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Abstract

This paper introduces the Grassmannian and studies it as a subspace
of a certain projective space. We do this via the Plücker embedding and
give specific coordinates for the image of the Grassmannian. The main
result will be to show that under the Plücker embedding, the Grassman-
nian is a projective variety. We will do this in two ways: first, through
a characterization of totally decomposable vectors, and secondly, through
the Plücker relations. This will require a fair amount of linear and multi-
linear algebra, however most of the facts to be used will be proven when
needed.

1 Prerequisites and Basic Definitions

First we will establish some conventional language: let k be an algebraically
closed field, and let k[x1, . . . , xn] be the polynomial ring in n variables, here-
after denoted by k[X]. We define n-dimensional affine space, An, to be kn

considered just as a set without its natural vector space structure. Given
f ∈ k[X], we can view f as a k-valued polynomial on affine space by evalu-
ation, f : (x1, . . . , xn) 7→ f(x1, . . . , xn). The basic objects we will be studying
are a generalization of the elementary notion of a zero locus of a collection of
polynomials. More precisely,

Definition 1.1 Given a subset S ⊂ k[X], let V (S) = {X ∈ An|f(X) = 0 for
all f ∈ S}. If W ⊂ An is such that W = V (S) for some S ⊂ k[X], we say that
W is an affine variety.

Given an affine variety W , there is in general more than one ideal I for which
W = Z(I), however, there is a unique largest ideal corresponding to W found
by taking all the polynomials which vanish on W .

Definition 1.2 Given an affine variety W ⊂ An, let I(W ) = {f ∈ k[X]|
f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ W}. This set is called the ideal of the
variety W .
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Note that I(W ) is indeed an ideal in k[X] and it contains every other ideal
on which W vanishes. We now introduce another type of space essential for
our study of the Grassmannian. We define n-dimensional projective space, Pn,
to be the quotient of An+1 \ 0 by the action of k× on An+1 by multiplication,
that is, we make the identification (a0, . . . , an) ∼ (λa0, . . . , λan) for all nonzero
λ ∈ k. This induces a coordinate system on the resulting quotient space Pn
called homogeneous coordinates. A point in Pn is denoted by [a0 : · · · : an], and
by the definition of this space, [a0 : · · · : an] = [λa0 : · · · : λan] for all nonzero
λ ∈ k. We can view the identification ∼ geometrically by observing that two
points in An are identified if and only if they lie on the same line through the
origin. This allows us to view Pn as the space of lines in An+1 through the
origin. This construction can be generalized to any finite dimensional vector
space V to form a projective space P(V ).

In general, a polynomial f ∈ k[x0, . . . , xn] is not a function on Pn, for
f(a0, . . . , an) need not equal f(λa0, . . . , λan). For this reason, there is no well-
defined notion of a zero locus of a set of such general polynomials on Pn. Thus,
on projective space, we must restrict our attention to a more specific collection
of polynomials, namely the homogeneous polynomials.

Definition 1.3 A homogeneous polynomial of degree m is a polynomial f ∈
k[X] such that f(λa1, . . . , λan) = λmf(a1, . . . , an) for all λ ∈ k×.

Again, homogeneous polynomials are not always well-defined on Pn (unless
they are of degree 0). The benefit of homogeneous polynomials is that sets of
such polynomials have a well-defined zero locus.

Definition 1.4 A projective variety is a subset W ⊂ Pn such that W = V (S)
for some collection of homogeneous polynomials S ⊂ k[X].

2 Grassmannians and the Plücker Embedding

Let V be a finite dimensional vector space over a field k, say of dimension n.
Generalizing what we saw above for Pn, we can view the projective space P(V )
as the set of all lines in V that pass through the origin, that is, the set of all one
dimensional subspaces of the n-dimensional vector space V . We could also view
this space as follows. To every hyperplane in V we can associate a unique line
through the origin in V ∗, and conversely, to each line through the origin in V ∗

there corresponds a unique hyperplane in V . With this correspondence and the
fact that V ∗ ∼= V , we can view Pn as the set of n− 1 dimensional subspaces of
V . One could generalize this further and consider the space of all d-dimensional
subspaces of V for any 1 ≤ d ≤ n. This idea leads to the following definition.

