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Abstract. The goal of this paper is to present a proof of the Nullstellensatz

using tools from a branch of logic called model theory. In doing so, I hope

to demonstrate how logical tools can be applied to branches of mathematics
outside of logic itself. The reader should be reasonably acquainted with some

basic concepts from algebra, but no familiarity with logic is assumed.
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Introduction

Model theory is a branch of logic which studies the relationship between math-
ematical structures and the formulas that describe them. Model theorists use the
logical properties of formal languages to get results about the objects which inter-
pret them. In addition to being a fairly deep subject in its own right, model theory
is also frequently applied to other areas of mathematics, most notably set theory,
algebra, and analysis.

The goal of this document is to use model-theoretic techniques to prove David
Hilbert’s Nullstellensatz, a famous theorem in algebraic geometry. Throughout this
paper, I assume familiarity with some basic notions from algebra, including fields,
algebraic closure, prime and maximal ideals, quotient rings, polynomial rings, and
the fraction field of an integral domain. On the other hand, I assume virtually no
familiarity with logic or model theory, and I will be developing all of the model-
theoretic machinery necessary for the proof in the intervening sections.

The proof presented herein is neither the original one nor the shortest or simplest
that has ever been published. Nonetheless, it is my belief that it provides a good
example of how the tools of logic may be used to prove theorems in other areas of
mathematics, and it is for that reason that I present it here.
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Notes on Notation

Before beginning the discussion, a couple of pieces of notation should be es-
tablished. In this paper, a lower-case letter with a bar over it refers to a finite
sequence. The terms in the sequence ā are called a1, a2, . . . , an, where n is the
number of terms in the sequence. If R is a ring, then R[x̄] is the polynomial ring
over R with n variables. Finally, the symbol ⊂ is used only to refer to a proper
subset relation, that is, A ⊂ B iff A ⊆ B and A 6= B.

1. Languages, Structures, and Terms

Unlike some higher-level branches of mathematics, logic is directly concerned
with the strings of symbols that represent propositions and predicates. Therefore, in
order to speak coherently about the relationships between two different structures,
we must be sure that we are using the same symbols to make statements about
both structures.

Definition 1.1. A language is a collection L of symbols1, split into several disjoint
subsets: for each k ∈ N, a set Rk of k-place relation symbols; for each m ∈ N, a set
Fm of m-place function symbols; and a set C of constant symbols.

So, given such a set of symbols, we need to know what it means for two math-
ematical stuctures to share the same language. The definition is very straightfor-
ward.

Definition 1.2. Given a language L , an L -structure is a set A, called the uni-
verse, together with interpretations for each of the symbols in L : for each constant
symbol c ∈ C, there is a distinct element cA ∈ A; for each relation symbol R ∈ Rk,
there is a distinct subset RA ⊆ Ak; and for each function symbol f ∈ Fm there is
a distinct function fA : Am → A.

Example 1.3. Let LR be the language with two constant symbols, 0 and 1, one
1-place function symbol, −, and two 2-place function symbols, + and ·. Then, for
example, Z is an LR-structure with the set Z itself as the universe, and the obvious
interpretations of the symbols; that is, 0Z = 0, 1Z = 1, −Zx = −x, x+Z y = x+ y,
and x ·Z y = xy. In fact, any ring is an LR-structure with similar interpretations
of the symbols.

Example 1.4. Let LDG be the language with just one 2-place relation symbol,
called ∼. Any directed graph G can be made into an LDG-structure by letting the
universe be the set of vertices and saying that for any two vertices v and w, v ∼G w
iff there is an edge from v to w.

Example 1.5. If R is a ring, we can construct a language for left R-modules. Let
LM (R) be the language with one constant symbol, 0, one 2-place function symbol,
+, and a 1-place function symbol for each r ∈ R. Then if M is a left R-module, it
is an LM (R)-structure in which 0M = 0, a+M b = a+ b, and rM (a) = ra.

Using the symbols from a language, we can refer to specific elements of the
corresponding structure. For example, in the language LR from Example 1.3, we

1The symbols in a language can be any mathematical object at all. Sometimes we think of

the symbols as being identical with the glyphs used to represent them on paper; however, it is
frequently useful to use other objects, like the ring elements in Example 1.5.
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may refer to the element −((1+1)+1), and this makes sense in any LR structure.
The string of symbols −((1 + 1) + 1) is called a term of LR. Any ring R will have
an unambiguous interpretation of the term in question, namely −R((1+R 1)+R 1),
which is, by definition, some element of R.

