
DISTINGUISHING SETS UNDER GROUP ACTIONS, THE

WREATH PRODUCT ACTION

ALICE MARK

The distinguishing number of a set under a group action is a way of quantifying
how the way elements move within the set under the action depends on the way
other elements move. The goal of this paper is to provide some intuition for this
idea through examples and computations.

1. Notation, Definitions, and Other Background

Notation 1.1. Throughout this paper, the following will be used:

(1) Right group actions will be denoted by exponentiation, so if G is a group
acting on a set X , g ∈ G, x ∈ X then xg denotes the action of g on x.

(2) [n] denotes the set with n elements, {1, . . . , n}.

Definition 1.2 (Distinguishing number of a graph). Let Γ = (V, E) be a graph
and let f : V → [r] be a coloring of the set of vertices by r colors. The map f

need not be surjective, in fact when r > |V | it cannot be surjective. We say that
f is r-distinguishing if the only automorphism of Γ that fixes the coloring f is the
trivial automorphism. The distinguishing number of Γ is denoted by D(Γ) and is
equal to min{r | ∃f : V → [r] such that f is r-distinguishing}.

More generally, we can also talk about the distinguishing number of a set under
a group action.

Definition 1.3 (Distinguishing number of a set under a group action). Let G be
a group that acts on a set X . We say that an r-coloring f : X → [r] (not surjective
for the reason given in definition 1.2) is r-distinguishing if the only element of G

whose action preserves the labeling (i.e., f(xg) = f(x) for all x ∈ X) is the identity.
The distinguishing number of X under the action by G is denoted DG(X) and is
equal to min{r | ∃f : X → [r] such that f is r-distinguishing}.

Definition 1.4 (Faithful group action). Let G be a group that acts on a set X .
We say that the action of G is faithful if for every g ∈ G that is not the identity,
there exists x ∈ X such that xg 6= x.

Remark 1.5. The notion of distinguishing number makes no sense in the context
of a non-faithful group action, since if the action of a group G on a set X is not
faithful, that means that there is some 1 6= g ∈ G such that for all x ∈ X , xg = x.
This implies that no coloring is distinguishing. For the rest of this paper, all actions
are faithful.

Here are some examples of how the distinguishing number of a set under a group
action can be computed:
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Example 1.6. The symmetric group on k elements is the permutation group of the
set [k]. The group acts on the set by permuting the elements. The distinguishing
number of this action DSk

([k]) = k. This is because if we color the elements of [k]
with k − 1 colors, there must be 2 with the same color since there are k elements
total. There is a transposition element of Sk that switches these two, while holding
all others fixed. Therefore the coloring is not distinguishing, so we need at least k

colors. Of course, we need at most k colors since there are only k elements.

Remark 1.7. The distinguishing number cannot possibly be any higher than in
example 1.6 for a finite set. Any finite set must be distinguished under a faithful
action if each element is assigned a distinct label. This is because if for g ∈ G and
x ∈ X , xg 6= x different colors are assigned to x and xg . We are guaranteed that
such an x exists for each g since the action is faithful. This is an easy upper bound
on the distinguishing number for a finite set.

Example 1.8. Consider the alternating group Ak = {σ ∈ Sk | σ is an even
permutation} in its action on [k]. The transpositions are odd, so they are not in
Ak. Let C be a distinguishing coloring of [k] under Ak. If for x, y ∈ [k] we have
C(x) = C(y), any permutation that switches them will also switch another pair.
Therefore there cannot be any other pairs with the same color. If there is a third
point colored the same as x and y then there is a 3-cycle that permutes them.
Therefore there can be at most two elements with the same color and all others
must be distinct, so DAk

([k]) = k − 1

Definition 1.9 (Transitive group action). The action of a group G on a set X is
called transitive if X is the only orbit, that is for all x, y ∈ X , there exists g ∈ G

such that xg = y.

Examples 1.10. Some transitive group actions:

(1) The symmetric group Sn acts transitively on the set of n elements [n], since
each number is moved to each spot by some group element.

(2) The dihedral group Dn acts transitively on the set of vertices of the n-gon,
since each vertex can be taken to each other vertex by a rotation.

Definition 1.11 (Regular group action). The action of a group G on a set X is
called regular if for all 1 6= g ∈ G, we have xg 6= x for all x ∈ X .

Example 1.12. A group G acts regularly on itself by left or right multiplication.

