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Abstract

This paper examines conditions for recurrence and transience for ran-
dom walks on discrete surfaces, such as Zd, trees, and random environ-
ments.

1 Random Walks on Non-Random Environments

1.1 Definitions

Definition 1. A class of subsets F of a set Ω is an algebra if the following hold:

1. ∅ ∈ F and Ω ∈ F .

2. A1, A2, . . . , An ∈ F =⇒
⋃n
i=1Ai ∈ F .

3. A ∈ F =⇒ Ac ∈ F .

If additionally A1, A2, . . . ∈ F =⇒
⋃∞
i=1Ai ∈ F , then F is called a σ-algebra.

Definition 2. A Probability Measure is a function P : F → [0, 1], where F is a
σ-algebra, satisfying:

1. P{∅} = 0

2. If A1, A2, . . . is a collection of disjoint members of F , so that Ai ∩ Aj =
∅ ∀i 6= j, then

P
{ ∞⋃
i=1

Ai

}
=
∞∑
i=1

P{Ai}.

Definition 3. A Probability Space is represented by the triple (Ω,F ,P), where
Ω is a set, called a Sample Space, containing all possible outcomes, F is a σ-
algebra of subsets of Ω containing events, and P is a probability measure that
assigns a measure of 1 to the whole space. F will be a σ-algebra on Ω throughout
the paper.
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Definition 4. A Random Variable is a function X : Ω→ R with the property
that

{ω ∈ Ω : X(ω) ≤ x} ∈ F ∀x ∈ R.

Two events A = {Xi ≤ xi}, B = {Xj ≤ xj} are independent when P{A ∩B} =
P{A}P{B}. More generally, random variables X1, X2, . . . are independent if
∀k ∈ N, x1, x2, . . . ∈ R,

P{X1 ≤ x1, X2 ≤ x2, . . . Xk ≤ xk} =
k∏
i=1

P{Xi ≤ xi}.

If X is a random variable, then for every Borel subset B of R, X−1(B) ∈ F .
We define a measure µX , called the distribution of the random variable, on Borel
sets by

µX(B) := P{X ∈ B} = {X−1(B)}.

If µX takes values only for countable subsets of the real numbers, X is a
discrete random variable; these are the only random variables we consider in this
paper. If random variables X1, X2, . . . are all independent and have the same
distribution, we say they are independent and identically distributed (i.i.d.).

Definition 5. Intuitively, a discrete stochastic process is characterized by a
state space V , and transitions between states which occur randomly according
to some probability distribution. The process is memoryless if the probabil-
ity of a transition i → j does not depend on the history of the process, i.e.
∀i, j, uo, . . . , ut−1 ∈ V,

P{Xt+1 = j|Xt = i,Xt−1 = ut−1, . . . , X0 = u0} = P{Xt+1 = j|Xt = i}.

If additionally pij = P{Xt+1 = j|Xt = i} = P{Xt = j|Xt−1 = i}, so the
transition probability does not depend on time, then the process is homogenous.

Definition 6. A Markov chain is a memoryless homogeneous discrete stochastic
process.

Roughly, this means that, conditional upon knowing the state of the process
up to the nth step, the values after n steps do not depend on the values before
the nth step.

1.2 Simple Random Walks on Integer Lattices

First we consider a simple random walk on Z where a walker starts at some
z ∈ Z and always moves to either adjacent point with probability 1/2. Let Sn
denote the position of the walker after n steps. The model immediately implies
that the random walk is a Markov Chain, i.e.

P{Sn+1 = in+1|Sn = in, Sn−1 = in−1, . . . , S1 = i1, S0 = i0 = z}

= P{Sn+1 = in+1|Sn = in} =
1
2
, (1)
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where i0 = z, i1, i2, . . . , in+1 is a sequence of integers with |i1− i0| = |i2− i1| =
· · · = |in+1 − in| = 1.

