
ANALYTIC NUMBER THEORY AND DIRICHLET’S THEOREM

JOHN BINDER

Abstract. In this paper, we prove Dirichlet’s theorem that, given any pair

h, k with (h, k) = 1, there are infinitely many prime numbers congruent to

h (mod k). Although this theorem lies strictly within the realm of number
theory, its proof employs a range of tools from other branches of mathematics,

most notably characters from group theory and holomorphic functions from

complex analysis.
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1. Arithmetic Functions

Analytic number theory is best described as the study of number theory through
the use of functions, whose properties can be examined using analytic techniques.
The most basic tool of analytic number theory is the arithmetic function.

Definition 1.1. A function f : N→ C is called an arithmetic function.

Example 1.2. Any function f : C → C defines an arithmetic function when its
domain is restricted to the natural numbers.

Examples 1.3. The following arithmetic functions are central to the study of
number theory:
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1). The divisor function d (n), which counts the number of divisors of a natural
number n.

2). The divisor sum function σ (n), which takes the sum of the factors of a
natural number n.

3). Euler’s totient function φ (n), which counts the numbers k < n such that
(n, k) = 1.

4). Von Mangoldt’s function Λ (n), where

(1.4) Λ (n) =

{
log p if n = pm for some prime p,
0 otherwise

A subset of arithmetic functions is especially useful to number theorists. These
are the multiplicative functions.

Definition 1.5. An arithmetic function f is called a multiplicative function if,
for all m, n with (m,n) = 1, we have f(mn) = f(m)f(n). Moreover, f is called
completely multiplicative if f(mn) = f(m)f(n) for all integers m and n.

Example 1.6. The function f(n) = nα is completely multiplicative for any α.

Examples 1.7. The functions d(n), σ(n), and φ(n) are all multiplicative, but not
completely multiplicative.

2. Dirichlet Products and Mobius Inversion

Definition 2.1. Let f and g be arithmetic functions. We define the Dirichlet
product of f and g by

(2.2) (f ? g) (n) =
∑
d|n

f (d) g
(n
d

)
It should be noted that, though the Dirichlet product uses the same symbol that

typically signifies a convolution, the Dirchlet product is not a convolution in the
strict sense since ‘convolution’ requires a group action, and the natural numbers do
not form a group under multiplication.

However, as seen in the following theorem, the Dirichlet product is itself a group
operation on a subset of arithmetic functions, as seen below:

Theorem 2.3. Let S be the set of arithmetic functions f such that f (1) 6= 0. Then
(S, ?) forms an abelian group.

Proof. Since f ? g (1) = f (1) g (1), then S is closed under Dirichlet multiplication.
Furthermore, simple algebraic manipulation shows ? to be both commutative and
associative.

Let

(2.4) e (n) =

{
1 if n = 1,
0 otherwise

It is clear that e ? f = f for all arithmetic functions f , so that e is the identity
element. Finally, we must show that, given f ∈ S, there exists an f−1 ∈ S such
that f ? f−1 = e. Given f , we will construct f−1 inductively. First, we need
f ? f−1 (1) = e (1), which occurs if and only if f (1) f−1 (1) = 1. Since f (1) 6=
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0, f−1 (1) is uniquely determined. Now, assume that n > 1 and f−1 has been
determined for all k < n. Then we have

(2.5) f ? f−1 (n) =
∑
d|n

f (d) f−1
(n
d

)
⇒ −f (1) f−1 (n) =

∑
d|n, d>1

f (d) f−1
(n
d

)
This uniquely determines f−1 (n). Thus, we may uniquely determine an f−1 for all
f ∈ S. �

One important application of Dirichlet multiplication involves recovering a func-
tion from a piecewise sum. For instance, given f , we wish to find a function g such
that:

(2.6) f (n) =
∑
d|n

g (d)

We may solve this problem using Dirichlet multiplication. First, we write f =
g ? 1, where 1 (n) = 1 for all n. Then 1 has an inverse function; call it µ. We then
have

g = g ? (1 ? µ) = (g ? 1) ? µ = f ? µ

Given the importance of µ, we will construct it from the definition. We begin
with a lemma.

Lemma 2.7. Let f , g, h ∈ S, with h = f ? g. If both h and f are multiplicative,
then so is g.

Proof. We must show that, for all m, n, with (m,n) = 1, we have g (mn) =
g (m) g (n). We will show this by inducting upwards on the quantity mn. Since f is
multiplicative, we have f (1) = f (1 · 1) = f (1)2 ⇒ f (1) = 0 or 1. Since f has an
inverse, we must have f (1) = 1. Similarly, we have h (1) = 1. Therefore, g (1) = 1,
so that g (1 · 1) = g (1) · g(1). This proves the base case.

