
A BRIEF SUMMARY OF MODULAR REPRESENTATION

THEORY
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Abstract. This paper shall provide a brief summary of representation theory,
with a focus on how the semi-simple case differs from the modular case. It will

be assumed that the reader has a reasonable background in algebra, but not
assuming an existing understand of representation theory.
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1. Basic terminology

Let F be a field of characteristic p, and let V be an F vector space. Let G be a
finite group of order n.

Definition 1.1. Then we define a linear G representation of V over F as a homo-
morphism φ : G → GL(V ).

Definition 1.2. We say the representation is faithful if φ is injective.

There is a bijection between FG−modules and pairs (V, φ).

Definition 1.3. Representations are similar or equivalent if they correspond to
isomorphic FG-modules, otherwise they are inequivalent.

Definition 1.4. A module M is irreducilbe or simple if the only submodules are
M and 0. If not, M is reducible.

Definition 1.5. M is decomposible if there exist nonzero submodules M1 and M2

such that M = M1 ⊕ M2, otherwise it is indecomposible.

Definition 1.6. M is completely reducible if it can be written as the direct sum of
irreducible submodules.
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A representation inherits any of the above properties if the corresponding FG-
module has the property with the same name.

Throughout this paper, many proofs will be cited rather than copied. This is
not to force the reader to go find copies of the texts cited, merely to inform the
reader of the validity of the statement without having to focus on it for the full
of its proof. Also, in many cases proofs were cited because they used many other
things which their author had already proven which I have not (as representation
theory is complicated, it is unlikely that useful facts on it will appear without many
other facts before them).

2. A handful of Exmples

Example 2.1. Let G = Z6 and let V = Q3. Let z be a generator for G. It suffices
to define the representation by defining where it maps z. Define a homomorphism
φ : Z6 → GL3(Q) such that

φ : z 7→





0 −1
2 0

0 0 −2
−1 0 0





Which defines a representation (z6 is the identity, and so is (φ(z))6. The kernel of
φ is trivial here, although it need not be. Therefore the representation is faithful.

Example 2.2. Let G = (H,×) and let V = R. Define φ : G → GL(R) by
φ(x) = |x| i.e. multiplication by the norm of x. This is a representation, and this
certainly has a non-trivial kernel.

Example 2.3. There is always the trivial representation: Let G be any group and
let V be any vector space over any field F . Then φ : G → GLF (V ) defined by
∀g ∈ G,φ(g) = idV is a representation.

Example 2.4. Here’s a modular representation: F = F5, G = Z20 and let a be a
generator for G. Take V to be a one dimensional vector space over F . Define a
homomorphism φ : G → GLF (V ) by ∀v ∈ V, φ(a)v = 2v. This defines a represen-
tation (because 220 mod 5 = 1). Note, however, that every element of order five
({a4, a8, a12, a16}) acts trivially on V.

Example 2.5. Here is one more non-modular representation: Let G = D8 and let
V = F5

2. Define φ by

φ(r) =

(

2 0
0 3

)

φ(s) =

(

0 1
1 0

)

This defines a two dimensional representation of G.

3. Maschke’s Theorem

Theorem 3.1 (Maschke). Let G be a finite group and let F be a field of charac-
teristic p such that p 6 | |G|. If V is any FG-module and U is any submodule of V ,
then there exists W a submodule of V such that U ⊕ W = V .

Proof. [2] (p. 849) The proof depends on the characteristic of the field not dividing
the order of the group. ¤
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This is a particuarly useful result, and one that we would hope in general. How-
ever, in the modular case (that is, if p divides the order of G) then this result isn’t
true. In fact for any group there will be at least one counter-example.

Example 3.2. The regular representation of a cyclic group of order pα is indecom-
posable.

Proof. [1] Let G be the cyclic group of order pα and let a be a generator of G,
let F be a field of characteristic p. Let M be any F -representation of G given by
σ : g → Aut(M). Then a0 = σ(a) has the property that 1 = a0

pα

. From this we
may conclue that the minimal polynomial of a0 divides (x−1)pα

. This implies that
the only eigenvalue of a0 is one, and thus M contains the one-dimensional trivial
representation τ . Thus τ is the only irreducible representation of G. By writing the
matrix for a0 in Jordan block form we see that M is indecomposable iff there is a
single Jordan block. Thus we have one (unique up to isomorphism) indecomposable
representation of M with dimension s for each 1 ≤ s ≤ pα. In particular, F (G) is
indecomposable. ¤

Lemma 3.3. [1] Let G be a p-group and let F be as above. Then FG is indecom-
posable.