Definition 2.1 Let n ≥ 2 and consider the k-vector space V of dimension
n. For 1 ≤ d ≤ n, we define the Grassmannian Gd,V to be the space of d-
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dimensional vector subspaces of V .

If we make the identification V ' kn by choosing a basis for V , we denote
the Grassmannian by Gd,n. Since n-dimensional vector subspaces of kn are the
same as n−1-dimensional vector subspaces of Pn−1, we can also view the Grass-
mannian as the set of d − 1-dimensional planes in P (V ). Our goal is to show
that the Grassmannian Gd,V is a projective variety, so let us begin by giving
an embedding into some projective space. Recall that the exterior algebra of
V ,
∧

(V ), is the quotient of the tensor algebra T (V ) by the ideal generated by
all elements of the form v ⊗ v, where v ∈ V . Multiplication in this algebra (the
so called wedge product) is alternating, that is, v1 ∧ · · · ∧ vm = 0 whenever
vi = vi+1 for any 1 ≤ i < m. Furthermore, the wedge product is anticommuta-
tive on simple tensors in the sense that v ∧ w = −w ∧ v for all v, w ∈ V . We
will need the following lemma to proceed.

Lemma 2.2 Let W be a subspace of a finite dimensional k-vector space V ,
and let B1 = {w1, . . . , wd} and B2 = {v1, . . . , vd} be two bases for W. Then
v1 ∧ · · · ∧ vd = λw1 ∧ · · · ∧ wd for some λ ∈ k

Proof: Write wj = a1jv1 + · · ·+ adjvd. Then one can compute that

w1 ∧ · · · ∧ wd = (a11v1 + · · ·+ am1vd) ∧ · · · ∧ (a1dv1 + · · ·+ addvd)

=
∑
σ∈Sd

ε(σ)a1σ(1) · · · adσ(d)v1 ∧ · · · ∧ vd

where ε(σ) is the sign of σ. Notice that
∑
σ∈Sd

ε(σ)a1σ(1) · · · adσ(d) := λ is just
the determinant of the change of basis matrix from B1 to B2.

We now define a map p : Gd,V → P(
∧d(V )): Given a subspace W ∈ Gd,V

and a basis {w1, . . . , wd} of W , let p : W 7→ w1 ∧ · · · ∧ wd. Clearly, different
choices of basis for W give different wedge products in

∧d(V ), but Lemma 2.2
shows that this map is unique up to scalar multiplication, hence is well-defined
on P(

∧d(V )).

Proposition 2.3 p : Gd,V → P(
∧d(V )) is injective.

Proof: Define a map ϕ : P(
∧d(V ))→ Gd,V as follows. To each [ω] ∈ P(

∧d(V )),
let ϕ([ω]) = {v ∈ V |v ∧ ω = 0 ∈

∧d+1(V )}. We will show that ϕ ◦ p = id.
Let W ∈ Gd,n have basis {w1, · · · , wd} so that [w1 ∧ · · · ∧ wd] = p(W ). Then
for each w ∈ W , it is clear that w ∧ w1 ∧ · · · ∧ wd = 0, so W ⊂ ϕ ◦ p(W ).
Moreover, if v ∈ ϕ ◦ p(W ), v ∧w1 · · · ∧wd = 0. Extend the linearly independent
set {w1, . . . , wd} to a basis {w1, . . . , wn} for V . Then writing v =

∑
aiwi, we

see that (
∑
aiwi) ∧ w1 ∧ · · · ∧ wn = 0. After distributing and using the prop-

erties of the wedge product, one sees that all the ai = 0 for i > d and thus
v = a1w1 + · · · + adwd. Therefore, v ∈ W and ϕ ◦ p(W ) ⊂ W , completing the
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proof that ϕ ◦ p = id.

The map p in the previous proposition is known as the Plücker embedding,
and allows us to view the Grassmannian as a subset of the projective space
P(
∧d(V )). Furthermore, we can identify this space with some PN as follows.

Fix a basis {v1, . . . , vn} for V , and consider the set {vi1 ∧· · ·∧vid |1 ≤ i1 < · · · <
id ≤ n}. This set forms a basis for

∧d(V ), which shows
∧d(V ) is a vector space

of dimension
(
n
d

)
. Thus we can let N =

(
n
d

)
− 1 and embed the Grassmannian

in PN .