Now for our inductive step. Pick m, n so that mn > 1. By definition, we have

(2.8) h (mn) =
∑
d|mn

f (d) g
(mn
d

)
For all d, we may decompose d into dm · dn, where dm|m and dn|n. Moreover,

since (m,n) = 1, this decomposition is unique. Therefore, we have

(2.9) h (mn) =
∑

dm|m, dn|n

f (dm · dn) g
(
m

dm
· n
dn

)

Since (m,n) = 1, then (dm, dn) =
(
m
dm
, ndn

)
= 1. Since f is multiplicative

we have f(dm · dn) = f(dm) · f(dn), and by our inductive hypothesis we have
g
(
m
dm
· ndn

)
= g

(
m
dm

)
g
(
n
dn

)
so long as dm · dn < mn. Therefore, we may write.

(2.10)

h (mn) =

 ∑
dm|m, dn|n

f (dm) f (dn) g
(
m

dm

)
g

(
n

dn

)− g (m) g (n) + g (mn)
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(2.11) =

∑
dm|m

f (dm) g
(
m

dm

)∑
dn|n

f (dn) g
(
n

dn

)− g (m) g (n) + g (mn)

(2.12) = h (m)h (n)− g (m) g (n) + g (mn)

Since h is multiplicative, we must have g (m) g (n) = g (mn). This completes the
inductive step and therefore the proof. �

Since e is multiplicative, we have the following corollary:

Corollary 2.13. If f is multiplicative, then so is f−1.

Using lemma 2.7, we can construct µ, the Dirichlet inverse of 1.

Theorem 2.14. Let

(2.15) µ (n) =

{
0 if ∃k > 1 : k2|n,
(−1)m if n = p1 · p2 · . . . · pm

Then µ = 1−1

Proof. Since 1 is multiplicative, then so too must be its inverse. Therefore, by
determining µ (pm) for each prime power pm, we determine µ.

It is clear that we must have µ (1) = 1. Consider µ (p), for p prime. Then

(2.16) e(p) = 0 = 1 ? µ (p) = µ (1) + µ (p)⇒ µ (p) = −1

Next, consider p2. We have

(2.17) 0 = 1 ? µ
(
p2
)

= µ (1) + µ (p) + µ
(
p2
)

= 1 +−1 + µ
(
p2
)
⇒ µ

(
p2
)

= 0

Finally, assume µ
(
pk
)

= 0 for all 2 ≤ k ≤ m− 1. Then we have

(2.18) 0 = 1 ? µ (pm) = µ (1) + µ (p) + µ
(
p2
)

+ . . .+ µ
(
pm−1

)
+ µ (pm)

= 1 +−1 + 0 + . . .+ 0 + µ (pm)⇒ µ (pm) = 0

This shows µ to be as stated in equation 2.15 for all prime powers. Because we know
µ to be multiplicative, then 2.15 correctly states µ for all natural numbers. �

This function µ is called the Mobius function.

Remark 2.19. One should note that, even though 1 is completely multiplicative,
its inverse µ is not. In general, the inverse of a completely multiplicative function
is not completely multiplicative. If we examine the proof of lemma 2.7, we see that
we cannot uniquely decompose a divisor d of mn into a divisor of m and a divisor
of n unless m and n are relatively prime. Therefore, proof of lemma 2.7 fails when
(m,n) 6= 1 at equation 2.11.
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3. Dirichlet Characters

Recall the definition of a character on an abelian group.

Definition 3.1. Let G be a finite abelian group. We call τ : G → C a character
on G if for all g ∈ G, τ(g) 6= 0 and for all g, h ∈ G, we have τ (gh) = τ (g) τ (h).

Remark 3.2. For a finite abelian group G, τ [G] ⊂ T, since for each g ∈ G, there is
an m > 0 such that gm = 1.

Let τ be a character on the multiplicative group (Z/kZ)∗. We may extend
the domain of this character to the entire set of natural numbers in the following
manner: first, let h̄ ∈ Z/kZ be the equivalence class modulo k containing h. We
extend the domain of τ to the entire set of natural numbers in the most obvious
way possible: let

χ(n) =

{
τ(n̄) if (n, k) = 1
0 otherwise

Note that n̄ ∈ (Z/kZ)∗ if and only if (n, k) = 1. Therefore, this function is well-
defined.

We call χ a Dirichlet character modulo k. To formalize:

Definition 3.3. A function χ : N→ C is called a Dirichlet character modulo k if
there exists a character τ on the group (Z/kZ)∗ such that

χ(n) =

{
τ(n̄) if (n, k) = 1
0 otherwise

It is easy to see that χ has two important properties: first, it is k-periodic (that
is, χ(a + k) = χ(a) for all a); and second, it is completely multiplicative (that is,
χ(m · n) = χ(m)χ(n) for all m and n).