Alternatively, work on the probability space [0, 1] with Lebesgue measure.
Let X1, X2, . . . be a sequence of i.i.d. random variables with P{X1 = 1} =
P{X1 = −1} = 1/2, where Xi corresponds to the value of the ith coin flip (that
X1, X2, . . . exist with these properties is beyond the scope of this paper). Then
the position of the random walk after n steps is given by:

Sn = z +X1 +X2 + · · ·+Xn n = 1, 2, . . . .

Lemma 7. Let Sn denote the position of a random walker at time n. Let

pn = P{Sn = S0}

Then
pn ∼

1√
2πn

.

Proof. When n is odd, pn = 0, so we only consider the case where the walker
takes an even number of steps 2n. To return to the starting point in that number
of steps, the walk must consist of exactly n steps to the right and n to the left,
and there are

(
2n
n

)
ways to choose such a move. Each particular choice of 2n

steps occurs with probability 2−2n. Using Stirling’s formula, given by

n! ∼
√

2πn e−nnn

We have

p2n =
(

2n
n

)
1

22n
=

(2n)!
n!n!

1
22n
∼
√

4πn e−2n(2n)2n

(
√

2πn e−nnn)222n
=

1√
2πn

.

We can form an analogous construction for simple random walks on Zd. The
random walk Sn now has 2d choices of moves for each n. The probability of
moving in any one direction at time n ( 1

2d ) is equal to the probability of moving
in any other direction, and is independent of the particular path the walker
followed to arrive at n.

Another way to to think of the simple random walk in Zd is to think of
d different simple random walks in each of the d directions. To choose each
step, one of the one-dimensional random walks is picked at random to make a
move, and the walker moves in the direction indicated by that move, keeping
the position in other directions constant.

Lemma 8. [6] Let Sn denote the position of a two-dimensional walker after n
steps, and pn = P{Sn = So}. Then,

pn ∼
1

2πn
.
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Proof. To return to the starting point in 2 dimensions, the walk must again
comprise an even number of steps 2n, and there are 42n ways to choose such
walks of length 2n returning to the starting point. All the walks returning to
the starting point consist of k steps to the north and south, and n − k to the
east and west. So we have

p2n = 2−2n
n∑
k=0

(
2n

k k n− k n− k

)
= 2−2n

n∑
k=0

(2n)!
k!k!(n− k)!(n− k)!

= 2−2n
n∑
k=0

(2n)!
n!n!

n!n!
k!k!(n− k)!(n− k)!

= 2−2n

(
2n
n

) n∑
k=0

(
n

k

)2

.

However,
∑n
k=0

(
n
k

)2 =
(
2n
n

)
, so

p2n =

((
2n
n

)
1

22n

)2

,

which is the square of the one-dimensional result. Therefore we have

p2n ∼
( 1√

2πn

)2

=
1

2πn
.

Lemma 9. [6] Let Sn denote the position of a three-dimensional random walk,
and pn as before. Then,

p2n ≤
C

n3/2
.

Proof. As before, the three-dimensional random walk must make an equal num-
ber of steps in each direction in order to return to its starting point. There are
now 62n ways to choose walks of length 2n returning to the origin. If we let n1

denote the number of steps in the x direction, n2 the steps in the y direction,
and n3 the steps in the z direction, we have

p2n = 6−2n
∑

n1+n2+n3=2n

(
2n

n1 n1 n2 n2 n3 n3

)

= 6−2n
∑

n1+n2+n3=2n

n!
n1!n2!n3!

=
1

32n

(
n

n1 n2 n3

)
1

32n

(
n

n1 n2 n3

)
represents the probability that when 3 balls are able to fall into

3 separate bins, n1 of them fall into the first, n2 into the second, and n3 into
the third. Informally, we see that if the balls fall randomly, this probability is
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maximized by letting n1, n2, n3 be as close as possible to n/3. Replacing one
of the terms by this fact, we have

p2n ≤ 2−2n

(
2n
n

)
1
3n

n!
bn3 c! b

n
3 c! b

n
3 c!

∑
n1+n2+n3=2n

1
3n

n!
n1!n2!n3!

.