Let Id,n = {i = (i1, . . . , id)|1 ≤ i1 < · · · < id ≤ n} and index the coordinates
of PN by Id,n. More specifically, let the basis vector of PN indexed by i =
(i1, . . . , id) be vi1 ∧· · ·∧vid . Given a subspace W ∈ Gd,V , we will now explicitly
find pi(W ), that is, the i

th
coordinate of the image of the Grassmannian under

the Plücker embedding. Choose a basis {w1, . . . , wd} for the subspace W . We
can then write each wj in terms of the basis vectors for V (which were chosen
above) as wj = a1jv1 + · · ·+anjvn. Define an n× d matrix MW by MW = (aij).
Note that the jth column of MW will then be the coordinates of wj . Then
p : W 7→ [w1 ∧ · · · ∧ wd] and one can compute that

w1 ∧ · · · ∧ wd = (a11v1 + · · ·+ an1vn) ∧ · · · ∧ (a1dv1 + · · ·+ andvn)

=
∑
i∈Id,n

∑
σ∈Sd

ε(σ)ai1σ(1) · · · aidσ(d)vi

where ε(σ) denotes the sign of the permutation σ. Observe that the i
th

coor-
dinate for p(W ) is pi = det(Mi) where Mi is the d× d submatrix formed from
the i1, . . . , ithd rows of MW . Some care must be taken regarding the uniqueness
of these coordinates; recall that a different choice of basis would have mapped
to a scalar multiple of w1 ∧ · · · ∧ wd by Lemma 2.2. However, if we view these
coordinates as homogeneous, the Plücker coordinates are well-defined on PN .
Thus, we have shown the following proposition.

Proposition 2.4 The i
th

homogeneous coordinate for p(W ) ∈ PN is given by
the corresponding d× d minor of MW : det(Mi).

3 The Grassmannian and Decomposable Vec-
tors

While we have seen that we can embed the Grassmannian in projective space,
we wish to show in this section that it is actually a projective variety. In order
to show this result, we will first need some results on divisors of vectors.
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Definition 3.1 Let V be a finite dimensional vector space, v ∈ V , and ω a
multivector in

∧d(V ). Then v is said to divide ω if there exists ϕ ∈
∧d−1(V )

such that ω = v ∧ ϕ.

Lemma 3.2 Let V , v, and ω be as above. Then v divides ω if and only if
v ∧ ω = 0.

Proof: (⇒) is clear. To show (⇐), choose a basis {v1, . . . , vn} of V where v1 = v.
Write the basis vector vi1∧· · ·∧vid for

∧d(V ) as vi, where i = (i1, . . . , id) ∈ Id,n.
Then ω =

∑
i∈Id,n

aivi for some ai ∈ k. By assumption,

v ∧

 ∑
i∈Id,n

aivi

 =
∑
i∈Id,n

ai(v ∧ vi) = 0

Because all of the vectors of the form v∧vi for which i1 > 1 are independent, we
have all the ai = 0 for which i1 > 1. This shows that ω is a linear combination
of basis vectors of the form vi = v ∧ v′

i
where i1 = 1 in i, and this allows us to

write ω =
∑
a′
i
(v ∧ v′

i
) = v ∧ (

∑
a′
i
v′
i
).

The set of all v ∈ V dividing ω ∈
∧d(V ) forms a subspace of V , which we

will denote by Dω.

Definition 3.3 Let ω ∈
∧d(V ). We say that ω is totally decomposable if we

can write ω = v1 ∧ · · · ∧ vd where {v1, . . . , vd} ⊂ V is linearly independent.

As we will later see, the image of the Grassmannian under the Plücker em-
bedding can be expressed in terms of totally decomposable vectors. The follow-
ing proposition characterizes the totally decomposable vectors in terms of their
spaces of divisors.

Proposition 3.4 A multivector ω ∈
∧d(V ) is totally decomposable if and only

if dim(Dω) = d.