The figures below show the Dirichlet characters modulo 5 and modulo 8. It is
simple to check that no more exist, though we will prove this fact as a more general
statement later.

x (mod 5) 0 1 2 3 4
χ1 0 1 1 1 1
χ2 0 1 −1 −1 1
χ3 0 1 i −i −1
χ4 0 1 −i i −1

x (mod 8) 0 1 2 3 4 5 6 7
χ1 0 1 0 1 0 1 0 1
χ2 0 1 0 −1 0 −1 0 1
χ3 0 1 0 −1 0 1 0 −1
χ4 0 1 0 1 0 −1 0 −1

Remark 3.4. In both of the above tables, we have defined χ1 as the Dirichlet charac-
ter modulo k that satisfies χ1 (h) = 1 if (h, k) = 1 and 0 otherwise. This character is
called the trivial (or principle) character modulo k. The trivial character is denoted
by χ1 solely from convention, though this specific character will play a special role
later.
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On the one hand, all Dirichlet characters are periodic, completely multiplicative
per the definition. However, interestingly, all nontrivial functions that have both
of these properties are Dirichlet characters:

Theorem 3.5. If χ is an arithmetic function that is both periodic and completely
multiplicative, and it is not universally 0, then it is a Dirichlet character.

Proof. Let k be the minimal period of χ. Since χ is k-periodic, it is constant in
each equivalence class modulo k. Moreover, since it is completely multiplicative, its
values on (Z/kZ)∗ make it a character. Therefore, we need to show that χ(n) = 0
if and only if (n, k) 6= 1.

First, assume (n, k) = 1; then we have nφ(k) ≡ 1 (mod k). Since χ is completely
multiplicative and k-periodic, we have χ (n)φ(k) = χ

(
nφ(k)

)
= χ (1). Thus, if

χ (n) = 0, then χ (1) = 0. However, if χ (1) = 0, then we have χ (m) = χ (1)χ (m) =
0 for all m. Hence, if (n, k) = 1 and χ (n) = 0, then χ is universally 0.

On the other hand, assume there is an n such that (n, k) > 1 and χ (n) 6= 0. Then
there is at least one prime p such that p|k and χ (p) 6= 0. Consider this p, and let
m be any natural number. Because χ is k-periodic and completely multiplicative,
we have

χ (m)χ (p) = χ (mp) = χ (mp+ k) = χ (p)χ
(
m+

k

p

)
Since χ (p) 6= 0, we must have χ (m) = χ (m+ k/p) for all m. But this means that
χ is k

p -periodic. This violates the stipulation that k is the minimal period of χ. �

It should be remarked that the function 1(n) = 1 is technically a Dirichlet
character modulo 1.

Proposition 3.6. There are φ (k) Dirichlet characters modulo k.

Proof. We prove a more general proposition: let G be an abelian group with |G| =
N . Then there are N characters on G.

First, since G is finite and abelian, we may decompose it into the direct product
of groups Cai , where Cai are cyclic groups of order ai. Consider the cyclic group
Cai with generator xi. Then, since xai

i = 1, we have τ(xi)ai = 1, this leaves ai
possibilities for τ(xi), and each choice determines a character on Cai

. Moreover,
since xi is a generator, the choice of τ(xi) uniquely determines τ .

Consider the decomposition of G into cyclic groups; write G = Ca1 × . . .×Cam
.

That is, there are elements xi ∈ G such that xai
i = 1 and each g ∈ G can be

expressed uniquely as
∏
i x

ti
i , with 0 ≤ ti < ai. Let τi be a character on the

subgroup generated by xi. Then it is clear that the function defined by τ(g) =∏
i τi(x

ti
i ) is a character on G, and that

∏
i τi =

∏
i τ
′
i if and only if τi = τ ′i for all i.

We must now show that each character on G can be expressed as a product
of τi’s. Let xi be as above.. Then, given g ∈ G, we may express g uniquely as
g =

∏
i x

ti
i with 0 ≤ ti < ai. Thus, for all g ∈ G, we have τ(g) =

∏
i τ(xi)pi .

Moreover, the restriction of τ to the subgroup generated by xi is itself a character
on that subgroup. Therefore, we may express any character τ on G as a product
of characters τi, where τi is a character on the subgroup generated by xi. But this
subgroup is isomorphic to Cai , so there are ai characters on that subgroup.

Hence, the number of characters on G is equal to
∏
i ai = |G|. Since each

Dirichlet character modulo k is uniquely determined by a character on (Z/kZ)∗,
the number of Dirichlet characters modulo k is |(Z/kZ)∗| = φ(k). �
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Proposition 3.7. The φ (k) Dirichlet characters modulo k form a group under
multiplication.

Proof. We see that the trivial character is the identity element of the group. If χ is
a Dirichlet character, then its inverse is χ, the complex conjugate of χ. Moreover,
the set of characters modulo k is closed under multiplication, since (χ · χ′)(gh) =
χ(gh)χ′(gh) = χ(g)χ(h)χ′(g)χ′(h) = (χ · χ′)(g)(χ · χ′)(h), (χ · χ′)(n) = 0 if and
only if (n, k) 6= 1, and since the product of two k-periodic functions is itself k-
periodic. �

4. Orthogonality Relations of Characters

In this section, we will prove the following identity, which will be useful in our
proof of Dirichlet’s theorem.