Here bn3 c denotes the largest integer less than or equal to n
3 . The last sum

represents the sum of all probabilities for the outcome that n balls fit into three
bins, and so is just one. Therefore, we have

p2n ≤
1

22n

(
2n
n

)
1
3n

n!
bn3 c!3

.

Applying Stirling’s formula, we have

p2n ≤
C

n3/2
.

In addition to the probability of the random walk returning to its starting
point, we are also interested in the frequency of return.

Definition 10. Let An be the event that a random walk returns to its starting
point on the nth, {Sn = S0}. Then the event that the random walk returns to
its starting point infinitely often is given by:

{An infinitely often (i.o.)} := lim sup
n→∞

An =
∞⋂
n=1

∞⋃
m=n

Am.

If P{An i.o.} = 1, the walk is called recurrent. If P{An i.o.} = 0, the walk is
called transient.

Theorem 11 (Recurrence Theorem). [3] A random walk Sn on Zd is recurrent
if d ≤ 2. If d ≥ 3, then the walk is transient, and

P{Sn 6= S0 ∀n > 0} > 0.

Proof. Let Jn = 1{An} be an indicator variable for the event that the random
walk returns to its starting point. The total number of visits to the origin is
given by:

V =
∞∑
n=0

J2n.

Using the linearity of the expected value,

E[V ] =
∞∑
n=0

E[J2n] =
∞∑
n=0

P{S2n = S0}.
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We know
∑
n−a converges only when a > 1. So when d = 1, 2, by Lemmas

7 and 8, the sum is divergent. When d = 3, by Lemma 9, the sum is convergent.
For d > 3, we see that to return, the random walk in four dimensions must
at least return in three dimensions. Since the sum of returning probabilities
converges in three dimensions, it must also converge in any greater number of
dimensions. Therefore, we have

E[V ] =
{
∞ d = 1, 2
<∞ d ≥ 3

Let q be the probability that the random walker ever returns to its starting
point. Assuming q < 1, its distribution is given by:

P{V = k} = qk−1(1− q), k = 1, 2, . . .

Again assuming q < 1, we find:

E[V ] =
∞∑
k=1

kP{V = k} =
∞∑
k=1

kqk(1− q) =
1

1− q
<∞.

For d = 1, 2 we know E[V ] = ∞, so by contradiction q = 1, and the walk
returns to the origin for some n with probability 1. When d ≥ 3, 1

1−q < ∞, so
q < 1, and with non-zero probability the random walk may not return to the
starting point at all.

Now from the distribution of q,

P{An finitely often} ≥ P{V = k} = 1− qk

So if d = 1, 2, as k → ∞, P{An finitely often} → 0, so P{An i.o.} = 1. When
d ≥ 3, as k →∞, P{An} → 1, so P{An i.o.} = 0.

1.3 The Zero-One Law

The proof of the Recurrence Theorem is based on the fact that

P{Sn = S0 at least for one n} = 1 =⇒ P{Sn = S0 infinitely often (i.o.)} = 1

And
P{Sn = S0 at least for one n} < 1 =⇒ P{Sn = S0 i.o.} = 0.

That is, if the random walk returns once to the origin with probability 1, it
will return again and again with probability 1. Similarly, if the random walk
stays away from the origin with non-zero probability for every n, then it cannot
possibly return infinitely often. With infinite sequences of independent random
variables, the probabilities of certain events can only be 0 or 1. This observation
is formalized in Kolmogorov’s Zero-One Law, which can be used to provide
another proof of the Recurrence Theorem.
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Definition 12. Let (Ω,P) be a probability space. Two σ-algebras A, B are
independent if for all A ∈ A, B ∈ B,

P{A ∩B} = P{A}P{B}.

Definition 13. AssumeX1, X2, . . . are independent random variables on (Ω,F).
Then the σ-algebra generated by X1, X2, . . . is the smallest σ-algebra on which
all the Xi are measurable.