Definition 1.6. Consider a language L , together with a new set V of symbols,
which will be used to represent variables. The set of terms of L is the smallest set
T such that:

• Every variable symbol x ∈ V is in T .
• Every constant symbol c of L is in T .
• For every m-place function symbol f of L , and every t1, . . . , tm ∈ T , the

string f(t1, . . . , tm) is in T .
If a term has no free variables, it is said to be closed. If a term t has free variables

x1, . . . , xn, we will sometimes write t(x1, . . . , xn) or t(x̄) to emphasize this fact. If
the letter t is written alone, it may or may not be closed.

If t(x̄) is a term, A is an L -structure, and ā is a sequence of elements of A, then
tA(ā) is the element of A that you get by plugging in ai for xi. More precisely, we
can define it by induction on the length of the term as follows:

• If t is the variable symbol xi, then tA(ā) = ai.
• If t is the constant symbol c, then tA(ā) = cA.
• If t is f(t1, . . . , tm) for some function symbol f and terms t1(x̄), . . . , tm(x̄),

then tA(ā) = fA(tA1 (ā), . . . , tAm(ā)).

2. Formulas and Theories

We can use these terms to form more complex strings which make statements
about the structures which interpret a language. They will also have interpreta-
tions, this time as truth values rather than elements of a structure.

Definition 2.1. Given a language L , an atomic formula of L is defined as follows:
• If t1 and t2 are terms, then the string t1 = t2 is an atomic formula.
• If R is a k-place relation symbol and t̄ is a sequence of terms, then the

string R(t1, . . . , tk) is an atomic formula.
Given this definition, we say that the set of formulas of L is the smallest set F

such that:
• If φ is an atomic formula, then φ ∈ F .
• If ψ ∈ F , then ¬ψ ∈ F .
• If ψ1 and ψ2 are in F , then ψ1 ∧ ψ2 and ψ1 ∨ ψ2 are in F .
• If ψ ∈ F and the variable x is among the free variables of ψ, then ∃xψ

and ∀xψ are in F .
A formula without free variables is called a sentence, and a set of sentences is

called a theory. When writing formulas with free variables, we adopt a similar
convention to the one we used for terms, that is, φ(x̄) denotes a formula φ in which
the variables in x̄ are free. When writing out formulas, it is common to adopt the
following pieces of shorthand:

• x 6= y instead of ¬(x = y)
• φ→ φ′ instead of (¬φ) ∨ φ′
• φ↔ φ′ instead of (φ→ φ′) ∧ (φ′ → φ)
•

∧n
i=1 φi instead of φ1 ∧ · · · ∧ φn
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•
∨n

i=1 φi instead of φ1 ∨ · · · ∨ φn

If φ(v̄) is a formula, A is an L -structure, and ā is a sequence of elements of A,
we define the relation A |= φ(ā) (read “ā satisfies φ in A”) as follows:

• If φ(v̄) is the atomic formula t1(v̄) = t2(v̄), then A |= φ(ā) if and only if
tA1 (ā) = tA2 (ā).

• If φ(v̄) is the atomic formula R(t1(v̄), . . . , tk(v̄)), then A |= φ(ā) if and only
if (tA1 (ā), . . . , tAk (ā)) ∈ RA.

• If φ(v̄) = ¬ψ(v̄), then A |= φ(ā) if and only if A 6|= ψ(ā).
• If φ(v̄) = ψ1(v̄) ∧ ψ2(v̄), then A |= φ(ā) if and only if A |= ψ1(ā) and
A |= ψ2(ā).

• If φ(v̄) = ψ1(v̄) ∨ ψ2(v̄), then A |= φ(ā) if and only if A |= ψ1(ā) or
A |= ψ2(ā).

• If φ(v̄) = ∃xψ(v̄, x), then A |= φ(ā) if and only if A |= ψ(ā, b) for some
b ∈ A.

• If φ(v̄) = ∀xψ(v̄, x), then A |= φ(ā) if and only if A |= ψ(ā, b) for every
b ∈ A.

We adopt a few simplifying conventions for the |= symbol. If φ is a sentence,
then we omit the parentheses and just write A |= φ (read “A models φ”). If T is a
theory, we say that A |= T if A |= φ for each φ ∈ T . Finally, if φ(v̄) is a formula,
then we say T |= φ(v̄) if for every model A of T , there is a sequence ā of elements
of A such that A |= φ(ā).