Proof. Claim τ is the only irreducible representation of G, and that F (G) is inde-
composable as an F (G)-module. We prove the first claim by induction on n. Let
σ : G → Aut(M) be any F -representation of G. If G is cyclic, then by [above] we
are done. If not, let H be a cyclic subgroup of the center of G, generated by an
element h. ... Let M0 be the largest subspace of M on which H acts trivially.
Again [as above], M0 6= {0}. As H is central, M0 is a subrepresentation of M .
But then the action of G on M0 factors through the quotient G/H, so, by induc-
tion, τ is a subrepresentation of M0 as a representation of G/H, and hence also
as a representation of G. As for the second claim, if F (G) were decomposable, say
F (G) = M1⊕M2, then each of M1 and M2 would contain τ as a subrepresentation,
so F (G) would contain τ ⊕ τ as a subrepresentation. But it is easy to check that
the subspace of F (G) fixed by every element of G consists exactly of the multiples
of Σg∈Gg, which is 1-dimensional, a contradiction. ¤

Perhaps more problematically, these two results imply the following, which will
show us that we are very unlikely to get to use anything that we can do in the
semi-simple case, and therefore the modular case is going to be very different if we
can prove anything about it.

Theorem 3.4. Let G be a group of order q · pa such that gcd(p, q) = 1. Let F be
a field of characteristic p. Then G possesses finitely generated FG-modules which
are completely reducible.

Proof. [2] FG as a left FG-module is not completely reducible. ¤

As the theorem above should make clear, it is very much not a reasonable strategy
to attempt to get information about a modular representation just by trying to
decompose it into simple modules. This is a useful technique for determining the
behavior of a semi-simple representation, as they decompose into a unique sum of
simple modules. One would hope to find a way to get a modular representation to
do something similarly nice. Before further investigating the modular case, I am
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going to present a few very powerful consequences of Maschke’s theorem, to make
it clear how nice semi-simple representations are.

4. Consequences in the semi-simple case

Theorem 4.1. If |G| is finite and char(F ) 6 | |G| then every finitely generated
FG-module is completely reducible.

Proof. [2]Let V be the vector space corresponding to such a module. Then V is
finite dimensional. Induct on dim(V ): If dim(V ) = 0 or 1 then there is nothing
to prove. If dim(V ) = 2 Maschke’s theorem tells us that the module U corre-
sponding to any one dimensional subspace has W a non-zero sub-module of V such
that V = U ⊕ W . If dim(V ) = n then Maschke’s theorem tells us that the cor-
responding module is the direct sum of two completely reducible modules, and is
thus completely reducible. ¤

Definition 4.2. A module P over a ring R is projective if it is a direct summand
of a free R-module.

Definition 4.3. A module Q over a ring R is injective if whenever Q is a submodule
of an R-module M , Q is a direct summand of M .

Theorem 4.4 (Artin-Wedderburn). The following are equivalent

(1) every R-module is projective
(2) every R-module is injective
(3) every R-module is completely reducible
(4) the ring R considered as a left R-module is a direct sum of simple modules Li

of the form Li = Rei such that eiej = 0 if i 6= j, ei
2 = ei and Σn

i=1ei = 1.
(5) as rings, R is isomorphic to a direct product of matrix rings over division

rings.

Proof. That (1) and (2) are equivalent is a matter of definition checking. That (3)
implies (2) is a result of trying to take a maximal submodule that does not contain
Q and deducing that this must be a direct summand of Q. That (4) implies (3)
relies on taking direct sums of simple sub-modules and using choice to show that
the maximal such sum must be the full module. That (5) implies (4) and that (2)
implies (5), as well as the details of the others, may be looked up [2], p. 863. ¤

This is an extremely powerful result, and classifies semi-simple representations,
reducing the remaining questions in that field to much simpler questions about
simple modules. Further, it garentees a decent amount about a module, which
makes it much easier to work with. However, it is very clear that no such result
could apply in the modular case, as the existance of such a decomposition into
semi-simple modules would imply the result of Maschke’s Theorem, a result which
has been explicitly proven only to apply in the semi-simple case.

5. An explicit computation

In an attempt to evaluate the viability of carrying over the methods and strate-
gies used for semi-simple representations, I have included a composition series for
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a modular representation. Let F = F2 be a field of characteristic two. Call the
generators for D8 = 〈r, s〉 such that r4 = s2 = e.