Theorem 4.1. Let χ1, . . . , χφ(k) be the Dirichlet characters modulo k. Then we
have

(4.2)
φ(k)∑
i=1

χi (h)χi(p) =

{
φ (k) if h ≡ p (mod k) and (h, k) = 1,
0 otherwise

We will prove this theorem in general, for any Abelian group. Since a Dirichlet
character is simply an extension of a character on (Z/kZ)∗, the theorem will follow.

Lemma 4.3. Let G be an abelian group, where |G| = N , and let τ1, . . . , τN be the
characters on G. Then we have

∑
g∈G

τ (g) =

{
N if τ(g) = 1 for all g,
0 otherwise

Proof. Obviously, the sum of the trivial character on this group is the size of the
group, N.

Otherwise, assume χ is not the trivial character, and pick b such that τ (b) 6= 1.
Moverover, the group G is invariant under multiplication by any of its elements.
We therefore have

(4.4)
∑
g∈G

τ (g) =
∑
g

τ (b · g) =
∑
g

τ (b) · τ (g) = τ (b)
∑
g

τ (g)

Since τ (b) 6= 1, we must have
∑
τ (g) = 0 . �

From here, we have another lemma:

Lemma 4.5. Let A be the N × N matrix [τi (gj)]i,j≤N and let A∗ denote the
conjugate transpose of of A. Then we have AA∗ = NI.

Proof. Consider the i, j coordinate of AA∗. If vi denotes the vector of row i in A,
then this quantity is equal to vi ·vj =

∑
g τi (g) ·τj (g). But τiτj is itself a character,

and is the trivial character if and only if i = j. Therefore, we have (AA∗)ij = N if
i = j and 0 otherwise; that is, AA∗ = NI. �

From here, we prove the generalization of theorem 4.1.
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Proposition 4.6. Given gi, gj ∈ G and τ1, . . . , τN the characters on G, we have
N∑
l=1

τl (gi) · τl (gj) =

{
N if i = j

0 otherwise

Proof. Since AA∗ = NI, we have A∗A = NI; this implies (A∗A)ij = N if i = j
and 0 otherwise. Moreover, we can examine this quantity via matrix multiplication.
Let wi signify a column vector of A; then we have

(A∗A)ij = wi · wj =
N∑
l=1

τl (gi) · τl (gj)

.
Given what we know about A∗A, this proves the proposition. �

Theorem 4.1 follows as an immediate corollary, since χ is an extension of a
character on (Z/kZ)∗ and vanishes on those n not relatively prime to k.

5. An Analytic Proof of the Infinitude of Primes

Almost two and a half millennia ago, Euclid gave the first, and most standard,
proof of the infinitude of primes. The argument is simple enough: assume there
are finitely many; multiply them all together and add one; the new quantity is not
divisible by any prime in the list; contradiction.

This argument, however, cannot be generalized to prove that there are infinitely
many primes congruent to h (mod k), because numbers from one equivalence class
may have divisors from a different class. Therefore, a different type of argument is
necessary to prove Dirichlet’s theorem on primes in arithmetic progressions.

We will summarize an analytic proof of the infinitude of primes due to Euler;
this proof will act as a starting point for the proof of Dirichlet’s theorem.

Theorem 5.1. There are infinitely many primes.

Proof. Define the function

(5.2) ζ (s) =
∞∑
n=1

1
ns

This sum converges for all s > 1. However, as s→ 1+, we have ζ (s)→∞.
Consider the product(

1 +
1
2s

+
1
4s

+ . . .

)(
1 +

1
3s

+
1
9s

+ . . .

)(
1 +

1
5s

+
1

25s
+ . . .

)
. . .

where the product extends over all primes. Because each natural number has a
unique prime factorization, this product ‘covers’ every natural number exactly once:
i.e, we have

(5.3) ζ (s) =
∏
p

(
1 +

1
ps

+
1
p2s

+ . . .

)
=
∏
p

(
1− 1

ps

)−1

Taking the logarithm of both sides and applying the Taylor expansion for log (1 + x)
yields

(5.4) log ζ (s) =
∑
p

− log
(

1− 1
ps

)
=
∑
p

∞∑
n=1

1
npns

=
∑
p

1
ps

+
∑
p

∞∑
n=2

1
npns
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(we may separate this sum as above since it is absolutely convergent for s > 1).
Since ζ (s)→∞ as s→ 1+, so does its logarithm. Therefore, if we can show that

the second sum is bounded as s→ 1+, we will show that
∑
p 1/ps is unbounded as

s approaches 1. Fortunately, for all s ≥ 1 we have

(5.5)
∑
p

∞∑
n=2

1
npns

<
∑
p

∞∑
n=2

1
pn

=
∑
p

1
p2
· 1

1− 1/p
<

∞∑
m=2

1
m (m− 1)

= 1

Hence, we must have
∑
p 1/ps unbounded as s approaches 1. This is only possible

if there are infinitely many primes. �

Remark 5.6. In the above proof, the logarithm function was well-defined because
our domain was restricted to the real numbers. However, the logarithm of a complex
number is not well-defined. Instead, we define the logarithm of a complex number
by its Taylor series; that is

(5.7) log (1− z) = −
∞∑
n=1

zn

n

The identity log (ab) = log (a) + log (b) still holds under this definition of the loga-
rithm.