Definition 2.2. If φ1(v̄) and φ2(v̄) are formulas of a language L , then we say that
φ1 and φ2 are semantically equivalent if {φ1} |= φ2 and {φ2} |= φ1.

The satisfaction relation is the basis for what model theorists mean when they re-
fer to “truth.” If φ is a formula and A is a structure, the statement A |= φ(ā) means
that the formula φ is true of ā in A. In this way, sentences represent propositions
about structures, and formulas with free variables represent predicates.

Example 2.3. Let LDG be the language of directed graphs described in Example
1.4. Consider the theory T consisting of the following sentences:

• ∀x∀y(x ∼ y ↔ y ∼ x)
• ∀x(¬(x ∼ x))

Then we can see that for any graph G, G |= T if and only if G is an undirected
graph with no self loops.

Example 2.4. Let LR be the language of rings described in Example 1.3. One
possibility for a theory of rings is the theory which contains the following sentences
(writing ab instead of a · b):

• ∀x∀y∀z(x+ (y + z) = (x+ y) + z)
• ∀x[(x+ 0 = x) ∧ (x+ (−x) = 0)]
• ∀x∀y(x+ y = y + x)
• ∀x∀y∀z(x(yz) = (xy)z)
• ∀x[(x1 = x) ∧ (1x = x)]
• ∀x∀y∀z[(x(y + z) = xy + yz) ∧ ((x+ y)z = xz + yz)]

Adding the following sentences would make it into a theory of fields:
• ∀x∀y(xy = yx)
• ∀x[(x 6= 0) → ∃y(xy = 1)]
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For each n, let pn be the sentence ∀a0 · · · ∀an[((a1 6= 0) ∨ · · · ∨ (an 6= 0) ∨ (a0 =
0)) → ∃x(a0 + a1x+ · · ·+ anx

n = 0)]. If we take our theory of fields and add the
sentences pn for each n > 0, we get a new theory called ACF . It is easy to see that
F |= ACF if and only if F is an algebraically closed field. This theory will figure
heavily into our proof of the Nullstellensatz.

When proving facts about formulas, one frequently wants to use some sort of
inductive argument. We need some variable on which to perform induction. A
natural choice is the length of the formula, meaning the number of symbols (count-
ing each occurrence of a symbol seperately) that comprise it. Using this method,
it is only necessary to prove that your statement holds for atomic formulas, and
that if your statement holds for ψ1 and ψ2, then it holds for ¬ψ1, ψ1 ∧ ψ2, and
∃xψ1. The cases for ∨ and ∀ will then be handled automatically, because (ψ1∨ψ2)
is semantically equivalent to ¬(¬ψ1 ∧ ¬ψ2) and ∀xψ is semantically equivalent to
¬∃x(¬ψ).

We conclude this section with the following basic fact about formulas, which will
be necessary for a small part of the proof of the Nullstellensatz.

Definition 2.5. A formula is said to be quantifier-free if it contains neither ∃ nor
∀.
Proposition 2.6. For every quantifier-free formula φ, there exists a quantifier-free
formula ψ of the form

∨m
i=1

∧n
j=1 θij, with θij atomic or negated atomic, such that

φ is semantically equivalent to ψ. Such a ψ is said to be in disjunctive normal
form.

Proof. Let Θ = {θi}m
i=1 be the set of all atomic formulas which appear in φ. If

s : Θ → {0, 1} is a function assigning truth values (0 is false, 1 is true) to every θi,
then let S be the set of all such functions s for which, when each θi is given the
truth value s(θi), φ is true. Let ψs

i = θi if s(θi) = 1 and ¬θi if s(θi) = 0. Then φ is
semantically equivalent to

∨
s∈S

∧m
i=1 ψ

s
i , which is in disjunctive normal form. �

3. Homomorphisms and Elementary Substructures

Just like homomorphisms of various structures in algebra, there is a notion of a
structure homomorphism which preserves the relations and functions encoded by
the symbols of the language

Definition 3.1. If A and B are L -structures, then a function h : A → B is a
homomorphism if for every sequence ā of elements of A, we have (writing h(ā)
instead of (h(a1), . . . , h(an))):

• For every constant symbol c in L , h(cA) = cB .
• For every function symbol f in L , h(fA(ā)) = fB(h(ā))
• For every relation symbol R in L , if ā ∈ RA, then h(ā) ∈ RB

An embedding is an injective homomorphism in which, for ā ∈ Ak and R a relation
symbol, ā ∈ RA if and only if h(ā) ∈ RB . If an embedding is surjective, it is called
an isomorphism.