Note the following composition series:

0 ⊂
〈

1 + r + r2 + r3 + s + sr + sr2 + sr3
〉

⊂
〈

1 + r + r2 + r3, s + sr + sr2 + sr3
〉

⊂
〈

1 + r2 + s + sr2, 1 + r + r2 + r3, s + sr + sr2 + sr3
〉

⊂
〈

1 + r2, s + sr2, 1 + r + r2 + r3, s + sr + sr2 + sr3
〉

⊂
〈

1 + s, 1 + r2, s + sr2, 1 + r + r2 + r3, s + sr + sr2 + sr3
〉

⊂
〈

1 + r, 1 + s, 1 + r2, s + sr2, 1 + r + r2 + r3, s + sr + sr2 + sr3
〉

⊂
〈

1 + r, 1 + r2, 1 + r3, 1 + s, 1 + sr, 1 + sr2, 1 + sr3
〉

⊂ D8

This shows that D8 is reducible, but it does not show that it is decomposable. A
similar computation on FZ8 will also produce such a composition series, indicating
that it is also reducible. However, neither of these modules is decomposable, as
they would each decompose to τ ⊕ τ ⊕ τ ⊕ τ ⊕ τ ⊕ τ ⊕ τ ⊕ τ , as τ , the trivial
representation, is the only only one-dimensional modular representation.

With this in mind, we will clearly need to look at something other than simple
submodules if we wish to make any progress toward understand modular represen-
tations.

6. Some tools for dealing with modular representations

Definition 6.1. Let R be a ring. Then the Jacobson radical J = J(R) is the
intersection of all the maximal left ideals of R.

Lemma 6.2. J(R) = ∩Ann(M) taken over all simple left R-modules M .

Proof. [1]Let y ∈Ann(M). Let I be a maximal ideal. Then R/I is a simple left
R-module, so y(R/I) = 0, so y ∈ I and therefore y ∈ J(R). Suppose x ∈ J(R) and
let M be any simple left R-module. Because M is simple, it must be cyclic and
generted by any non-zero element m. Thus M ∼= R/Ann(m). Since M is simple,
Ann(m) is a maximal ideal. Thus x ∈Ann(m), and thus x ∈ ∩m∈M = Ann(M). ¤

As a result of this lemma, it is clear that the choice of left ideals instead of right
ideals made no difference.

Definition 6.3. Define a ring R to be J − semisimple if J(R) = 0.

Proposition 6.4.

(1) Let R be an Fp-algebra, let F be an arbitrary field of characteristic p, and
let R′ = F ⊗Fp

R. Then J(R′) ⊇ F ⊗Fp
J(R).

(2) If R is a finite-dimensional Fp-algebra, then J(R′) = F⊗Fp
J(R), and hence

R′/J(R′) ∼= F ⊗Fp
(R/J(R)).

Proof. (1) [1] J(R) is a nilpotent ideal in R, and hence F ⊗Fp
J(R) is a nilpotent

ideal in R′, so F ⊗Fp
J(R) ⊆ J(R′).

(2) [1] p. 181. ¤
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Theorem 6.5. Let R be a finite-dimensional algebra over an algebraically closed
field F . Then there are only finitely many simple R-modules, up to isomorphism.
If their degrees are {di} then

Σdi
2 = dimF R − dimF J(R)

Proof. [1] p. 183. The proof is based on R/J(R) being semi-simple. ¤

Lemma 6.6. Let R be a ring of finite length. Then J(R) is the largest nilpotent
left ideal in R.

Proof. [1]. ¤

7. Results for Modular Representations

Let G be a finite group of order npa, such that p is prime and p does not divide
n. Let P be a Sylow p-subgroup of G.

Lemma 7.1. Let V be a simple F (G)−module and let H be any normal p-subgroup
of G. Then H acts trivially on V .

Proof. [1] (p. 188). Proof works by finding a semi-simple F (H)-module as a subset,
and showing that must be trivial.

¤

Theorem 7.2 (Wallace). : Let R = F (G) where G is a p-group. Then J(R) = R0,
the augmentation ideal of R, and dimF J(R) = pa − 1.