Remark 1.13. The distinguishing number of any regular action is 2. Let G act
regularly on X . Let x ∈ X , define f : X → {1, 2} by f(x) = 1, f(y) = 2
for x 6= y ∈ X . Since no 1 6= g ∈ G fixes x, f(x) 6= f(xg) for all g ∈ G.
Therefore f is a distinguishing coloring. Since there is no distinguishing 1-coloring,
the distinguishing number is 2.

Definition 1.14 (Imprimitive group action). Let G be a group that acts faithfully
and transitively on a set X . Call X ′ ⊆ X an imprimitive block if X ′ 6= ∅ , X ′ 6= X ,
and if for each g ∈ G, either X ′g = X ′ or X ′g ∩ X ′ = ∅. The action of G on X is
said to be imprimitive if such a block can be found.

Example 1.15. Let (V, E) be a graph, n ∈ N and let

Γ =

n
⊔

i=1

(V, E)
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Then the action of Aut(Γ) on Γ is imprimitive, and each copy of the original (V, E)
is an imprimitive block.

Definition 1.16 (Primitive group action). A group action is called primitive if no
imprimitive block can be found.

Definition 1.17 (Semi-direct product of groups). Let G and H be groups. Let
φ : H →Aut(G) be a homomorphism. H acts on G by this homomorphism in the
following way: for h ∈ H, g ∈ G gh = gφ(h). The semidirect product G ⋊φ H is
the group made up of the elements of G ×H and with internal law of composition

(g, h)(g′, h′) = (gg′h
−1

, hh′).

Definition 1.18 (Wreath product of groups). Let G and H be groups acting on the
right faithfully on sets X and Y . Let GY be the set of functions f : Y → G. This
can be considered a group with composition law (ff ′)(y) = f(y)f ′(y). The wreath
product G≀Y H is the semidirect product GY

⋊φ H where φ is the homomorphism

φ : H →Aut(Gy) defined as follows: for f ∈ GY , h ∈ H φh fh(y) = f(yh−1

). The
wreath group G≀Y H acts on the set X × Y by (x, y)(f,h) = (xf(y), yh).

Remark 1.19. What the wreath action G≀Y H on X×Y does is create an imprimitive
action where the blocks are all copies of X and the set of blocks is a copy of Y .
An element of the group (f, h) will take an element of the set (x, y) to the block
designated yh and then will act on the block by f(y).

Every imprimitive action may be embedded in a wreath product action, which
allows us to put an upper bound on the distinguishing number of any imprimitive
action.

Remark 1.20. Since G and H act on the right, the wreath action is a right wreath
action, so we have the group GY

⋊φ H . In this group, elements are composed

from the right, so (f, h)(f ′, h′) = (ff ′h−1

, hh′). If the actions of G and H were left
actions we would have the group Hφ ⋉GY . In this group, composition is done from

the left, so (h, f)(h′, f ′) = (hh′, fh′−1

f ′).

2. A theorem about the distinguishing number of the wreath action

Chan proves the following theorem in [1]:

Theorem 2.1. Let G and H be finite groups acting transitively (and faithfully) on
the finite sets X and Y respectively. For each r, let nr be the number of distinguish-
ing r-colorings of X. Let S = {r | nr ≥ DH(Y ) · |G|}. Then DG≀Y H(X × Y ) =
min S

Summary and Explanation of Proof. First note that if |G|, X and Y are required to
be finite, S 6= ∅. This is true because of several facts. First, we have DH(Y )|G| < ∞
(see remark 1.7). We also have that nr > 0 since X is finite and the action G is
faithful. The fact that coloring maps are surjective gives us that nr increases
without bound.

The proof constructs a coloring on X × Y by k = min S colors. First, consider
the action of G on the set A of k distinguishing colorings of X , where G acts on A

by ag(x) = a(xg−1

), so the color assigned to x ∈ X by ag is the same as the color

assigned to xg−1

by a. Since each a ∈ A is a distinguishing coloring, Stab(a) = {1}
for all a. Therefore by the orbit stabilizer theorem, each element has orbit length
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|G|. The number of orbits times |G| equals |A| since orbits are disjoint. Therefore,

the number of orbits is equal to |A|
|G| = nk

|G| . Since k ∈ S, nk

|G| ≥ DH(Y ), so there are

at least DH(Y ) distinguishing k-colorings of X that are in different orbits of the
action of G on A. Select these colorings, and label them a1, . . . , aDH(Y ). Let b be
a distinguishing coloring of Y using DH(Y ) colors. Define a coloring C of X × Y

as follows: C(x, y) = ab(y)(x), so the color assigned to (x, y) ∈ X × Y is the same
as the color assigned to x by the coloring ab(y).

