
PERSPECTIVES ON AN OPEN QUESTION

IOANA BERCEA

Abstract. Starting with the card game SET, we ask the question of how
many cards should be laid on the table in order to guarantee the existence of
a set. This question is inherently related to the maximum size of an indepen-
dent set in F k

3 . Although some specific values are known, the open question
resides in its asymptotic evaluation. We set up the question and then explore
its meaning in the context of hypergraphs, where its echoes are at least an
interesting exercise in graph theory.
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1. Introductory concepts

1.1. Short overview of the card game SET. The card game SET is played
with a deck of 81 cards, each of which displays four attributes: number, shading,
color and shape. Each of the attributes assumes three values. The goal of the game
is to find as many collections of cards as possible. Three cards form a collection
if, with respect to each of their attributes, they are either all the same or they are
all different. We ask the question of how many cards one must lay on the table in
order to guarantee the existence of a collection. In order to answer this, we will
study the maximum size of a set of cards that does not contain a collection, also
know as independence number.

1.2. The mathematical perspective. Let F3 be the field of three elements, and
consider the vector space F4

3. A point of F4
3 is a 4-tuple where each coordinate can

assume three possible values. From this perspective, we can think of SET cards as
points in F4

3.
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In order to enrich the question we are asking, we will generalize the game SET
to a vector space of dimension k, for k ∈ N, k ≥ 1, in which the following rules
apply.

Definition 1.1. A subset consisting of three elements {x, y, z} ⊂ Fk
3 is an affine

line if x + y + z = 0 and x, y, z are all distinct.

A collection of SET cards corresponds, therefore, to an affine line in F4
3.

Definition 1.2. An independent set S ⊆ Fk
3 is a set S such that if x, y, x ∈ S and

x + y + z = 0, then x = y = z = 0.

A set of cards which does not contain a collection is, therefore, equivalent to an
independent set in F4

3.
Let αk be the maximum size of an independent set in Fk

3 .

2. Properties of αk

Proposition 2.1 (Supermultiplicity). We have that αk+l ≥ αkαl.

Proof. If S1 ⊆ Fk
3 and S2 ⊆ Fl

3 are maximal independent sets, then S1 × S2 is also
an independent set in Fk+l

3 . The size of S1 × S2 is therefore at most equal to the
size of a maximal independent set in Fk+l

3 ⇒ αkαl ≤ αk+l. ¤
Now we will discuss the asymptotics of this independence number.

Lemma 2.2 (Fekete’s Lemma). [1]Let f : N→ N be supermultiplicative(f(k + l) ≥
f(k)f(l), ∀m, n ∈ N). Then, there exists

lim
k→∞

f(k)1/k.

Proof. Fix m and l such that l ≤ m. By induction and using the supermultiplicity
of f , we have that f(l + km) ≥ f(l)[f(m)]k. From here, we get that

lim inf
k→∞

f(l + km)1/(l+km) ≥ lim inf
k→∞

f(l)1/(l+km) · lim inf
k→∞

f(m)k/(l+km) = f(m)1/m.

Because l ≤ m, we have that, for ∀n, ∃k such that n = l + km, and therefore:

lim inf f(n)1/n ≥ f(m)1/m.

Now, if we let m →∞, we get that:

lim inf f(n)1/n ≥ lim sup f(m)1/m,

but these are equal. Therefore, the limit exists. ¤
Proposition 2.3. There exists

lim
k→∞

αk
1/k = sup

k
αk

1/k.

Proof. First, let’s prove that

lim sup
k→∞

αk
1/k = sup

k
αk

1/k.

First, let’s define the “solidity” of an independent set S in Fk
3 to be:

σ(S) = k
√
|S|.

Let’s observe that, for any natural nonnegative value of n, we have that

σ(Sn) = σ(S).



PERSPECTIVES ON AN OPEN QUESTION 3

Therefore, we can say that

lim sup
k→∞

σ(k) = sup
k

σk.

But
sup

k
σ(k) = sup

k
αk

1/k.

Therefore,

(2.4) lim sup
k→∞

σ(k) = sup
k

αk
1/k.

Now, let f : N → N be defined such that f(k) = αk. Then, by using Fekete’s
Lemma, we get that the following limit exists:

(2.5) lim
k→∞

αk
1/k.

We can conclude, therefore, from the two previous results that:

lim
k→∞

αk
1/k = sup

k
αk

1/k.