This notion of homomorphism closely matches the analogous notions from al-
gebra. Homomorphisms in the language of rings from Example 1.3 will be ring
homomorphisms. Likewise for homomorphisms in the language of modules from
Example 1.5. The definition of substructure is similarly related to the correspond-
ing algebraic concept.
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Definition 3.2. If A and B are L -structures with A ⊆ B, then we say that A is
a substructure of B if the inclusion map from A to B is an embedding.

A substructure in the language of rings is a subring, a substructure in the lan-
guage of directed graphs is a subgraph, and so on, as expected.

It is easy to see that isomorphisms will preserve the truth of all formulas of L .
A natural question to ask, then, is whether there are other homomorphisms which
have the same property. It is at least necessary that such a homomorphism be an
embedding, because if h(a) = h(b) but a 6= b, then if φ(x, y) is the formula x = y,
we have that A 6|= φ(a, b) but B |= φ(h(a), h(b)). Similarly, if for some relation
symbol R and some ā, h(ā) ∈ RB but ā /∈ RB , we can find a similar formula which
is satisfied in one structure but not the other.

It turns out that a homomorphism does not need to be an isomorphism in order
to preserve the truth of formulas. Ones which do are the subject of the rest of this
section.

Definitions 3.3. An embedding h : A→ B is called elementary if, for all ā ∈ An

and all formulas φ(x̄), A |= φ(ā) if and only if B |= φ(h(ā)). If A ⊆ B and
the inclusion map is an elementary embedding, then we say A is an elementary
substructure of B.

Let T be a theory. We say that T is model-complete if every embedding between
models of T is elementary.

We conclude this section by introducing a property which is strictly stronger
than model-completeness, and which will be used to prove the model-completeness
of the theory of algebraically closed fields.

Definition 3.4. Let T be theory. If for every formula φ(v̄) there is a quantifier-free
formula φ′(v̄) such that T |= (φ↔ φ′), we say that T has quantifier elimination.

Theorem 3.5. Let T be a theory. If T has quantifier elimination, then T is model-
complete.

Proof. Suppose A |= T and B |= T , and let h : A→ B be an embedding. Let φ(v̄)
be a formula. Because T has quantifier elimination, there is some quantifier-free
formula φ′(v̄) so that T |= (φ↔ φ′). By definition, this means that, for all models
M of T and all sequences m̄ of elements of M , M |= φ(m̄) if and only if M |= φ′(m̄).
Therefore, it is sufficient to show that h preserves the truth of all quantifier-free
formulas.

We proceed by induction. If φ(v̄) is an atomic formula of the form t1(v̄) = t2(v̄),
then the definition of homomorphism together with the injectivity of h gives us
that tA1 (ā) = tA2 (ā) if and only if tB1 (h(ā)) = tB2 (h(ā)). A similar argument shows
that atomic formulas formed from relation symbols are preserved.

Suppose φ(v̄) = ¬ψ(v̄) for some formula ψ whose truth is preserved by h. Then
A |= φ(ā) ⇔ A 6|= ψ(ā) ⇔ B 6|= ψ(h(ā)) ⇔ B |= φ(h(ā)). A similar argument will
prove the theorem for formulas of the form ψ1 ∧ ψ2. �

4. The Model-Completeness of ACF

The proof of the Nullstellensatz will make use of the model-completeness of the
theory of algebraically closed fields. While the proof is a bit long, the argument is
quite straightforward. (The essential parts of the proof come from lecture notes by
Joe Mileti, which appear to no longer be available.)
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The following two lemmas will be necessary.

Lemma 4.1. All algebraically closed fields are infinite.

Proof. If K = {a1, . . . , am}, then (x− a1) · · · (x− am) + 1 has no roots. �

Lemma 4.2. If K is an algebraically closed field, and p, q ∈ K[x], then p|qn, where
n = deg p, if and only if every root of p is also a root of q.

Proof. Because K is algebraically closed, p and q split completely, say p = (x −
a1) · · · (x − ak) and q = (x − b1) · · · (x − bm). Suppose p|qn and c is a root of p.
Then c is one of the ai’s, so c is also one of the bi’s. Suppose every root of p is also
a root of q. Then let c be a root of p and let r be its multiplicity. Then c is a root
of q, so (x− c)|q, so (x− c)r|(x− c)n|qn. �

Theorem 4.3. The theory of algebraically closed fields has quantifier elimination.