Intuitively, what this is doing is coloring each block of X×Y using one of the ai.
This makes sense since each block looks like X . Then each coloring ai is treated
as a color. Since the action on the blocks looks like the action of H on Y , these
colorings distinguish the blocks.

There are two things to check about this coloring. First, we need to make sure
it is distinguishing, second that there is no distinguishing coloring with fewer than
k colors.

To show that it is distinguishing, we first assume that for some (f, h) ∈ G≀Y H ,

C(x, y) = C((x, y)(f,h)) for all pairs (x, y) ∈ X × Y and show that (f, h) = (1, 1).
By construction, the assumption means that ab(y)(x) = ab(yh)(x

f(y)), so by the

definition of the action of G on A, a
f(y)−1

b(yh)
= ab(y). This implies that ab(yh) and

ab(y) are in the same orbit of that action, but since the ai were chosen from distinct

orbits, they must be the same, so b(yh) = b(y). Since b is distinguishing, h = 1.
Now we have that C(x, y) = C((x, y)(f,1)) for all pairs (x, y) ∈ X×Y , but this nec-
essarily means f(y) = 1∀y since ab(y)(x

f(y)) = ab(y)(x) since ab(y) is distinguishing.
Therefore our coloring C is distinguishing.

Now all that remains to be shown is that there is no distinguishing coloring
with fewer than k colors. Here we implicitly use the fact that the wreath action is
imprimitive. Suppose we have a distinguishing l-coloring of X × Y , C′. For each
y ∈ Y , define an l-coloring of X , ay where for x ∈ X , ay : x 7→ C′(x, y). Now
suppose g ∈ G preserves ay. Take f ∈ GY such that f(y) = g, and f(y′) = 1

for y′ 6= y. Then C′((x, y′)(f,1)) = C′(xf(y′), y) = C′(x1, y) = C′(x, y′), so (f, 1)
preserves C′. Since we assumed that C′ is distinguishing, we must have f = 1
which means g = 1 which means that ay is a distinguishing coloring of X for each
y. Now, as in the first part of the proof, let A′ be the set of all distinguishing
l-colorings of X , and consider the action of G on A′ as before. Again, note that we

have that the number of orbits is |A′|
|G| = nl

|G| . This fact will come up later. Each

of the colorings ay is contained in one and only one of the orbits of this action
since the orbits of an action are always disjoint. Let d be the number of orbits of
the action of G on A′, and index the orbits by [d]. Define b, a coloring of Y , as
follows: b : Y → [d] by b(y) = i if ay is in the i-th orbit. Suppose we have h ∈ H

that preserves b. If this is the case, then ∀y ∈ Y we have b(y) = b(yh) which by
the way we defined b means that ay and ayh are in the same orbit, so ∃gy ∈ G st

a
gy
y = ayh . Let f ∈ GY be the function f(y) = gy. Then for (x, y) ∈ X × Y we

have C′((x, y)(f,h)) = C′(xf(y), yh) = C′(xgy , yh) = ayh(xgy ) = a
g−1

y

yh (x) = ay(x) =

C′(x, y) which implies that (f, h) = (1, 1) since C′ is distinguishing. Since h = 1 we
have that b is a distinguishing coloring of Y , so d ≥ DH(Y ). Therefore the number
of orbits of the action nl

|G|d ≥ DH(Y ) so nl ≥ DH(Y ) · |G|. Therefore l ∈ S so

l ≥ min S = k, so every distinguishing coloring uses at least k colors.[1]
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Remark 2.2. If we allow infinite groups and sets, we can get that S = ∅. This
happens when either the action of G on X or the action of H on Y cannot be
finitely distinguished, or when |G| is infinite. In these cases, the distinguishing
number of the wreath action on X ×Y is infinite. This is because, as the proof has
shown, if there is some k-coloring of X × Y for some finite k then we would get
nk ≥ DH(Y )|G|.[1]

3. Some examples of wreath actions

Example 3.1 (Symmetric Groups). Consider the symmetric groups Sk and Sm and
their respective actions on [k] and [m]. The distinguishing number of the wreath
action of Sk≀[m]Sm on [k] × [m] can be computed directly for certain m and k.