Definition 14. Let Fn be the σ-algebra generated by X1, . . . , Xn, and let
Gn be the σ-algebra generated by Xn+1, Xn+2, . . . with F1 ⊂ F2 ⊂ · · · , and
G1 ⊃ G2 ⊃ · · · . Let F be the σ-algebra generated by X1, X2, . . ., the smallest
σ-algebra containing the algebra F0 = ∪∞n=1Fn, and G defined similarly. The
tail σ-algebra T is defined by

T =
∞⋂
n=1

Gn.

Lemma 15. [3] Suppose F and G are two algebras of events that are indepen-
dent. Then F1 = σ(F) and G1 = σ(G) are independent σ-algebras.

Proof. Let B ∈ G and define the measure

νB(A) := P{A ∩B}, νB(A) := P{A}P{B}

Since νB , νB are finite measures, they agree on F . Using the Carathéodory
extension (which states that P can be extended uniquely to a measure space
(Ω,F ,P) where F ⊂ F), they must agree on F . So P{A ∩ B} = P{A}P{B}.
Supposing A ∈ F1, B ∈ G1, we take the measures

νA(B) := P{A ∩B}, νA(B) := P{A}P{B},

completing the proof.

Theorem 16 (Zero-One Law). ( [1], p. 290) Let X1, X2, . . . be independent
random variables on (Ω,F ,P). If A ∈ T ,

P{A} = 0 or P{A} = 1.

Proof. By Lemma 14, any event in σ(Xn, Xn+1, . . .) is independent of any event
in σ(X1, . . . , Xn). Defining F0 and T as above, any event in F0 is independent
of any event in ∪∞n=1Hn. So any event in H∞ is independent of any event in
σ(∪∞n=1Hn). However, H∞ ⊂ σ(X1, . . .) = σ(∪∞n=1Hn), so any tail event is
independent of itself. That is, P{A} = P{A ∩ A} = P{A}P{A}, so P{A} =
0, 1.

Lemma 17 (Borel-Cantelli 1). ( [2], p. 27)
Let A1, A2, . . . be a sequence of events for which

∑∞
n=1 P{An} <∞. Then

P{lim sup
n→∞

An} = P{An i.o. } = 0.
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So with probability 1, only a finite number of the events An occur.

Proof. Supposing that
∑∞
n=1 P{An} = 0 and using Definition 9, one has

P{lim sup
n→∞

An} = P{
∞⋂
n=1

∞⋃
m=n

Am} = lim
n→∞

P{
∞⋃
m=n

An} ≤ lim
n→∞

∞∑
m=n

P{Am} = 0,

where the second equality follows from the fact that if ν is a measure, A1, . . .
are measurable set, An+1 ⊂ An, n = 1, , . . ., and ν{An} < ∞, then ν{∩∞n=1} =
limn→∞ ν{An}. The third inequality comes from the fact that the An are not
necessarily disjoint.

Lemma 18 (Borel-Cantelli 2). ( [4], p. 319) Let A1, A2, . . . be a sequence of
events for which

∞∑
n=1

P{An} =∞ and lim inf
n→∞

∑n
k=1

∑n
i=1 P{AkAi}

(
∑n
k=1 P{Ak})2

≤ C C ≥ 1

. Then,
P{lim sup

n→∞
An} ≥ C−1.

Proof. Let Jn = 1{An} and Nk =
∑k
n=1 Jn. ∀ε > 0, let Bn,ε denote the

measurable set defined by

Nk ≥ εE[Nk] for some k ≥ n.

We pick the measurable functions given by f(t) = E[eitX ], the characteristic
function of the set Bn,ε and g = f(Nn). By the Cauchy-Schwartz Inequality,
given by E[fg]2 ≤ E[f2]E[g2], we have

P{Bn,ε} = E[f2] ≥ E[fg]2

E[g2]
≥ E[fg]2

E[Nn
2]
≥ (E[Nn]− E[Nn(1− f)])2

E[N2
n].

But E[Nn(1− f)] ≤ εE[Nn], so

P{Bn,ε ≥ (1− ε)2 E[Nn]2

E[N2
n]

n = 1, 2, . . . .