Proof. Given a formula φ(v̄), we want to find a quantifier-free formula φ′(v̄) for
which ACF |= (φ(v̄) ↔ φ′(v̄)). We can prove this by induction on the length of
the formula. If φ is atomic, or if φ = ¬ψ1 or φ = ψ1 ∧ ψ2, with ψi equivalent to a
quantifier-free formula, the statement is trivial.

So suppose φ(v̄) = ∃xψ(v̄, x), with ψ equivalent to a quantifier-free formula.
Then by Proposition 2.6, ψ may be put into disjunctive normal form. Note that
any atomic formula θ(w̄) is equivalent to p(w̄) = 0, where p is a polynomial. So,
because ACF |= (∃x(a ∨ b) ↔ ∃x a ∨ ∃x b), it is sufficient to find a quantifier-free
equivalent to formulas of the form ∃x[

∧m
i=1(p(v̄, x) = 0) ∧

∧k
i=1(q(v̄, x) 6= 0)]. Note

that if q =
∏
qi, then ACF |= ((

∧k
i=1[qi(v̄, x) 6= 0]) ↔ q(v̄, x) 6= 0), so we may

assume that k = 1.
We can also reduce m to 1. We may think of pi(v̄, x) as a polynomial over x

whose coefficients are terms involving v̄. Say ai(v̄)·xdi is the leading term of pi, and
suppose that 1 ≤ d1 ≤ d2. Then we can find a set of polynomials {pi

′} which has the
same set of simultaneous roots as {pi}, but for which

∑m
i=1 deg p′i <

∑m
i=1 deg pi.

If a1(v̄) = 0, we can set p1
′ = p1 − a1(v̄)xd1 and pi

′ = pi for i 6= 1; otherwise, set
p2

′′ = a1(v̄)p2 − a2(v̄)xd2−d1p1 and pi
′′ = pi for i 6= 2. Then

∧m
i=1(pi(v̄, x) = 0) is

equivalent to

[a1(v̄) = 0 ∧
m∧

i=1

(pi
′(v̄, x) = 0)] ∨ [a1(v̄) 6= 0 ∧

m∧
i=1

(pi
′′(v̄, x) = 0)].

So, whenever we have at least two polynomials of degree greater than 0 over
x, we may reduce the total degree of all of our polynomials. (The ∨ allows us to
split the existential quantifier like before.) Repeat this process until only one of
the polynomials has degree greater than 0 over x. We may pull all of the constant
polynomials out of the existential quantfier, because ACF |= [∃x(a(v̄) ∧ b(v̄, x)) ↔
a(v̄) ∧ ∃x b(v̄, x)].

We now only have to deal with formulas of the form ∃x(p(v̄, x) = 0∧q(v̄, x) 6= 0),
in which either p or q might not actually be present. If p is not present, then note
that polynomials have finitely many solutions, but algebraically closed fields are
infinite, so there exists an x which is not a root of q if and only if q 6≡ 0. If q is not
present, then note that p has a solution if and only if all the coefficients of p are
zero or at least one of the non-constant coefficients is nonzero.
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Otherwise, by Lemma 4.2, there exists such an x if and only if ¬(p|qdeg p). And
we may express f |g as a quantifier-free formula by use of the Euclidean algorithm.
There are some polynomials a and b such that g = af+b, and a and b can be found
using polynomial long division, so their coefficients will be terms in v̄. So f |g if and
only if every coefficient of b is zero. �

Corollary 4.4. The theory of algebraically closed fields is model-complete.

5. Algebraic Preliminaries

The proof of the Nullstellensatz will require familiarity with two ancillary results
from commutative algebra, which we present here.

Proposition 5.1. If F is a field, then every ideal of F [x̄] is finitely generated.

Proof. We prove that if every ideal of R is finitely generated, then every ideal of
R[y] is finitely generated. Take I an ideal in R[y] and take f0 of minimal degree in
I. Then, for each i > 0, take fi of minimal degree in I \ (f0, . . . , fi−1). Let ai be
the initial coefficient of fi. Then the ideal in R generated by all of the ai will be
equal to (a0, . . . , aN ) for some N . Then we claim that I = (f0, . . . , fN ). Suppose
not. Then fN+1 ∈ I \ (f0, . . . , fN ). But there exist λi such that aN+1 =

∑N
i=0 λiai.