Proof: Suppose ω is totally decomposable, say ω = v1 ∧ · · · ∧ vd. The space
of all vectors that divide ω, Dω, is precisely {v ∈ V |v ∧ v1 ∧ · · · ∧ vd = 0} by
Lemma 3.2. Clearly v1, . . . , vd are d linearly independent elements of Dω. Also,
any vector v ∈ Dω can be written as a linear combination of the vi. To see this,
extend the set of {vi}di=1 to a basis of V , say {v1, . . . , vn}. Then we can write
v =

∑n
i=1 aivi and we must have

0 = v ∧ ω =

(
n∑
i=1

aivi

)
∧ v1 ∧ · · · ∧ vd.

All the terms with i ≤ d will vanish after distributing, so all the ai = 0 for
d < i ≤ n. So v is a linear combination of the {v1, · · · , vd}, which shows they
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span Dω and also form a basis. Conversely, suppose dim(Dω) = d and let
{v1, . . . , vd} be a basis. Again, we can extend this to a basis {v1, . . . , vn} for
V . Write the basis elements of

∧d(V ) as in the proof of Lemma 3.2. Then
ω =

∑
i∈Id,n

aivi for some ai ∈ k. Since vj ∧ ω = 0 for all 1 ≤ j ≤ d, we have

0 = vj ∧

 ∑
i∈Id,n

aivi

 =
∑
i∈Id,n

ai(vj ∧ vi)

This equation shows that for all the i = (i1, . . . , id) for which j does not appear
as any of the i1, . . . , id, we must have ai = 0 since vj ∧ vi 6= 0 in this case. This
holds for all 1 ≤ j ≤ d, so all the ai = 0 for which {i1, . . . , id} 6= {1, . . . , d}. This
shows that ω = a′v1 ∧ · · · ∧ vd for some scalar a′, and thus, ω is decomposable.

For ω ∈
∧d(V ), define a map ϕ(ω) : V →

∧d+1(V ) by ϕ(ω)(v) = ω ∧ v. We
can further classify the totally decomposable vectors in terms of this map.

Corollary 3.5 ω is totally decomposable if and only if ϕ(ω) has rank n − d,
or equivalentaly, if and only if ker(ϕ(ω)) has dimension d.

Proof: Observe that ker(ϕ(ω)) is precisely Dω. The result then easily follows
from Proposition 3.4.

Furthermore, the following proposition shows that the rank of ϕ(ω) is never
strictly less than n−d and allows us to strengthen the statement of Corollary 3.5.

Corollary 3.6 ω ∈
∧d(V ) is totally decomposable if and only if ϕ(ω) has rank

≤ n− d.

Proof: By corollary 3.5, it suffices to show that ϕ(ω) never has rank < n− d.
Suppose it did, so that the dimension of ker(ϕ(ω)) was l > d. The argument
for (⇐) direction of Proposition 3.4 shows that we can then decompose ω as
λv1 ∧ · · · ∧ vl for some scalar λ, contradicting the assumption that ω ∈

∧d(V ).

We will also need the following result from linear algebra.

Lemma 3.7 The rank of a matrix M ∈Mn×m(k) is the largest integer r such
that some r × r minor does not vanish.

Proof: Let r be as in the proposition, and let rank(M) be ρ. Since there is a
nonzero r×r minor of M , the columns of M used in this minor must be linearly
independent, and thus, ρ ≥ r. To prove the other inequality, let M ′ be the
submatrix of M consisting of ρ linearly independent columns of M . M ′ also has
rank ρ, and so it has row rank ρ. Therefore, the rows of M ′ span kρ and must
contain a basis. Taking these r rows of M ′ for this basis then gives a nonzero
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ρ× ρ minor of M , showing that ρ ≤ r.

We are now in a position to show that the Grassmannian is a projective
variety through the following identification.

Lemma 3.8 [ω] ∈ P(
∧d

V ) lies in the image of the Grassmannian under the
Plücker embedding if and only if ω is totally decomposable.

Proof: If ω is totally decomposable as ω = v1 ∧ · · · ∧ vd, then the subspace
of V spanned by {v1, . . . , vd} is d-dimensional, hence is some U ∈ Gd,V and
p(U) = [ω]. Conversely, suppose [ω] = p(U) for some U ∈ Gd,V . Choose a basis
{u1, . . . , ud} for U . Then [ω] = [u1 ∧ · · · ∧ ud], so ω is totally decomposable as
λu1 ∧ · · · ∧ ud for some scalar λ.

Theorem 3.9 p(Gd,V ) ⊂ P(
∧d(V )) is a projective variety.