Since E[Nn]→∞ as n→∞,

P{
∞⋂
n=1

∞⋃
n=m

Am} ≥ lim
n→∞

P{Bn,ε}.

Since this is true for every ε > 0,

E{
∞⋂
n=1

∞⋃
m=n

Am} ≥ lim sup
n→∞

E[Nn]2

E[N2
n]

= lim sup
n→∞

∑n
k=1

∑n
i=1 P{AkAi}

(
∑n
k=1 P{Ak})2

≤ C.
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Lemma 19. ( [2], p. 25) For any −∞ < a ≤ b < +∞ we have

P{lim inf
n→∞

Sn = a} = P{lim sup
n→∞

Sn = b} = 0

Proof.
lim sup
n→∞

Sn = lim
n→∞

(
sup
m≥n

Sm
)

= lim
n→∞

n =∞

So P{lim infn→∞ Sn = a} = 0 and similarly for the lim inf.

Lemma 20. ( [2], p. 196) When d = 2,

lim
n→∞

∑n
j=1

∑n
k=1 P{S2j = S0, S2k = S0}

(
∑n
k=1 P{S2k = S0})2

= 2

Proof.
n∑
j=1

n∑
k=1

P{S2j = S0, S2k = S0}

= 2
n∑
j=1

n−j∑
k=1

P{S2j = S0, S2j+2k = S0}+
n∑
j=1

P{S2j = S0}

= 2
n∑
j=1

n−j∑
k=1

P{S2j = S0}P{S2k = S0}+
n∑
j=1

P{S2j = S0}

∼ 2
π2

n∑
j=1

n−j∑
k=1

j−1k−1 ∼ 2
( log n

π

)2

∼ 2
( n∑
k=1

P{S2k = S0}
)2

.

We use the above facts to provide another proof of Theorem 11.

Proof of Recurrence Theorem for d = 1.

Proof. Contained in the tail σ-algebra generated by random variablesX1, X2, . . .
are events such as

{An > 0 i.o.}, {lim sup
n→∞

An = 0}

which do not refer to finite subcollections such as X1, . . . Xn. Our random walk
Sn, by the Markov Property, has a value after n steps which depend on the nth

step, but not previous steps. The symmetric nature of the random walk implies
that P{lim infn→∞ Sn = −∞} = P{lim supn→∞ Sn = +∞} = C, while Lemma
18 guarantees that C > 0. Since the Zero-One Law guarantees that C can be
only zero or one, C = 1.
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Proof of Recurrence Theorem for d = 2. ( [2], p. 197) Lemma 15 shows
that the random walk on two dimensions satisfies the hypotheses of the second
Borel-Cantelli Lemma, which in turn asserts that

P{Sn = S0 i.o.} ≥ 1/2.

By the Zero-One law, since this probability is not zero, it must be one.

Proof of the Recurrence Theorem for d ≥ 3. ( [2], p. 197)
Lemma 7 asserts that the probability of return when d ≥ 3 converges in

sum. This satisfies the hypothesis of the first Borel-Cantelli lemma, which
immediately shows that the probability of return is zero.

1.4 Time

Let ρ1(k) = min{n : Sn = k} k = 1, 2, . . ..

Lemma 21. ( [2], p. 97) Let ρ0 = 0 and ρk = min{j : j > ρk−1, Sj = 0} k =
1, 2, . . .. Then,

P{ρ1 = 2k} = 2−2k+1k−1

(
2k − 2
k − 1

)
k = 1, 2, . . .

and

P{ρ1 > 2n} = 2−2n

(
2n
n

)
= P{S2n = 0}.

Proof.

P{ρ = 2k} =
1
2

P{ρ1 = 2k|X1 = +1}+
1
2

P{ρ1 = 2k|X1 = −1}

Clearly,

P{ρ1 = 2k|X1 = +1} = P{ρ1 = 2k|X1 = −1} = P{ρ1(1) = 2k − 1}.