Claim. DSk≀[m]Sm
([k] × [m]) = k + 1 if m ≤ k + 1

Proof. Suppose for contradiction that we have a distinguishing coloring C of [k] ×
[m]that uses k colors. For each y ∈ [m], the set Ay = {(x, y)|x ∈ [k]} is a “copy”
of [k], and the action of {(f, 1)|f ∈ GY } on Ay is “isomorphic” to the action of SK

on [k]. Therefore, k colors are required to distinguish each set Ay, so the coloring
C must assign the same k colors to each Ay, and all of them must be used for each
Ay.

Now consider Ay and Ay′ , and let σ be a permutation in Sm such that yσ = y′ 6=
y. For each (x, y) ∈ Ay, there exists a unique (x′, y′) ∈ Ay′ such that C(x, y) =
C(x′, y′), and there exists π ∈ Sk such that xπ = x′. Since there exists f ∈ GY

such that f(y) = π, we have C(x, y) = C(x′, y′) = C(xπ , yσ) = C(xf(y), yσ) =
C((x, y)(f,σ)) so C is not distinguishing, so more than k colors are required.

To see that k + 1 colors is enough, assign a coloring as follows:
(

k+1
k

)

= k + 1
so there are k + 1 ways to choose k colors. Since m ≤ k + 1, there are at most
k + 1 sets Ay, so each one may be assigned a different k colors taken from the
original k + 1 colors. If we use all k colors for each Ay, the claim is that we have

a distinguishing coloring. If for (f, σ), C(x, y) = C(x, y)(f,σ) for all (x, y) we have
two cases to check. First suppose σ 6= 1, let y ∈ [m] such that yσ 6= y. There exists
x such that C(x, y) 6= C(xf(y), yσ) since Ay is colored by a different set of k colors

than Ayσ , so this case will not happen. If σ = 1, we have C(x, y) = C((x, y)(f,1) =

C(xf(y), y)∀y ∈ [m], but since (xf(y), y) ∈ Ay and each element of Ay is colored a

different color, we must have (xf(y), y) = (x, y) which implies that x = xf(y) for all
x ∈ [k] so f = 1. So we have (f, σ) = (1, 1) so C is distinguishing. �

Using the theorem, we arrive at the same result much more quickly. The function
nr =

(

r
k

)

k!, since from r colors we want to select k of them, and then we can assign

them to [k] in k! many ways. Then S = {r |
(

r
k

)

k! ≥ mk!} so min S is the minimal

r such that
(

r
k

)

≥ m. As we saw before, this must be k + 1.
What happens when m−k is a fairly large number? It is not as easy to compute

DSk≀[m]Sm
([k] × [m]) when m ≥ k + 2. The reason for this becomes apparent when

we try to use the theorem to compute it.
It is clear that for fixed m and k,

(

r
k

)

is eventually greater than m as r increases,
so S 6= ∅. It turns out that we can’t compute this number because that would
involve solving a large degree polynomial. The number we are looking for is the
smallest integer r such that

(

r
k

)

≥ m. The sequence of numbers akr =
(

r
k

)

is the k-
th diagonal sequence of Pascal’s triangle, where the first diagonal sequence a1r = 1,
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the second a2r = r and in general

akr =

r−1
∑

i=1

ak−1i

The closed form of this formula is

akr =

k−2
∏

i=1

(i + r)

which is a polynomial in r of degree k − 2.
There is no easy way to compute the exact value of r from this, but we can

approximate. We want
(

r
k

)

≥ m >
(

r−1
k

)

. We can bound
(

r
k

)

in the following way:
(

r

k

)

=
r(r − 1) . . . (r − k + 1)

k!

The numerator is a product of k terms, so it can be bounded above by the largest:
(

r

k

)

<
rk

k!

Similarly,
(

r−1
k

)

can be bounded below:
(

r − 1

k

)

>
(r − k)k

k!

so we want
rk

k!
> m >

(r − k)k

k!
Which means that

r > (mk!)
1
k > r − k

So the r we want is an integer in the interval ((mk!)
1
k , (mk!)

1
k ).

Example 3.2 (Dihedral Groups). The dihedral group on k elements is defined here
to be the automorphism group of the k cycle Ck. It is isomorphic to the symmetry
group of the k-gon. For the purposes of this paper, Ck refers to the vertex set of
the k-cycle, although it might as well refer to the edges. The distinguishing number

DDk
(Ck) =

{

3 if 3 ≤ k ≤ 5
2 if 5 < k

This should be clear in the k ≤ 5 cases. The k = 6 and k = 7 cases are pictured
below. For larger k, the pattern can continue with longer sections colored all by 2.
The 6-cycle is included in figure 1 because it has interesting unavoidable symmetry.

