right| \leq C|t-s|$. Choose $n_{0} \in \mathbf{N}$ such that $n_{0}>t$ and $\frac{4}{n_{0}}<\delta$, which holds $\forall n \geq n_{0}$. Then choose k s.t. $\frac{k-1}{n_{0}} \leq t \leq \frac{k}{n_{0}}$. Then $\left|\frac{i}{n_{0}}-t\right|<\delta, \mathrm{i}=\mathrm{k}-1, \mathrm{k}, \mathrm{k}+1, \mathrm{k}+2$.

So $\left|W_{\frac{i+1}{n_{0}}}-W_{\frac{i}{n_{0}}}\right| \leq\left|W_{\frac{i+1}{n_{0}}}-W_{t}\right|+\left|W_{\frac{i}{n_{0}}}-W_{t}\right| \leq C\left|\frac{i}{n_{0}}-t\right|+C\left|\frac{i+1}{n_{0}}-t\right| \leq 2 C \frac{4}{n_{0}}=$ $\frac{8 C}{n_{0}}$. Thus $M\left(k, n_{0}\right)\left(\omega^{\prime}\right) \leq \frac{8 C}{n_{0}}$, and consequently $M_{n_{0}}\left(\omega^{\prime}\right) \leq \frac{8 C}{n_{0}}$. Furthermore,
since we can choose a k such that the above inequalities hold for each $n \geq n_{0}$, $M_{n}(k, n) \leq \frac{8 C}{n} \forall n \geq n_{o}$.

Note that increments $W_{\frac{k+1}{n}}-W_{\frac{k}{n}}$ of a Brownian motion are independent and distributed normally with mean 0 and variance $\frac{1}{n}$, which is the distribution of $\frac{1}{\sqrt{n}} W_{1}$. So $P\left\{M(k, n) \leq \frac{8 C}{n}\right\}=\left[P\left\{\left|W_{1}\right| \leq \frac{8 C}{\sqrt{n}}\right\}\right]^{3}$. Since the normal distribution is bounded above by one and is symmetric, $P\left\{\left|W_{1}\right| \leq \frac{8 C}{\sqrt{n}}\right\} \leq \frac{16 C}{\sqrt{n}} \Rightarrow P\left\{\left|W_{1}\right| \leq\right.$ $\left.\frac{8 C}{\sqrt{n}}\right\} \leq\left(\frac{16 C}{\sqrt{n}}\right)^{3}$.

Also, $P\left\{M_{n} \leq \frac{8 C}{n}\right\} \leq n P\left\{M(n, k) \leq \frac{8 C}{n}\right\} \leq n\left(\frac{16 C}{\sqrt{n}}\right)^{3}$, since $P\left\{M_{n} \leq \frac{8 C}{\sqrt{n}}\right\} \leq$ $P\left\{\left\{M(1, n) \leq \frac{8 C}{\sqrt{n}}\right\} \cup \cdots \cup\left\{M(n, n) \leq \frac{8 C}{\sqrt{n}}\right\}\right\}$. But $\forall C>0 P\left\{M_{n} \leq \frac{8 C}{n}\right\} \leq$ $\frac{16^{3} C^{3}}{\sqrt{n}} \rightarrow 0$. Let $A_{n}=\left\{M_{n} \leq \frac{8 C}{n}\right\}$. If $\omega^{\prime} \in B$, then $M_{n}\left(\omega^{\prime}\right) \leq \frac{8 C}{n}$ for all $n \geq n_{0}$, so $\omega^{\prime} \in \liminf A_{n}$. We have shown $\lim P\left\{A_{n}\right\} \rightarrow 0$. But $P\left(\liminf _{n} A_{n}\right) \leq$ $\liminf _{n} P\left(A_{n}\right)=\lim P\left\{A_{n}\right\} \rightarrow 0$ by Proposition 2. Hence $P\left\{\liminf A_{n}\right\}=0$. Since $B \subset \liminf A_{n}$ by the above arguments, $P\{B\}=0$. Thus, the set of ω with $\mathrm{W}^{\prime}(\mathrm{t})$ for some t has measure 0 .

References

[1] Patrick Billingsley. Probability and Measure. John Wiley and Sons, Inc. 1995.