Remark

P{ρ1 <∞} =
∞∑
k=1

P{ρ1 = 2k} =
∞∑
k=1

22k+1k−1

(
2k − 2
k − 1

)
= 1

So the particle returns to the origin with probability one, i.e. we have a new
proof of the Recurrence Theorem for d = 1.

While it is guaranteed that a random walker will return to the origin, the
mean waiting time of the recurrence is infinite.

Theorem 22. The expected time to hit the origin is infinite.

Proof.

E[ρ1] =
∞∑
k=1

2−2k+2

(
2k − 2
k − 1

)
=∞.
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1.5 Biased Random Walk

A biased random walk is a random walk which tends to move in some directions
with greater probability than others. More formally, let Sn denote the position
after n steps of a a biased one-dimensional random walker. Let p > 1/2 and
Sn = X1 + . . . Xn , where X1, . . . , Xn are independent with

P{xj} = 1− P{xj = −1} = p

Theorem 23. [3] Let Sn denote the position of a biased one-dimensional ran-
dom walker. Then there is a ρ < 1 such that as n→∞

P{S2n = 0} ∼ ρn 1√
πn

,

and the random walk is transient.

Proof. The number of choices available for a random walk to return to its start-
ing point remains the same as in the case of the simple random walk. The
probability of such paths, however, is now given by pn(1− p)n, since out of 2n
steps, n must be taken in either direction, and the probability of moves is p in
one direction and 1− p in the other.

P{S2n = 0|P0 = 0} =
(

2n
n

)
pn(1− p)n =

(2n)!
(n)!(n)!

pn(1− p)n.

Using Stirling’s formula, we find that

(2n)!
n!n!

pn(1− p)n ∼
√

4πne−2n(2n)2n

(
√

2πne−nnn)2
=

22n

√
2πn

(p(1− p))n = ρn
1√
πn

.

This sum converges, so by the first Borel-Cantelli lemma we have transience.

1.6 Random Walks on Graphs

We construct a tree T1 as follows. The vertices of T1 are the empty word, de-
noted by o, and all finite sequences of the letters a, b, i.e. words x1 . . . xn where
x1, x2, . . . xn ∈ {a, b}. Both words of one letter are adjacent to o. We say that
a word of length n− 1 and of length n are adjacent if they have the exact same
letters, in order, in the first n − 1 positions. Note that each word of positive
length is adjacent to three words and the root is adjacent to only two words.
We construct another tree T2 similarly, calling the root o and using the letters
a, b. Finally we make a tree T by taking the union of T1 and T2 and adding one
more connection: we say that o and o are adjacent.
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Lemma 24. [3] T is a connected tree

Proof. Suppose x, y ∈ T1. We construct a unique path between them as follows:
If x ∼ y we are done. If not, consider the common word consisting of the first
k letters in which x and y agree (this may be the empty word). Any word of
length n in this tree is adjacent to only one word of length n− 1. Call the edge
between them a reduction. Using reductions, we can find a unique path from
x to the common word, and similarly for y. Uniting the path from x to the
common word, and from y to the common word provides the path from x to y.

If x ∈ T1 and y ∈ T2, then we use reductions to find a unique path from x
to o and from y to o. Then we use the fact that o ∼ o to find a unique path
between x and y.

Theorem 25. [3] Let Sn denote simple random walk on the tree, where the
walker goes to one of the three neighbors each with probability 1/3, and each
choice is independent of the previous choices. Then Sn is transient.

Proof. Let pn = P{Sn = S0}. For the random walk to return to the starting
point, the walk must still make n steps to the left, and n steps in the other
direction. Steps to the left are made with probability 1

3 while steps to the right
occur with probability 2

3 . The total probability is given by:

p2n =
(

2n
n

)(1
3

)n(2
3

)n
=

(2n)!
n!n!

(2
9

)n
Using Stirling’s formula, we arrive at:

p2n =
(2n)!
n!n!