Figure 1. distinguishing 2-colorings of C6 and C7
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If colors 1 and 2 are switched in the 6-cycle coloring, the resulting graph is the same
as it would be if it were reflected across the axis that splits the graph from the top
left edge through the bottom right edge. There is an element of D6 that acts on
the graph in this way. Other even cycles can be two colored in distinguishing ways
with this kind of symmetry or not, but with a 6-cycle there is no other distinct
distinguishing 2-coloring.

Consider the wreath action of Dk≀Cm
Dm on Ck ×Cm. Unlike symmetric groups,

it is easier to count the distinguishing number for large k and m.

Claim. For k ≥ 7, m > 6, DDk≀Cm
Dm

(Ck × Cm) = 2

Proof. Since one color is clearly not enough, all we need is to construct a 2-coloring
that works. For y ∈ Cm let Ay = {(x, y)|x ∈ Ck}. Ay is a copy of Ck within

Ck × Cm, and for any h ∈ Dm, {(f, h)|f ∈ DCm

k } acts on Ayh in the same way
Dk acts on Ck. Therefore only 2 colors are needed to distinguish Ay for each y.
The wreath group acts on the set of sets Ay in the same way Dm acts on Cm. In
order to distinguish the set of sets Ay, we need 2 distinct 2-distinguishing colorings,
where distinct means that the number of elements colored by color 1 in the first
coloring is different from the number of elements colored by color 1 in the second
coloring. Two distinct colorings exist for k > 7, all we need is to take one without
the symmetry of the C6 coloring and switch the color of each vertex. �

Using the theorem, we should get the same result.

Claim. Same as above.

Proof. If k > 7, n2 ≥ 2k · 2 = 4k where 2k = |Dk| is the number of colorings we
get by acting on Ck with Dk. It is multiplied by 2 since when we switch one color
with the other we get a distinct coloring. There are even more ways, as described
earlier, however we don’t even need to count them since DDm

Cm · |Dk| = 2 · 2k so
the numbers are already equal. Since n1 = 0, we have min S = 2. �

This deals with most cases. The theorem makes the others a lot simpler. For
3 < m < 5, we have DDm

(Cm) = 3 and |Dk| = 2k so S = {r|nr ≥ 6k}. For m > 5
we have DDm

(Cm) = 2 and |Dk| = 2k so S = {r|nr ≥ 4k}, so we need to compute
nr, at least partially, for these cases.

In the case where k = 3, the function nr =
(

r
3

)

3! since D3
∼= S3. If 3 ≤ m ≤ 5,

min S is the minimal r such that 6
(

r
3

)

≥ 6 · 3 so the r we want is 4. If 5 < m min S

is the minimal r such that 6
(

r
3

)

≥ 4 · 3, so again the r we want is 4.
In the case where k = 4, the function nr is more complicated since it is the

sum of the number of 3-colorings plus the number of 4-colorings. The number of 3-
colorings by r colors is 24

(

r
3

)

. A distinguishing 3-coloring of C4 is shown in figure 2.
First we choose 3 colors, then choose which one will be used for two vertices. Note
that the two with the same color must be next to each other as in the figure, since
there are group elements that switch each pair of opposite corners while holding
the other pair fixed. Then there are 4 ways this can be rotated, and the two colors
used only once can be flipped, so the whole thing is multiplied by 3 · 4 · 2 = 24

The number of distinguishing 4-colorings is simply 24
(

r
4

)

since we choose 4 colors

and then place them in 4 distinct spots. Therefore nr = 24(
(

r
3

)

+
(

r
4

)

).

If 3 ≤ m ≤ 5, min S = min{r | 24(
(

r
3

)

+
(

r
4

)

) ≥ 6 · 4} So the r we want is 3 (note

that if r < k,
(

r
k

)

:= 0). This is also the result when m > 5 since 4 · 4 < 6 · 4 and
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Figure 2. distinguishing 3-coloring of C4

with r < 3 nr = 0. Computing nr explicitly wasn’t even necessary, since already
there are enough 3-colorings that we need not even consider the 4-colorings.