Proof. [1] dimF R0 = pa−1. R0 is a maximal left ideal, and therefore J(R) ⊆ (R)0.
However, dimF R − dimJ(R) = 1 by Theorem 6.5. Thus J(R) = R0 ¤

Theorem 7.3. Suppose that P is a normal subgroup of G and let R = F (G).
Then J(R) is the ideal generated by J(F (P )) (under the natural inclusion of F (P )
in F (G)), and dimF J(R) = n(pa − 1).

Proof. R0 is generated by {g − 1|g ∈ G}. Wallace’s theorem shows that when G =
P , J(F (P )) is generated by {b − 1|b ∈ P} which implies that dimF RJ(F (P )) =
n(pa − 1). Take g1, g2 ∈ G, b1, b2 ∈ P, g1(b1 − 1)g2(b2 − 1) = g1g2(b

′

1 − 1)(b2 − 1)
where b′1 = g−1

2 b1g2 ∈ P because P is normal. Further, we see that J(F (P )) is
nilpotent, so we have that RJ(F (P )) is nilpotent as well. Hence RJ(F (P )) ⊆ J(R).
For the rest of this proof, please see [1]. ¤

A very similar argument also proves the following:

Theorem 7.4. Let H be any normal p-subgroup of G. Then J(R) contains the
ideal generated by J(F (H)). In particular, this holds when H is the intersection of
all the p-Sylow subgroups of G.

Lemma 7.5. For any prime p, any g ∈ G can be expressed uniquely as g = ab such
that p does not divide the order of a and the order b is a power of p, and ab = ba.
In this situation, both a and b are powers of g.

Proof. [1]Let n = |g|. If (n, p) = 1, the proof is trivial. If n = prq with r ≥ 1
and (p, q) = 1 then set 1 = xpr + yq for some integers x and y. Set a = gxpr

and
b = gyq. ¤
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Definition 7.6. Define a, b as above. a is called the p-regular factor, and b is called
the p-singular factor. If b = 1 i.e. |g| is prime to p, g is called a p-regular element.
If a = 1 i.e. |g| is a power of p, then g is called a p-singular element.

Corollary 7.7. Let F be algebraically closed. Let V be an F -representation of G,
given by σ : G →Aut(V ). Let g be an element of G and write g = ab as in Lemma
7.5. Then the eigenvalues of σ(g) and σ(b) are the same with the same multiplicity.

Proof. [1]Chose a basis in which σ(g) is in Jordan canonical form. Since a and b
are powers of g, σ(a) and σ(b) are upper triangular, and since the order of a is a
power of p, the diagonal entries of σ(a) are all 1. But σ(g) = σ(a)σ(b). ¤

Theorem 7.8 (Brauer-Nesbitt). Let V1 and V2 be semi-simple F -representations
of G, where F is algebraically closed, given by σi : G → Aut(Vi), i = 1, 2. Then V1

and V2 are isomorphic iff σ1(g) and σ2(g) have the same characteristic polynomials
or, equivalently, the same eigenvalues with the same multiplicities, for every g in
G.

Proof. [1] (p. 194). ¤

Definition 7.9. Chose an isomophism α from the group of q-th roots of unity in
F to the group of q-th roots of unity in C. Let V be an F -representation of G given
by σ : G → Aut(V ). The Brauer character βV is the complex-valued class function
on p-regular elements of G defined as follows. If {xi} are the eigenvalues of σ(g)
(each of which is a q − th root of 1 in F ) with multiplicities, then

βV (g) = Σα(xi)

Theorem 7.10 (Brauer-Nesbitt). . Let V1 and V2 be F -representations of G, where
F is a splitting field for G. Then V1 and V2 have the same irreducible components
with the same multiplicities, iff βV1

(g) = βV2
(g) for every p-regular element of G.

Proof. [1] The only-if part should be trivial. Observe that for any F -representation
V of G, if βV (g) = Σα(xi) per the definition of the Brauer character, then βV (gr) =
Σα(xi

r) = Σα(xi)
r for every r, so, by considering the elementary symmetric poly-

nomials in {α(xi)}, we can derive that {βV (gr)|r = 1, 2, ...} determines {α(xi)}, and
hence {xi}, and then the theorem follows from Lemma 7.7 and Theorem 7.8. ¤

The Brauer-Nesbitt theorem is a substantial improvement, as we now have both
a useful tool for studying modular representations and an easy way to verify if
two modular representations have the same irreducible components. While it is
unfortunate that we don’t get anything nearly so powerful as Maschke’s theorem, we
still can know a fair amount about modular representations from Brauer characters.
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