¤

3. Known bounds

Proposition 3.1. 2k ≤ αk ≤ 3k

Proof. Since |Fk
3 | = 3k, we have that αk ≤ 3k. On the other hand, consider only

the vectors with all components 0 or 1, and you get a an independent set because
the only way to get an affine line in that set is to have all of the three vectors
equal, which is a contradiction with the definition of an affine line. Since the size
of this independent set is 2k, we get that the independence number is greater than
or equal than that. ¤

Going back to the properties of solidity, we observe that any known size of an
independent set will give us a lower bound on limk αk. The best lower bound on
the solidity of maximal independent sets was given by Yves Edel who constructed
an independent set with solidity 2.21739 in F480

3 .
We know, therefore, that

2.21739 ≤ sup
k→∞

α
1/k
k ≤ 3.

The major open question regards whether

sup
k→∞

α
1/k
k = 3.

An improvement in this direction was given by Roy Meshulam who used Fourier
Analysis to give an upper bound on αk.[2] The proof is a surprising application of
a seemingly unrelated field. We will mention the result but leave the proof to the
interested reader.

Theorem 3.2 (Roy Meshulam). We have that

αk ≤ 2 · 3k

k
.
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This upper bound, however, does not give an answer to our question, since

lim
k→∞

(
2 · 3k

k
)1/k = 3.

4. The Combinatorial Approach

In search for the answer, one interesting approach is to translate the problem
into a graph theory question and explore the possibilites in that realm.

4.1. Construction of the Hypergraph. Let us first give some basic defitions
that will guide us through the construction.

Definition 4.1. A hypergraph H is a pair (V,E), where V is the set of vertices
and E is a collection of non-empty subsets of V , called edges.

A hypergraph is just a generalization of the concept of graph(which is a hyper-
graph in which every edge has cardinality 2).

Definition 4.2. A hypergraph is called uniform if every edge has the same cardi-
nality.

Definition 4.3. The degree of a vertex is the number of edges(subsets of V ) that
contain it.

Definition 4.4. A hypergraph is called regular if every vertex has the same degree.

Definition 4.5. A hypergraph automorphism is a function ϕ : V → V that pre-
serves the edges, i.e. ϕ(E) = E.

Definition 4.6. A hypergraph is vertex- transitive if for any two vertices x and y,
there exists an automorphism ϕ such that ϕ(x) = y.

Definition 4.7. A set S j V is an independent set if it does not contain any edges,
i.e. S ∩ E = ∅.
Definition 4.8. The independence number or a hypergraph H, α(H) is the max-
imum size of an independent set of H, i.e. α(H) = sup{|S| : S is an independent
set of H}.

Let us think of the points in Fk
3 as vertices of hypergraph. Three vertices in the

hypergraph form an edge if their vector correspondents form an affine line in Fk
3 .

If H = (V,E) would be the hypergraph such obtained, we would have the fol-
lowing property.

Proposition 4.9. H is a uniform regular vertex-transitive hypergraph.

Proof. The size of each edge is equal to the number of summands in an affine line,
which is 3 ⇒ H is uniform.

H is also regular. We can fix x to be a vertex in V and for any y ∈ V , we have
that there exists another z ∈ V such that {x, y, z} ∈ E.(this happens in accordance
to the definition of an affine line in Fk

3) Since there are 3k − 1 vertices not equal
to x and because {x, y, z} = {x, z, y}(we doublecount the edges), we have that the
degree of each vertex is 3k−1

2 .
Next, let’s observe that no vertex can be distinguished from any other, based

only on the vertices and edges surrounding it. Every vertex has the same local
environment, therefore the hypergraph is vertex- transitive. ¤



PERSPECTIVES ON AN OPEN QUESTION 5

The bridge between our previous approach to the question and our current one is
the fact that the independence number in Fk

3 is actually the independence number
of our constructed hypergraph.

αk = α(H)

4.2. Bounds on the Hypergraph. Let us, from now on, consider the hypergraph
H = (V, E) with |V | = n = 3k. In order to explore the various bounds on α(H), we
need to define one more concept.

Definition 4.10. The chromatic number of a hypergraph, χ(H) is the minimum
number of maximal independent sets that cover V .

The concept of chromatic number of a hypergraph is usually known to be the
minimum number of colors needed to color the vertices of H so that no edge is
monochromatic. The two definitions are equivalent, because the partitions that the
coloring makes out of the set of vertices correspond exactly to independent sets.

From the first definition of a chromatic number, we have that:

α(H) · χ(H) ≥ n.

Now we will explore the properties of the created hypergraph, through this the-
orem.

Theorem 4.11. If H is vertex-transitive, then

α(H) · χ(H) ≤ n · (ln(n) + 1).