Proof: The map ϕ :
∧d(V ) → Hom(V,

∧d+1(V )) sending ω 7→ ϕ(ω) is easily
seen to be linear. For ω ∈

∧d(V ), we view ϕ(ω) ∈ Hom(V,
∧d+1(V )) as an

n×
(
n
d+1

)
matrix where the entries are functions of ω. The linearity of ϕ implies

that ϕ(λω) = λφ(ω) and shows that these functions are homogeneous of degree
one. By Corollary 3.6 and Lemma 3.8, a particular [ω′] lies in p(Gd,V ) if and only
if ϕ(ω′) has rank ≤ n−d. We must now show that ϕ(ω′) has rank ≤ n−d if and
only if all of its (n−d+1)×(n−d+1) minors vanish. This follows from Lemma
3.8, for if all all the n− d+ 1 minors vanish it follows that rank(ϕ(ω′)) ≤ n− d.
Conversely, if ϕ(ω′) has rank r ≤ n − d, then by the maximality of r in the
Lemma, all the n − d + 1 minors must vanish. Therefore, a point [ω′] lies in
p(Gd,V ) if and only if all of the n − d + 1 minors of ϕ(ω′) vanish, that is, if ω′

is in the zero locus of the n− d+ 1 minors of the matrix ϕ(ω).

4 The Plücker Relations

The homogeneous polynomials found above have one drawback: they do not
generate the homogeneous ideal of the Grassmannaian. In order to find a set
of polynomials that do generate this ideal, we must introduce the Plücker rela-
tions. First we will need a general result about the exterior algebra.

Proposition 4.1 Let V be a vector space of dimension n and let V ∗ be its
dual space. Then for any 0 < d < n,

∧d(V ) ∼=
∧n−d(V ∗).

Proof: Consider the nondegenerate pairing
∧d(V ) ×

∧n−d(V ) →
∧n(V ) given

by ω × σ 7→ ω ∧ σ. Since V is of dimension n, we can find an isomorphism
η :
∧n(V ) → k. Thus, we can define a map Ψ :

∧d(V ) → (
∧n−d(V ))∗ which

takes ω ∈
∧d(V ) to the map ω∗ :

∧n−d(V ) → k defined by σ 7→ η(ω ∧ σ),
and one can check that this is an isomorphism. If we also make the identifica-
tion (

∧d(V ))∗ =
∧d(V ∗), this gives us the desired isomorphism of

∧d(V ) with
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∧n−d(V ∗).
It must be pointed out that the isomorphism in the above proposition is

only unique up to a scalar multiple as it depends on our choice of η, which is
non-canonical. We can explicitly compute the action of this isomorphism on a
totally decomposable ω = w1 ∧ · · · ∧ wd ∈

∧d(V ) for a given choice of η, as we
will now do. Extend the set {w1, . . . , wd} to a basis {w1, . . . , wn} for V . Then
the unique top dimensional basis element in

∧
(V ) will be w1 ∧ · · · ∧ wn, and

the isomorphism η :
∧n(V ) → k is completely determined by the element in k

to which we send this top form. Say η(w1 ∧ · · · ∧ wn) = λ ∈ k. The following
lemma gives a formula for ω∗, the image of ω under the above isomorphism.

Lemma 4.2 Let ω = w1 ∧ · · · ∧ wd ∈
∧d(V ) and extend the set {w1, . . . , wd}

to a basis {w1, . . . , wn} for V . Let {w∗1 , . . . , w∗n} be the dual basis for V ∗. Then
under the isomorphism in Proposition 4.1, ω 7→ ω∗ where ω∗ = λ w∗d+1∧· · ·∧w∗n
and λ is defined as above.

Proof: For 1 ≤ i1, . . . id ≤ n, we have

ω ∧ wi1 ∧ · · · ∧ wid =
{

0 if some ij ∈ {1, . . . , d}
±w1 ∧ · · · ∧ wn otherwise

Notice that

[λ w∗d+1 ∧ · · · ∧ w∗n](wi1 ∧ · · · ∧ wid) =
{

0 if some ij ∈ {1, . . . , d}
±λ otherwise

is precisely η(ω∧wi1 ∧· · ·∧wid). Furthermore, from the construction of the iso-
morphism in Proposition 4.1 we see that η(ω∧wi1∧· · ·∧wid) = ω∗(wi1∧· · ·∧wid),
and therefore, it follows that ω∗ = λ w∗d+1 ∧ · · · ∧ w∗n.

