A Peter May Picture Book, Part 1

Steve Balady
August 17, 2007

This is the beginning of a larger project, a notebook of sorts intended to
clarify, elucidate, and/or illustrate the principal ideas in A Concise Course
in Algebraic Topology. Many of the “worthwhile exercises” suggested in the
text will be done in relatively complete detail, one-line proofs expanded, con-
structions illustrated, and definitions given as assertions that a certain diagram
commutes (which, when I try to explain to my friends, I am walked away from)
given explanations anyway. The bulk of this paper focuses on the categorical
intuition that the book assumes, with the concepts illustrated in the category
of topological spaces. Following that is a careful illustration of a proof that
well illustrates the utility of such intuition, which I first presented as part of a
directed reading program during the previous academic year. This paper con-
cludes with a list of currently intended illustrations for chapters 5-10, which will
be added to a working version of this document as they are done.

p. 16, on limits and colimits in Top and Grp

At this point, anyone who hasn’t seen category theory before will probably
be utterly despondent. Some pictures will help. We’ll do the product and
coproduct, initial and terminal object, equalizer and coequalizer, pullback and
pushout in the categories of topological spaces and of groups — these are the
most important examples, and in practice the only ones that come up all that
often.

Let’s start with the product in Top. Remember, in this category the objects
are topological spaces, and the arrows are continuous maps between spaces.
Effectively, with the product we start with a collection of unrelated topological
spaces. We want the limit of this collection, and assert that it is their Cartesian
product endowed with the product topology, along with the canonical projection
maps onto each coordinate.



The following is a diagram indicating this for two spaces X and Y’; see also
Figure 1.
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To say that this diagram commutes is to say that the Cartesian product
endowed with the product topology has two special properties: first, it is itself
endowed with projection maps onto each coordinate; second, that any other
space with such projections has a unique projection onto the Cartesian product.
We shall check this assertion in general.

Let I be an indexing set; we assert that the product of X;,i € I is II;c; X; en-
dowed with the product topology, along with its projection maps p; : Il;e1 X; —
X, for j € I. On the set-theoretic level, this is relatively clear: given any other
space (@ with maps @; : @ — X;, we get a factorization through the Carte-
sian product. Specifically, define the map f : Q — I;c; X; by ¢ — (Q:(q))icr;
uniqueness up to bijection is forced by definition. We need only impose a topol-
ogy on the Cartesian product as a set; since the product topology is homeo-
morphic to the weak topology generated by the projection maps, and the weak
topology is the weakest topology relative to which the projection maps are con-
tinuous, since @); are actually continuous maps, we are done.

Dually, we assert that the coproduct of topological spaces is the disjoint
union endowed with the topology generated by its disjoint subspaces, along
with the standard inclusion maps. The diagram
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says that each coordinate embeds in the disjoint union, and also that the
disjoint union embeds uniquely in any other space endowed with embedding
maps. See also Figure 2.

A terminal object is the specific case of the product on the empty set; its
dual, the coproduct on the empty set, is called an initial object. It should
be clear now that for topological spaces, the terminal object is the one-point
space with its only topology and the initial object is the empty set with its only
topology.



Now we restrict ourselves to a pair of spaces X and Y, but we also have a
pair of continuous maps f, g between them. We call the limit of this diagram
the equalizer of f and g. As in the case of the product, its name is suggestive
— in Top, it is the subspace of X on which f and g are equal. In the following,
we set L = {z € X|f(x) = g(z)} and [ to be the standard inclusion map.
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Dually, the coequalizer of X and Y with maps f and g will be a quotient
space; specifically, the quotient by the smallest equivalence relation for which,
for all x € X, f(x) ~ g(z). In the following, we call it C, with ¢ the quotient
map.
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The pullback is the limit of A 7, C <L B. For topological spaces, it is the
subspace of A x B given by {(z,y)|z € X,y €Y, f(z) = g(y)} with its standard
maps (projection to each factor followed by inclusion), and is usually written as
A Xc B.