In the case where k = 5, nr is the sum of the number of distinguishing 3,4, and
5-colorings. As before, however, we can find enough 3-colorings that we need not
even consider 4 and 5-colorings. The number of distinguishing 3-colorings is 72

(

r
3

)

.
There are a few different kinds of distinguishing 3-colorings of C5, shown in figure
3. In all cases, we first choose 3 colors. In cases (a) and (c), there are 3 choices for
which color is used 3 times, there are 2 ways to order the remaining 2 colors, and
there are 5 ways to place them to make a picture like (a) and 5 ways to place them
to make a picture like (c). Therefore we multiply by 3 · 2 · 10 = 60. To get (c) and
(d), first we have 3 choices for the one single color, then we must order the pairs.
There are 2 ways if vertices of the same color are next to each other(c), and 2 ways
if they are not (d). Therefore the whole thing is multiplied by 3 ·4 = 12. This gives
us that the total number of 3-colorings of C5 is 60

(

r
3

)

+ 12
(

r
3

)

= 72
(

r
3

)

Figure 3. ways to color C5 with 3 colors

All that we need to notice is that the terms describing the number of 4 and
5-colorings will be a

(

r
4

)

and b
(

r
5

)

respectively for some constants a and b. When
r = 1 or 2, all three terms will be 0. Therefore the smallest nonzero value of nr

occurs when r = 3, at which point the 4 and 5 terms are 0 and the 3 term is 72.
This will be plenty of colorings, since if 3 ≤ m ≤ 5 we want nr ≥ 6 · 5 = 30 and
when m > 5 we want nr ≥ 4 · 5 = 20, so with 3 colors we have enough colorings.

We can also see that this is true if we think about this problem in terms of
distinct colorings, where two colorings C and C′ are distinct if there is no g ∈ D5

with C(C5) = C′(Cg
5 ). No m will require more than 3 distinct distinguishing

colorings, and figure 3 shows that we have 4 distinct distinguishing colorings of C5.
In the case where k = 6, nr is the sum of the number of 2, 3, 4, 5, and 6-colorings

of C6. Once again, it will not be necessary to compute this entirely.
The total number of distinguishing 2-colorings by r colors is 12

(

r
2

)

, since there is
only 1 distinct 2-coloring and |D6| = 12. The number of distinguishing 3-colorings
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Figure 4. 3 distinct 2-colorings of Ck for k ≥ 7

of D6 by r colors is going to be larger than the number of distinguishing 3-colorings
of D5 by r colors, since each distinct 5-coloring gives rise to at least 1 6-coloring,
and there is a way to do this such that the 6-colorings generated will all be distinct.
So it will be a

(

r
3

)

where a > 72. Following a similar argument to the k = 5 case,
we find that r = 3 both when 3 ≤ m ≤ 5 and when m > 5.

Finally in the case where k ≥ 7, we need only consider what happens when
3 ≤ m ≤ 5, since we have already done the other case. It should be clear that there
are at least 3 distinct 2-colorings of Ck from figure 4

It turns out that for all k, min S is the same no matter what m is. This is
because nr goes up in such big jumps that there is no case where 6k > nr ≥ 4k.

Everything is summarized in table 1.

Table 1. Table of cases. Note that if k > r,
(

r
k

)

:= 0.
DDk≀Cm

Dm
Ck × Cm = min S

k 3 4 5 6 ≥ 7
min S 4 3 3 3 2

Example 3.3 (Symmetric and Dihedral groups). It is interesting what happens
with the wreath action of a symmetric and a dihedral group. Let SK be the
symmetric group acting on the set [k], and let Dm be the automorphism group
of the m-cycle Cm. It should not be surprising that DSk≀Cm

Dm
([k]×Cm) is not the

same as DDm≀[k]Sk
(Cm × [k]).

In the first case, the blocks look like symmetric groups and the action on the
blocks looks like a dihedral action. We therefore need either 3 or 2 distinct colorings
of the symmetric group on k elements, depending on whether 3 ≤ m ≤ 5 or m > 5.
Either way, if k > 1 we have

(

k+1
k

)

= k + 1 ≥ 3 so the distinguishing number will
be k + 1

In the second case the blocks look like dihedral groups, so 2 or 3 colors are needed
to distinguish each one depending on whether 3 ≤ m ≤ 5 or m > 5. We need k

distinct colorings of the blocks, however, since the wreath group acts on the blocks
in the way Sk acts on [k]. For small k this will be easy to solve for, and we can use
much the same method as when both were dihedral groups. When k is very large,
however, it is necessary to compute explicitly what nr will be for a given m. This
is possible, and can be done using combinatorial arguments, but the process is long
and repetitive.
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