Let ψ : (
∧n−d(V ))∗ → Hom(V, (

∧n−d+1(V ))∗) be defined as follows. For
each ω∗ ∈

∧n−d(V ∗), ψω∗ : V ∗ →
∧n−d+1(V ∗) is the map sending v∗ 7→ v∗∧ω∗.

We have the following analogue to Corollary 3.6 for ψ(ω∗), the proof of which
we omit as it is similar to what was shown in Section 3 above.

Lemma 4.3 For any ω ∈
∧d(V ), let ω∗ be the image of ω under the isomor-

phism in Proposition 4.1. Then ψ(ω∗) has rank ≥ d with equality if and only if
ω is totally decomposable.

Before proceeding with the development of the Plücker relations, we will
pause to review some linear algebra.

Definition 4.4 We define a pairing 〈·, ·〉 : V ∗ ⊗ V → k by 〈w∗, v〉 = w∗(v) for
all v ∈ V , w∗ ∈ V ∗. We will also write 〈v, w∗〉 to denote this pairing.

This pairing is a nondegenerate bilinear form. For instance, to see bilinearity
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in the second coordinate, 〈w∗, av + bv′〉 = w∗(av + bv′) = aw∗(v) + bw∗(v′) by
the linearity of w∗. Linearity of 〈·, ·〉 in the first coordinate is an even more
trivial computation. That it is nondegenerate is also easy to see: if 〈w∗, v〉 = 0
for all v ∈ V then w∗ has to be the zero map. Also, if 〈w∗, v〉 = 0 for all
w∗ ∈ V ∗, then if we choose a basis {v1, . . . , vn} for V and write v =

∑
aivi,

then in particular, every element of the dual basis for V ∗ evaluates to 0 at v,
that is, v∗i (v) = ai = 0, and it follows that v = 0.

Definition 4.5 Let a : V → W be linear and suppose v ∈ V and w∗ ∈ W ∗.
The map ta : W ∗ → V ∗ defined by 〈ta(w∗), v〉 = 〈w∗, a(v)〉 is called the trans-
pose of a.

Since the maps ϕ(ω) and ψ(ω) defined above are linear, we can also define
their transposes tϕ(ω) :

∧d+1(V ∗) → V ∗ and tψ(ω) :
∧n−d+1(V ) → V . For

each α ∈
∧d+1(V ∗) and β ∈

∧n−d+1(V ), let

Ξα,β(ω) = 〈tϕ(ω)(α),t ψ(ω∗)(β)〉.

An expression of the form Ξα,β(ω) = 0 is called a Plücker relation.
Theorem 4.6 ω ∈

∧d(V ) is totally decomposable if and only if Ξα,β(ω) = 0
for every α ∈

∧d+1(V ∗) and β ∈
∧n−d+1(V ).

Proof: (⇒) Suppose ω is totally decomposable, say as ω = w1, . . . , wd. Let
W = 〈w1, . . . , wd〉 and choose a basis {v∗1 , . . . , v∗n−d} for W⊥. By Lemma 4.2,
χ(ω) = ω∗ is of the form ω∗ = v∗1 ∧ · · · ∧ v∗n−d, where {v1, . . . , vn−d} forms a
basis for W⊥. We then have,

Ξα,β(ω) = 0 for all α, β
⇔ 〈tϕ(ω)(α), tψ(ω∗)(β)〉 = 0 for all α, β
⇔ 〈α,ϕ(ω)tψ(ω∗)(β)〉 = 〈α, ω ∧ tψ(ω∗)(β)〉 = 0 for all α, β
⇔ ω ∧ tψ(ω∗)(β) = 0 for all β (since 〈·, ·〉 is nondegenerate)
⇔ im(tψ(ω∗)) ⊂ ker(ϕ(ω))

We now show that if 〈v∗i , tψ(ω∗)(β)〉 = 0 for all β, then im(tψ(ω∗)) ⊂ ker(ϕ(ω)).
Given some β ∈