6. Dirichlet Series and L-functions

Unfortunately, the zeta function by itself is insufficient to attack Dirichlet’s the-
orem because it leaves no means for distinguishing between the residue classes
modulo k. For this, we need a more general class of functions.

Definition 6.1. Let an and λn be two sequences of complex numbers. For all
s ∈ C, we define the function

F (s) =
∞∑
n=1

an
eλns

Such a series is called a Dirichlet series.

Examples 6.2. The zeta function is defined by a Dirichlet series, where an = 1
and λn = log (n). In fact, any series of the form

∑
an/n

s is a Dirichlet series where
λn = log(n).

The nice properties of Dirichlet characters (they are both periodic and multi-
plicative and interact nicely with one another) will be of great use in our attack
on Dirichlet’s theorem. Dirichlet series whose coefficients are given by Dirichlet
characters are called L-functions.

Definition 6.3. Let χ be a Dirichlet character modulo k, and let s be a complex
number. Then we define the function

(6.4) L (s, χ) =
∞∑
n=1

χ (n)
ns

Such a function is called an L-function.

Example 6.5. Let χ be the nontrivial character modulo 4. Then we have L (s, χ) =
1− 1

3s + 1
5s − 1

7s + . . .. Specifically, we have L (1, χ) = π
4 .

We now have all the conceptual tools in place to move on to the final stage of
this paper: the proof itself.
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7. The Proof of Dirichlet’s Theorem

All necessary apparatus is now in place to complete the proof of Dirichlet’s
theorem. The thrust of the proof is similar to that of the proof of the infinitude of
the primes given in section 5. However, we will employ L-functions in place of the
zeta function to isolate primes in a residue class modulo k.

The proof will consist of two parts: first, we will show that if L (s, χ) is bounded
and nonzero as s→ 1+ for nontrivial χ, then Dirichlet’s theorem holds. The second,
and more challenging part, is to show that L (1, χ) is, in fact, bounded and nonzero
for nontrvial χ.

We will prove the easier step first. This requires a small lemma.

Lemma 7.1. Let χ1 denote the trivial character modulo k. Then L (s, χ1) is un-
bounded as s→ 1+

Proof. We have

L (s, χ1) =
∑

(n,k)=1

1
ns

>

∞∑
q=1

1
(qk)s

=
1
ks

∞∑
q=1

1
qs

Since the sum on the right approaches infinity as s approaches 1, and the term 1/ks

approaches 1/k, this quantity must diverge. �

Theorem 7.2. If L (s, χ) is bounded and nonzero as s→ 1 for nontrivial χ, then
we have

lim
s→1+

∑
p≡h (mod k)

1
ps

=∞

This fact implies Dirichlet’s theorem.

Proof. We will examine L (s, χ) as s→ 1+. Because χ is completely multiplicative,
we may ‘factor’ an L-function just as we did the zeta function (see equation 5.3).
That is

(7.3) L (s, χ) =
∞∑
n=1

χ (n)
ns

=
∏
p

(
1 +

χ(p)
ps

+
χ(p2)
p2s

+ . . .

)
=
∏
p

(
1− χ (p)

ps

)−1

Recall from remark 5.6 that, although the logarithm function is not well-defined
on the complex plane, we may still define the logarithm by its Taylor series, which
retains the property that log (a)+log (b) = log (ab). Taking the logarithm of L (s, χ)
yields

(7.4) log (L (s, χ)) =
∑
p

− log
(

1− χ (p)
ps

)
=
∑
p

∞∑
n=1

χ (p)n

npns

Since this sum is absolutely convergent for s > 1, we may break it into two parts
as shown: ∑

p

∞∑
n=1

χ (p)
npns

=
∑
p

χ (p)
ps

+
∑
p

∞∑
n=2

χ (p)
npns

We see that the second sum is bounded for s > 1, since∣∣∣∣∣∑
p

∞∑
n=2

χ (p)
npns

∣∣∣∣∣ ≤∑
p

∞∑
n=2

1
npn·<(s)

<
∑
p

∞∑
n=2

1
pn

=
∑
p

1
p2
· 1
1− 1/p

<

∞∑
m=2

1
m (m− 1)

= 1
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Hence, we have log (L (s, χ)) =
∑
p
χ(p)
ps +O (1).