(2
3

)n
∼
√

4πne−2n(2n)2n

(
√

2πne−nnn)222n

(2
9

)n
=

22n

√
2πn

(2
9

)n
=

1√
2πn

(8
9

)n
Since the sum

∞∑
n=1

1√
2πn

(8
9

)n
converges, the first Borel-Cantelli lemma guarantees that the walk is transient.
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Theorem 26. [3] With probability 1 the random walk does one of the two
things: either the random walk visits T1 only finitely often, or it visits T2 finitely
often.

Proof. In order for a random walk on T to visit either T1 or T2 finitely often, it
must at least visit the points o, o (the ’bridge’ points) finitely often. Then we
have:

P{The random walk visits T1 or T2 only finitely often} ≥

P{the random walk visits the bridge points finitely often}

However, transience establishes that the probability of visiting any point finitely
often is one, so the random walk must visit either T1 or T2 only finitely often.

2 Random Walks on Random Environments

2.1 The Creation of the Universe

The random walk considered in the first section is a mathematical model of
linear Brownian motion in a homogenous, or non-random, environment. We now
consider a random environment (in one dimension) encountered, for instance,
in a magnetic field. Instead of always moving to the right or left with equal
probability (as in the simple random walk) or always moving to the right with
one probability and the left with another (as in the biased random walk), the
chance of moving to the right or left now vary randomly depending on where
the walker is on a one-dimensional integer lattice. Our model is given in two
steps:

God creates the Universe With a sequence of i.i.d. random variables E =
{. . . E−2, E−1, E0, E1, E2, . . .} with distribution P1{E0 < x} = µE(x), µE(0) =
0, µE(1) = 1, God visits the integers and to i ∈ Z randomly assigns a value Ei
(this is a random number between zero and one).

Life in the Universe Into a random environment E , a particle is born on the
origin and begins a random walk. The particle moves a step to the right with
probability E0, and left with probability 1− E0. If after n steps the particle is
at point i, then the probability of a step to the right is Ei, while the probability
of a step to the left is 1−Ei. We have defined a random walk Rn with R0 = 0
and

PE{Rn+1 = i+ 1|Rn = i, Rn−1, Rn−2, . . . , R1}
= 1− PE{Rn+1 = i− 1|Rn = i, Rn−1, Rn−2, . . . , R1} = Ei. (2)
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Note that when P1{E0 = 1/2} = µX(1/2 + 0) − µX(1/2) = 1, we have our
usual simple random walk.

Formally, let {Ω1,F1,P1} be a probability space and let (ω1 ∈ Ω1) be a
sequence of i.i.d. random variables with P1{E1 < x} = F (x), F (0) = 1−F (1) =
0 and

E = E(ω1) = {. . . E−1 = E−1(ω1), E0 = E0(ω1), E1 = E1(ω1), . . .}

Let {Ω2,F2} be the measurable space of the sequences ω2 = {ε1, ε2, . . .} where
εi = 1 or −1 for i = 1, 2, . . . and F2 is the natural σ-algebra (the σ-algebra gen-
erated by collections of all product sets). Define the random variable Y1, Y2, . . .
on Ω2 by Yi(ω2) = εi for i = 1, 2, . . . and let R0 = 0, Rn = Y1 +Y2 + · · ·+Yn, n =
1, 2, . . .. Then we construct a probability measure P on the measurable space
{Ω = Ω1 × Ω2,F = F1 × F2} as follows: for any given ω1 ∈ Ω1 we define a
measure Pω1 = PE(ω1) = PE on F2 satisfying (2).
Note the difference between P1 and PE : the former is a probability measure used
when determining the probability that any i ∈ Z takes on some value Ei. With
the creation of the random environment, the probability measure PE refers to
the probability applicable for the random walk, referring to the probability of
moving to the right or left.