Then consider g =
∑N

i=0 λifix
ki , where ki = deg(fN+1)−deg(fi). Then fN+1−g ∈

I \ (f0, . . . , fN ), and it has smaller degree than fN+1, contradicting the minimality
assumption. �

Definition 5.2. If I is an ideal in a ring R, then the radical of I is the set
√
I =

{r ∈ R : rn ∈ I for some n}. If I =
√
I, then we say that I is a radical ideal.

Lemma 5.3. Let I be a radical ideal in an integral domain R. Then for every
x /∈ I, there is a prime ideal P ⊆ R such that I ⊆ P and x /∈ I.

Proof. Take some x /∈ I. Let X = {xn : n ∈ N}. Then if K is the fraction field of
R, consider the ring X−1R = {r/s ∈ K : r ∈ R, s ∈ X}, and define X−1I ⊆ X−1R
similarly. Let φ be the natural map from R to (X−1R/X−1I). Because x /∈ I, we
know that xn /∈ I for any n. So 1 = xn/xn /∈ X−1I for any n, so X−1I is a proper
ideal of X−1R. Therefore, we may take a maximal ideal P in (X−1R/X−1I). The
preimage φ−1(P ) is prime and contains I. Now, let ψ : X−1R → (X−1R/X−1I)
be the projection map. Suppose x ∈ φ−1(P ) ⊆ ψ−1(P ). Then 1 = x/x ∈ ψ−1(P ),
meaning that ψ−1(P ) is not a proper ideal of X−1R, contradicting the surjectivity
of ψ. So x /∈ φ−1(P ). �

6. The Nullstellensatz

Now that the model-theoretic preliminaries have been established, we are ready
to prove the Nullstellensatz itself. The proof is surprisingly short.

Theorem 6.1 (Nullstellensatz). For S ⊆ K[x̄], let V (S) = {ā ∈ Kn : f(ā) =
0 for all f ∈ S}. Then if I and J are radical ideals in K[x̄] with I ⊂ J , then
V (J) ⊂ V (I).

Proof. Clearly V (J) ⊆ V (I), so we need to show that V (J) 6= V (I). Take a
polynomial f ∈ J \ I. By Lemma 5.3, there exists some prime ideal P such that
I ⊆ P and f /∈ P . Let L be the algebraic closure of the fraction field of K[x̄]/P ,
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and let φ be the natural map from K[x̄] into L. Then, letting ȳ = φ(x̄), observe
that f(ȳ) 6= 0 and for all g ∈ I, g(ȳ) = 0.

By Proposition 5.1, I is finitely generated, so let h1, . . . , hm be its generators.
Then, if ψ(w̄) is the formula (h1(w̄) = 0∧ · · · ∧hm(w̄) = 0∧ f(w̄) 6= 0), we see that
ȳ satisfies ψ in L. Therefore, L |= ∃w̄ ψ(w̄), so, because the theory of algebraically
closed fields is model-complete, K |= ∃w̄ ψ(w̄). Let ā be an element of Kn which
satisfies ψ. Then we see that ā ∈ V (I) \ V (J), so V (J) 6= V (I). �

Though the result just proved is frequently called the Nullstellensatz, many
algebraists prefer an alternative version of the statement, whose proof we present
here.

Theorem 6.2. The only maximal ideals of K[x1, . . . , xn] are those of the form
(x1 − a1, . . . , xn − an) for a1, . . . , an ∈ K.

Proof. K[x̄] is itself a radical ideal, so for any proper radical ideal I ⊂ K[x̄], V (I) is
nonempty. In particular, because every maximal ideal is radical, V (M) is nonempty
for every maximal ideal M .

Let M be a maximal ideal. We claim that V (M) has exactly one element. To
see this, suppose not, and take ā 6= b̄ in M . Let I = {f : f(ā) = 0}. Observe that
there is a polynomial p ∈ K[x̄] such that p(ā) = 0 and p(b̄) 6= 0: if ai 6= bi, let
p(x̄) = xi − ai. Therefore, M ⊂ I. But I 6= A (because, for instance, 1 /∈ I), which
is a contradiction.

Let ā be the unique element of V (M). By the preceding argument, M = {f :
f(ā) = 0}, so each polynomial pi(x̄) = xi − ai is in M . Thus the ideal P =
(p1, . . . , pn) is contained in M . Consider the projection map π : K[x̄] → K[x̄]/P .
For each i, π(xi) = π(ai), so if f(ā) = 0, then π(f) = 0. Therefore, M ⊆ P . The
result follows. �
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