So far, we have worked only with a general Dirichlet character χ. We will now
pick a k, and let χ1, χ2, . . . χφ(k) be the Dirichlet characters modulo k. Pick h such
that (h, k) = 1, and consider the sum

1
φ (k)

φ(k)∑
i=1

χi (h) · log (L (s, χ)) =
1

φ (k)

φ(k)∑
i=1

χi (h)
∑
p

χi (p)
ps

+O (1)

Again, for s > 1, this sum is absolutely convergent. We may therefore rearrange
the summations to yield

1
φ (k)

φ(k)∑
i=1

χi (h) · log (L (s, χ)) =
1

φ (k)

∑
p

1
ps

φ(k)∑
i=1

χi (h) · χ (p) +O (1)

However, recall from theorem 4.1 that

φ(k)∑
i=1

χi (h) · χ (p) =

{
φ (k) if p ≡ h (mod k),
0 otherwise

Since (h, k) = 1.
Hence, we have

∑
p≡h (mod k)

1
ps

=
1

φ (k)

φ(k)∑
i=1

χi (h) · log (L (s, χi)) +O (1)

We know that L (s, χ1)→∞ as s→ 1; thus, so too does log (L (s, χ1)). Consider
the other characters modulo k: if L (s, χi) is both bounded and nonzero as s→ 1,
then its logarithm will be bounded. Moreover, if log (L (s, χi)) is bounded for all
nontrivial characters χi, we must have

∑φ(k)
i=1 χi (h) · log (L (s, χi)), and therefore∑

p≡h (mod k) 1/ps, unbounded. Hence, if we can show L (s, χi) to be bounded and
nonzero at s = 1 for nontrivial χ, then Dirichlet’s theorem will follow. �

8. The Boundedness of log (L (s, χ)) for Nontrivial χ

We now have the more difficult part of the proof: showing that log (L (s, χ)) is
bounded as s approaches 1 for nontrivial Dirichlet characters χ. In order to do this,
we must show that L (1, χ) is both convergent and nonzero.

We will prove this in six steps.
1). We will show that, for nontrivial χ,

∑
n χ (n) /ns converges for all s in the

half-plane < (s) > 0. This not only shows L (1, χ) to be finite, but will also aid us
in showing that L (1, χ) 6= 0.

2). We will use step 1 to show that L (s, χ) is holomorphic in this domain.
3). We will show that L (s, χ1) is holomorphic except for a simple pole at s = 1.
4). Consider the function ζk (s) =

∏
χ L (s, χ). From steps 2 and 3, we see that

if there is a χ such that L (1, χ) = 0, then ζk (s) is holomorphic for all < (s) > 0.
We will show that, in the domain < (s) > 1, we can express ζk as a convergent
Dirichlet series with nonnegative real coefficients.

5). We will show that, if there is a χ such that L (1, χ) = 0, then the Dirichlet
series defining ζk is convergent for all s in the domain < (s) > 0.
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6). Finally, we will use our findings in step 4 to show that the Dirichlet series
defining ζk is unbounded at s = φ (k)−1. This will contradict our assumption that
there exists a χ so that L (1, χ) = 0, completing the proof.

8.1. Step 1: The Convergence of L(s, χ) for <(s) > 0. We will prove a gener-
alized version of the needed result.

Lemma 8.1. Let an be a sequence of complex numbers so that the function S (x) =∑
n≤x an is bounded (say by J). Then the Dirichlet series

∞∑
n=1

an
ns

converges for all s in the domain < (s) > 0.

Proof. We will show this sum to be Cauchy. By Abel’s summation formula, we
have

M∑
n=m+1

an
ns

=
S (M)
Ms

− S (m)
ms

+ s

∫ M

m

S (t)
ts+1

dt

Let σ denote the real part of s. Taking absolute values in the above equation yields

(8.2)

∣∣∣∣∣
M∑

n=m+1

an
ns

∣∣∣∣∣ ≤ |S (M)|
Mσ

+
|S (m)|
mσ

+ |s|
∫ M

m

|S (t)|
tσ+1

dt

≤ J

(
2
mσ

+ |s|
∫ M

m

dt

tσ−1

)
≤ J

(
2
mσ

+
|s|
σ

∣∣∣∣ 1
Mσ
− 1
mσ

∣∣∣∣) ≤ 2J
mσ

(
1 +
|s|
σ

)
For a given s where σ > 0, this quantity approaches 0 as m approaches ∞. This
shows the sum

∑
n an/n

s to be Cauchy, and therefore convergent, for all s in the
domain < (s) > 0. �

The same logic can be used to prove a slightly more general version:

Corollary 8.3. Consider an so that the sum
∑
n an/n

s0 is bounded. Then the
Dirichlet series

∞∑
n=0

an
ns

converges for all s in the domain < (s) > < (s0).

Geometrically, this corollary shows that a Dirichlet series converges in a half-
plane (where we count both ∅ and C as half-planes).

Using lemma 8.1, we prove the convergence of L (s, χ) in the desired domain for
nontrivial χ.