∧n−d+1(V ), suppose 〈tψ(ω∗)(β), v∗i 〉 = 0 for each i = 1, . . . , n−
d. Then any v∗ ∈ V ∗ sends tψ(ω∗)(β) to zero, and hence, tψ(ω∗)(β) ∈ (W⊥)⊥ =
W . We can then write tψ(ω∗)(β) =

∑
aiwi, and it follows that ω ∧ tψ(ω)(β) =

0, that is, tψ(ω∗)(β) ∈ ker(ϕ(ω)). This condition that 〈v∗i , tψ(ω∗)(β)〉 =
〈ψ(ω∗)v∗i , β〉 = 〈ω∗ ∧ v∗i , β〉 = 0 clearly holds for all β, as ω∗ = v∗1 ∧ · · · ∧ v∗n−d.

(⇐) Now suppose that ω is not totally decomposable. By Corollary 3.7, ϕ(ω)
has rank > n − d. Therefore, ker(ϕ(ω)) has dimension < d. Moreover, by
Lemma 4.3, ψ(ω∗) has rank > d. We have shown above that Ξα,β(ω) = 0 for
all α, β if and only if im(tψ(ω∗)) ⊂ ker(ϕ(ω)). By dimension considerations, we
cannot have im(tψ(ω∗)) ⊂ ker(ϕ(ω)), and thus Ξα,β(ω) 6= 0 for some α and β.
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In light of Lemma 3.8, this theorem tells us that [ω] lies in the Grassman-
nian if and only if Ξα,β(ω) = 0 for every α ∈

∧d+1(V ∗) and β ∈
∧n−d+1(V ).

To complete this proof that the Grassmannian is a projective variety, we must
show that the Plücker relations are homogeneous polynomials. In fact, we will
show that they are quadratic forms, that is, homogeneous of degree two. This
will follow from the following more general result.

Proposition 4.7 Let f : V →W and g : V →W ∗ be linear maps, and suppose
V and W are finite dimensional vector spaces over a field k. Then the pairing
〈f(v), g(v)〉 : V → k is a quadratic form.

Proof: Fix a basis {e1, . . . , en} for V . Let v ∈ V and write v =
∑
aiei. Then

by the linearity of f and g and the bilinearity of 〈·, ·〉, we have

〈f(v), g(v)〉 = 〈f(
∑

aiei), g(
∑

aiei)〉 =
∑

aiaj〈v(ei), v(ej)〉

Note that each 〈v(ei), v(ej)〉 ∈ k. So if we let bi,j = 〈v(ei), v(ej)〉, then
〈f(v), g(v)〉 =

∑
bi,jaiaj , and we see that 〈f(v), g(v)〉 is a quadratic form in

the coordinates of v.

To apply this proposition to Ξα,β(ω) = 〈tϕ(ω)(α),t ψ(ω∗)(β)〉, we will show
each entry in this pairing is linear. We have already observed that ϕ(ω) and
ψ(ω∗) are linear. Furthermore, the transpose map sending a linear trans-
formation T 7→ tT : for T, S : V → W , a ∈ k, w∗ ∈ W ∗ and v ∈ V ,
t(aT + S) : W ∗ → V ∗ is defined by

〈t(aT + S)(w∗), v〉
= 〈w∗, (aT + S)(v)〉 = a〈w∗, T (v)〉+ 〈w∗, S(v)〉
= a〈tT (w∗), v〉+ 〈S(w∗), v〉 = 〈atT (w∗) + tS(w∗), v〉
= 〈(atT + tS)(w∗), v〉

And lastly, the isomorphism
∧d(V ) ∼=

∧n−d(V ∗) and evaluation at the vectors
α, β are clearly linear, so both tϕ(ω)(α) and tψ(ω∗)(β) are linear functions of ω.
This completes our second proof that the Grassmannian is a projective variety
and that

p(Gd,V ) = Z({Ξα,β(ω)|α ∈
d+1∧

(V ∗), β ∈
n−d+1∧

(V )})

The importance of studying the Plücker relations is in that they also gen-
erate the homogeneous ideal of the Grassmannian, which we state without proof.

Theorem 4.8 I(Z({Ξα,β(ω)|α ∈
∧d+1(V ∗), β ∈

∧n−d+1(V )})) = (Ξα,β(ω))
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