The dual to the pullback is the pushout; it is the colimit of A S c -+ B.
For a topological space, it is a quotient of AU B, and as with the coequalizer it is
the quotient induced by the weakest equivalence relation such that f(z) ~ g(y).
It is usually written as AUc B. An illustration provides far more intuition than
pages of formality; thus, see Figure 3.
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In general, the intuition used for calculating the limiting objects in Top carry
through to Grp with minor modifications. We assert the following for groups:
the product is again the Cartesian product with its natural group structure, the
coproduct is the free product amalgamated over the identity, an equalizer is the
largest subgroup contained in {a|f(a) = g(a)}, a coequalizer is the quotient by
the largest normal subgroup contained in {a|f(a) = g(a)}, and similarly for the
pullback and pushout. We prove only the following (which will be useful for the
theorem on page 36, which we later illustrate): if G is a group and N is normal

in G, the pushout of G «—=; N — 0 in the category of groups is isomorphic to
G/N.

We must show that any object making the diagram commute factors uniquely
through G/N and its associated maps. Assume that H,j:0 — H,r : G — H
does so, and consider n € N; we trace all of its possible paths. Following 4
first, we see that n — n, where the latter is in G. On the other hand, for jk to
be a group homomorphism, we must have that jk(n) = 0. Since the diagram
commutes, jk(n) = ri(n) = 0, which immediately implies that ker(r) > N.
Identifying H by the first isomorphism theorem as G/ker(r), the above gives
us a unique factorization through G/N, which verifies the universal property of
the pushout.



p- 17, completeness is equivalent to the existence
of products and equalizers

I'm relatively convinced that in this case, “the proof is a worthwhile exercise”
should be interpreted to mean “the proof is an awful diagram-chasing mess.”
The idea, however, is well worth seeing. We present the basic idea of the stan-
dard proof, and refer the reader to Borceux for the gorey details; effectively, we
generalize the idea above that a pullback is a subset of the cartesian product
(a product and an equalizer). Thinking dually, a pushout is a quotient of a
disjoint union (a coproduct and a coequalizer), and by reversing all the arrows,
the following will also prove that cocompleteness is equivalent to the existence
of coproducts and coequalizers.

Let €be a category. If €is complete, it contains in particular all products and
equalizers, so that’s fine. So assume that Chas all of its products and equalizers,
let Dbe a small category (that is, a set of objects equipped with a collection of
arrows between objects), and let F' be a functor from Dto €. This is just a way
of organizing information. For example, the equalizer of f,g : A — B written
in this way would be the limit of Fx, F'y : F1 — 2 where ®is the category
with objects 1 and 2 and arrows z,y: 1 = 2, F1=A, F2=B, Fz = f, Fy = g.
What we want is the equalizer of a pair of maps «, (.

L [ Fp = ]I Fa)
DeD feo
Here s(f) is the source (domain, corange) of f, t(f) is its target (range,

codomain), a((zp)peo) = (T1(s)) reo, B((¥p)pen) = (Ff(Ts(s))) reo, and L,
is the equalizer of o, 3. We assert that L is the limit of F. In our example

above, a(za,zp) = (zg,2B),8(xa,z8) = (f(za),9(x4)), and equalizing «, 5
is the assertion that f(z4) = g(z4); that is, L is the equalizer of f, g. From here
the proof is fairly straight-forward: show that L,[ gives a cone on F', and then
that any other cone factors uniquely through it. I can offer no more intuition
than that gained by staring at the diagrams which prove this, so I leave the
remainder to Borceux.

p- 36, an illustration of the proof that every
group is m; of some space

See Figures 4 and 5.

p- 39, on the adjunction of product and Hom in
CGHTop

See Figure 6.



To be continued...
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41, some intuition for the HEP

42, a mapping cylinder

42, a cofibration is an inclusion with closed image

43, illustrating the retraction which a cofibration effects

47, on duality, intuition for the CHP

47, a mapping path space

49, a fiber bundle is a fibration, with picture

55, S™ A S™ &2 §MFN with picture

56, [¥2X,Y] is an Abelian group

58, an illustration that Ci — Ci/CA is a homotopy equivalence

58, an illustration that “up to homotopy equivalence, each pair of maps

in our cofiber sequence is the composite of a map and the inclusion of its
target in its cofiber”

® D.
® D.

[ ]
I - I I

59, a homotopy fiber
6
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, illustration of unit and counit between loops and suspension
63, illustration of the maps in the long exact sequence of pairs
64, a few calculations actually calculated

65, the Hopf map is a fiber bundle

66, a word and picture on change of basepoint

67, homotopy equivalence induces weak equivalence

68, the point of the technical lemma, with picture, explanation and

condolances

p.

p.

73, how the lemma implies the HELP

74, the Whitehead theorem, and what it is not
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