Proposition 8.4. If χ is a nontrivial character modulo k, then we have L (s, χ)
finite for all s with real part greater than 0. Specifically, L (1, χ) is finite.

Proof. By lemma 8.1, it is sufficient to show that the sum

S (x) =
∑
n≤x

χ (n)

is bounded.
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If χ is nontrivial, we have S (l · k) = 0 for all l = 1, 2, . . .. Moreover, we have

|χ (n)| =

{
1 if (n, k) = 1
0 otherwise

We therefore have |S (n) | ≤ φ (k). �

8.2. Step 2: L(s, χ) is holomorphic for <(s) > 0. We wish to show that L (s, χ)
is holomorphic in the domain < (s) > 0. To do this, we make use of a well-known
lemma from complex analysis.

Lemma 8.5. Let fn be a sequence of functions, holomorphic in some subset A of
C, that converge uniformly on A to a function f . Then f is holomorphic on A, and
d
dz f = limn→∞

d
dz fn.

Furthermore, it is sufficient to show that fn converges to f uniformly in each
compact subset of A.

Proposition 8.6. Let K be a compact subset of {s ∈ C | < (s) > 0}, and let the
sum

∑
n an be bounded (again by J). Then the Dirichlet series F (s) =

∑
n χ (n) /ns

converges uniformly on K for all nontrivial characters χ. It follows that F is
holomorphic in the given half-plane.

Proof. We will use equation 8.2, which states∣∣∣∣∣
M∑

n=m+1

an
ns

∣∣∣∣∣ ≤ 2J
mσ

(
1 +
|s|
σ

)
where σ denotes the real part of s, for all nontrivial χ. In particular, we will use
this to show that the Dirichlet series is uniformly Cauchy on K.

Let α = infz∈K < (z). Since K is compact, we must have α > 0. Furthermore, let
β = supz∈K |z|. Again, since K is compact, β is well-defined and finite. Therefore,
for all s ∈ K, we have ∣∣∣∣∣

M∑
n=m+1

an
ns

∣∣∣∣∣ ≤ 2J
mα

(
1 +

β

α

)
This quantity approaches 0 as m → ∞. Moreover, the constants α and β depend
only on K and are independent of the individual elements of K. Therefore, the
Dirichlet series defining L is uniformly Cauchy, and therefore uniformly convergent,
on K. Thus, F (s) is holomorphic in its domain of convergence. �

Again, the same logic shows that if
∑
n an/n

s0 is bounded, then the function
F (s) defined by the Dirichlet series

∑
n an/n

s is holomorphic in the domain < (s) >
< (s0). Specifically, a Dirichlet series is holomorphic in its half-plane of convergence.

Of course, since the partial sums of nontrivial Dirichlet characters are bounded,
we have the following corollary:

Corollary 8.7. For nontrivial χ, we have L (s, χ) holomorphic in the domain
< (s) > 0.

In step 5, we will make use of the derivative of a function defined by a Dirichlet
series. Fortunately, lemma 8.5 tells us that we may differentiate a Dirichlet series
termwise in its domain of convergence.
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Corollary 8.8. Let F (s) =
∑
n f (n) /ns be a Dirichlet series that converges for

< (s) > 0. Then

F (k) (s) = (−1)k
∞∑
n=1

f (n) log (n)k

ns

Proof. Termwise differentiation yields d
dsF (s) = −

∑
n f (n) log (n) /ns. The corol-

lary follows inductively. �

8.3. Step 3: L(s, χ1) has a simple pole at s = 1.

Proposition 8.9. The function L (s, χ1) is holomorphic in the entire domain
< (s) > 0 except for a simple pole at s = 1.

Proof. We have L (s, χ1) =
∑

(n,k)=1 1/ns. Factoring this sum yields

L (s, χ1) =
∏
p-k

(
1− 1

ps

)−1

= ζ (s)
∏
p|k

(
1− 1

ps

)
The zeta function is holomorphic for < (s) except for a simple pole at s = 1.

Moreover, for a given p, we have 1 − 1/ps holomorphic everywhere and nonzero
at s = 1. Since there are only finitely many p to consider, we must have L(s, χ)
holomorphic except for a simple pole at s = 1. �

8.4. Step 4: The function ζk(s) and its Dirichlet Series. We consider the
function

ζk (s) =
∏
χ

L (s, χ)

where the product is taken over all Dirichlet characters modulo k. Since we know
L (s, χ1) has a simple pole at s = 1 and that L (s, χ) is holomorphic for all s with
< (s) > 0, then this function will be holomorphic in this domain if L (s, χ) = 0 for
some χ. Therefore, examination of this function is sufficient to prove Dirichlet’s
theorem.

Fortunately, this function has some nice properties.

Proposition 8.10. For < (s) > 1, ζk (s) is defined by a convergent Dirichlet series
with positive integer coefficients.