Proof. Let us consider S ⊆ V be a maximal independent set of the hypergraph,
|S| = α(H) and let G = Aut(H) be the automorphism group of H.

First, let’s observe that for any ϕ ∈ G, we have that ϕ(S) is also a maximal
independent set.

Starting with the definition of the chromatic number, we will try to apply auto-
morphisms to S and probabilistically determine when we will get a cover of V .

In order to do that, we need to first establish that:

Lemma 4.12. For x ∈ V a fixed vertex and let ϕ ∈ G be a random automorphism.
Then, for any y ∈ V ,

Pr[ϕ(x) = y] =
1
n

.

Proof. Let us consider Gx = {ϕ ∈ G : ϕ(x) = x} to be the stabilizer of x in G.
Let y ∈ V be any vertex. Because of vertex-transitivity, we know that ∃ϕ ∈ G
such that ϕ(x) = y. Composing every automorphism in Gx with ϕ will give us a
coset G′ isomorphic to Gx. Not only that, but G′ = {ϕ ∈ G : ϕ(x) = y}. Because
y was arbitrarily chosen, we get that |Gx| = |G′| = |G|

n . Therefore, if we randomly
consider ϕ ∈ G, then for any y ∈ V , we will have that:

Pr[ϕ(x) = y] =
|G′|
|G| =

|G|
n

|G| =
1
n

.

¤
Now, going back to our initial proof, let ϕ ∈ G be a random automorphism and

fix x ∈ V. Then we get that:

Pr[x ∈ ϕ(S)] =
|S|
n

.
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Therefore,

Pr[x /∈ ϕ(S)] = 1− |S|
n

.

Now, let us randomly pick t automorphism from G, g1, g2,..., gt ∈ G.

Pr[x /∈
t⋃

i=1

ϕi(S)] = (1− |S|
n

)t.

We have that

Pr[x /∈
t⋃

i=1

ϕi(S)] = Pr[
t∧

i=1

(x /∈ ϕi(S))] =
t∏

i=1

Pr[v /∈ ϕi(S)] = (1− |S|
n

)t.

We were able to pass to the product because the events considered are indepen-
dent.(as functions of independently chosen automorphisms)

Now let us consider the probability that
⋃t

i=1 ϕi(S) will not cover V.

Pr[∃x ∈ V, x /∈
t⋃

i=1

ϕ(S)] = Pr[
∨

x∈V

(x /∈
t⋃

i=1

ϕ(S))].

But, because of union bound, we have that:

Pr[
∨

x∈V

(x /∈
t⋃

i=1

ϕ(S))] ≤
∑

x∈V

Pr[x /∈
t⋃

i=1

ϕ(S)] = n(1− |S|
n

)t.

Let us find a more suggestive upper bound on our probability. We know that

(1− x)t ≤ e−xt,∀x ≥ 0.

We therefore get that

(1− |S|
n

)t ≤ e−
|S|·t

n .

We observe that for t = [n·ln(n)
|S| ] + 1, we get that

(1− |S|
n

)t ≤ e−
|S|
n ·n·ln(n)

|S| = 1.

This means that for t = [n·ln(n)
|S| ] + 1, we get that the probability of not covering

V is smaller than 1, which automatically means that the probability of covering V
is positive. In that case, we obtain that t automorphisms provide a covering of V ,
so, by the condition of minimality on the chromatic number, we get that:

χ(H) ≤ [
n · ln(n)
|S| ] + 1 ≤ n · ln(n)

|S| + 1 ≤ n · (ln(n) + 1)
|S| .

But |S| = α(H), so we get that:

α(H) · χ(H) ≤ n · (ln(n) + 1).

¤
Therefore, we get that

n ≤ α(H) · χ(H) ≤ n · (ln(n) + 1).

Let us consider not what bounds we can obtain on χ(H) from here.

n

α(H)
≤ χ(H) ≤ n · (ln(n) + 1)

α(H)
.
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And we also know, since n = 3k, that

2k ≤ α(H) ≤ 2 · 3k

k
.

Therefore, we get that:
k

2
≤ χ(H) ≤ (k ln 3 + 1) · (3

2
)k.

With these results, we enter a whole different world of determining the chro-
matic and independence numbers of hypergraphs, a problem that touches upon
NP-complete problems and optimization algorithms.

5. Conclusions

As we have seen, a simple and natural question can involve much more compli-
cated attemtps to answer it. From Fourier Analysis to hypergraphs, combinatorial
questions span a lot of fields and can translate into other seemingly unrelated ques-
tions. Pursuing them can provide a challenging trip that leaves one, if not with
an answer, at least with insight into different interesting fields that converge in
surprising ways.
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