Let Uk = (1 − Ek)/Ek, Vj = logUj , and F (x) as above. We assume the
following conditions:

∃ 0 < β < 1/2 s.t. P{β < E0 < 1− β} = 1 (3)

E1[V0] =
∫ ∞
∞

xdP1{V0 < x} =
∫ 1−β

β

log
1− x
x

dF (x) = 0 (4)

0 < σ2 = E1[V 2
0 ] =

∫ 1−β

β

(
log

1− x
x

)2
dF (x) <∞. (5)

Note that for the simple random walk, P{U0 = 1} = P1{V0 = 0} = 1, so (3)
and (4) are satisfied. However, (5) is not satisfied since E1[V 2

0 ] = σ2 = 0 (that
is, we expect the simple random walk to be at its starting point).

2.2 Recursion in a Random Environment

We can state a theorem of recurrence in random environments analogous to
the result in non-random environment. With probability one, God creates an
environment in which the random walk is recurrent. First, two Lemmas:

Lemma 27. ( [2], p. 311) Let

p(a, b, c) = PE{min{j : j > m,Rj = a} < min{j : j > m,Rj = c}Sm = b} a ≤ b ≤ c

Where p(a, b, c) = p(a, b, c, E) is the probability that a particle starting from b
hits a before c given the environment E. Then

p(a, b, c) = 1− D(a, b)
D(a, c)
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where

D(a, b) =


0 b = a
1 b = a+ 1
1 +

∑b−a−1
j=1

∏j
i=1 Ua+i b ≥ a+ 2

and in particular,

p(0, 1, ) = 1− 1
D(n)

where D(b) = D(0, b) + 1 + U1 + U1U2 + · · ·+ U1U2 . . . Ub−1

Proof. Obviously p(a, a, c) = 1, p(a, c, c) = 0, and p(a, b, c) = Ebp(a, b+ 1, c) +
(1−Eb)p(a, b−1, c). Therefore, p(a, b+1, c)−p(a, b, ) = 1−Eb

Eb
(p(a, b, c)−p(a, b−

1, c). By iteration, we have

p(a, b+ 1, )− p(a, b, c) = UbUb−1 · · ·Ua+1p(a, a+ 1, c)− p(a, a, c))
= UbUb−1 · · ·Ua+1(p(a, a+ 1, c)− 1) (6)

Adding the above equations for b = a, a+ 1, . . . , c− 1 we have

−1 = p(a, c, c)− p(a, a, c) = D(a, c)(p(a, a+ 1, c)− 1)

or
p(a, a+ 1, c) = 1− 1

D(a, c)

Two equations above imply

p(a, b+ 1, c)− p(a, b, c) = − 1
D(a, c)

UbUb−1 · · ·Ua+1

Adding these equations gives

p(a, b1, c)− 1 = p(a, b+ 1, c)− p(a, a, c)

=
−1

D(a, c)
(1 + Ua+1 + Ua+1Ua+2 + · · ·+ Ua+1Ua+2 · · ·Ub) =

−D(a, b+ 1)
D(a, c)

.

So we have the lemma

Consequence

P{ lim
n→∞

p(0, 1, n; E) = lim
n→∞

(1− 1
D(n)

) = 1} = 1 (7)

The consequence follows from the previous Lemma and a claim, left unproven,
that limn→∞D(n) =∞ in probability (with respect to P1.)
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Lemma 28. For any −∞ < a ≤ b <∞ we have

P{lim sup
n→∞

Rn = a} = P{lim sup
n→∞

Rn = b} = 0.

Proof. Analogue of Lemma 19.

Theorem 29. ( [2], p.311) Assuming conditions 4, 5, 6 we have

P{Rn = 0 i.o.} = P1{PE{Rn = 0 i.o.} = 1} = 1

Assuming 4, 6, and E1V0 6= 0 we have

P1{PE{Rn = 0 i.o.} > 0} = 0.

Proof. Assume that the walk begins with a move to the right. Then Lemma
28 implies that the walker either returns to 0 or else goes to +∞ before it
returns. But by (7), for any ε > 0 there is a n0 = n0(ε, E) such that p(0, 1, n) =
1 − 1/D(n) ≥ 1 − ε when n ≥ n0 Therefore the probability that the walker
returns to zero is greater than 1− ε for any ε > 0, and so is one.
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