Proof. We have

(8.11) ζk (s) =
∏
χ

L (s, χ) =
∏
χ

∏
p-k

(
1− χ (p)

ps

)−1

=
∏
p-k

∏
χ

(
1− χ (p)

ps

)−1

Consider
∏
χ (1− χ (p) p−s)−1. Let f (p) be the order of p modulo k; then the values

χ (p) are the f (p)th roots of unity. Moreover, if we consider the character group,
the set of characters χ such that χ (p) = w (where w is a root of unity for f (p)) is a
coset of the subgroup {χ | χ (p) = 1}. Hence, there are exactly g (p) = φ (k) /f (p)
characters that attain each w. We therefore have

(8.12)
∏
χ

(
1− χ (p)

ps

)−1

=
∏

wf(p)=1

((
1− w

ps

)−1
)g(p)

=

((
1− 1

psf(p)

)−1
)g(p)
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Therefore, when we take the product over all primes, we have

ζk (s) =
∏
p-k

(
1− 1

psf(p)

)−g(p)
For <(s) > 1, each term in the product is equal to (1 + 1/ps·f(p) + 1/p2s·f(p) +

. . .)g(p). Thus, in this domain, we may express ζk as a Dirichlet series with positive
integer coefficients. �

8.5. Step 5: L(1, χ) = 0 implies the convergence of ζk for <(s) > 0. We have
shown that ζk is defined by a Dirichlet series with nonnegative real coefficients in
the domain < (s) > 1. We now wish to show that if it is holomorphic in the half
plane < (s) > 0, then the series defining it is convergent in the same domain. We
will prove a lemma; the proposition will immediately follow.

Lemma 8.13. Let F (s) be a function defined in the half-plane < (s) > c by the
convergent Dirichlet series

F (s) =
∞∑
n=1

f (n)
ns

where f (n) is real and nonnegative. Moreover, let F be holomorphic in the domain
<(s) > c′, with c′ < c. Then the Dirichlet series defining F converges for all
< (s) > c′.

Proof. Consider some point a > c. Then F is holomorphic, and therefore analytic,
at a, and therefore we may define F by its power series

F (s) =
∞∑
k=0

F (k) (a)
k!

(s− a)k

Moreover, from step 3, we know that

F (k) (a) = (−1)k
∞∑
n=1

f (n) log (n)k

ns

We may therefore write the Taylor series in this form:

F (s) =
∞∑
k=0

∞∑
n=1

(a− s)k f (n) log (n)k

k! · ns

Pick b > c′. Then there is a neighborhood O of a that both contains b and lies
entirely in the set {z | <(z) > c′}. Therefore, F is holomorphic in the entirety of
O, so that the power series representation for F is valid for b. Moreover, since each
term in this double-sum is real and nonnegative, we may rearrange the order of
summation, giving

F (b) =
∞∑
n=1

f (n)
na

∞∑
k=0

((a− b) log (n))k

k!
=
∞∑
n=1

f (n)
na

e(a−b) log(n)

=
∞∑
n=1

f (n)
na−(a−b) =

∞∑
n=1

f (n)
nb

Thus, the Dirichlet series converges at b for any b > c′, and therefore in the entire
half-plane <(s) > c′. �
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Corollary 8.14. If ζk is holomorphic at s = 1, the Dirichlet series defining it is
convergent in the entire domain where < (s) > 0.

Proof. Recall from step 4 that if ζk is holomorphic at s = 1, it is holomorphic in
the entire half-plane where < (s) > 0. Also recall that the Dirichlet series defining
it is convergent for <(s) > 1. Therefore, by lemma 8.13, this Dirichlet series must
converge for <(s) > 0. �

8.6. Step 6: The divergence of ζk at s = φ(k)−1.

Proposition 8.15. The Dirichlet series defining ζk (s) diverges at s = 1
φ(k) .

Proof. Recall from step 4 that we have

ζk (s) =
∏
p-k

(
1− 1

psf(p)

)−g(p)
and consider the factor corresponding to p. We have(

1− 1
psf(p)

)−g(p)
=
(

1 + p−sf(p) + p−2sf(p) + . . .
)g(p)

Since f (p) ≤ φ (k) and g (p) ≥ 1, this sum dominates the sum

1 + p−sφ(k) + p−2sφ(k) + . . .

Therefore, the series defining ζk (s) dominates the series
∑

(n,k)=1 n
−sφ(k). How-

ever, this sum diverges at s = 1/φ (k). �

We have shown that, if there is a χ so that L (1, χ) = 0, then the function
ζk (s) is holomorphic in the entire half-plane < (s) > 0. This would imply that
the Dirichlet series defining ζk converges in this domain. However, we have just
found at least one s for which this Dirichlet series does not converge. Therefore,
there cannot exist a χ so that L (1, χ) = 0, which in turn implies the boundedness
of log (L (1, χ)) = 0 for nontrivial χ. Theorem 7.2 shows that this fact implies
Dirichlet’s theorem. Hence, the proof is complete.
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