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Abstract. A new proof of Fermat’s Little Theorem is presented. A brief

history of this theorem is presented to both provide historical context and to

show the new proof adds to the body of knowledge surrounding the theorem in
a meaningful way. The new proof is discussed in the context of Euler’s classic

proof and an intuitive combinatorial proof.

1. Brief History of Fermat’s Little Theorem

Pierre de Fermat first wrote what would become his ”Little Theorem” in 1679.
As was typical of Fermat, he did not include a proof for fear the proof would be too
long [1]. The first proof of this theorem was published more than fifty years later
by Leonhard Euler, in 1736 [1]. Using the modular arithmetic notation published
by Johann Carl Friedrich Gauss in 1801[1], Euler’s proof can be presented in a
shorter and simpler fashion. Euler’s proof using modular arithmetic notation is
presented in this paper as the classical proof of Fermat’s Little Theorem. Note that
even though the notation is slightly different, the basis of Euler’s original proof is
unchanged in the proof presented in this paper.

In this paper, it is shown that the most modern concept necessary for the proof of
Fermat’s Little Theorem is either Taylor’s theorem, which was published by Brook
Taylor in 1717 [2], or the binomial theorem, which was published by Blaise Pascal
in 1665 [3] (both theorems lead to the same result in this paper). This is of interest
because it shows that mathematicians had the necessary mathematical machinery
to prove Fermat’s Little Theorem well before Euler published his proof in 1736.

2. New Proof of Fermat’s Little Theorem

The proof that follows relies on Taylor’s theorem (or the binomial theorem).

Theorem 2.1. The expression

(2.2) ap−1 − 1

is divisible by p, where p is a prime and a is an integer, so long as a is not divisible
by p.

Proof. Note that the theorem is trivial for p = 2. Thus, consider for some arbitrary
odd prime p

(2.3) f(x) = xp−1 − 1

Using Taylor’s theorem, expand f(x) around x = 1. This yields

(2.4) f(x) = (p−1)(x−1)+
1
2!

(p−1)(p−2)(x−1)2+· · ·+ 1
(p− 1)!

(p−1)!(x−1)p−1
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As a side note, we remark that the series in Equation 2.4 can also be obtained by
applying the binomial theorem to the expression

(2.5) (1 + (x− 1))p−1 − 1

Now consider those values of x divisible by p. For these values of x, f(x) is one less
than a multiple of p, and thus not divisible by p.

Now consider x = kp + c, k, c ∈ Z and 0 < c < p. Note that when we consider
Equation 2.3 mod p, we have

(2.6) f(kp + c) ≡ f(c) mod p

Thus, we only have to consider values of x in the interval 0 < x < p. We will
now utilize induction to prove the theorem. The base case is x = 1. Note that
f(1) = 0, and thus is divisible by p. Now by induction, suppose f(n) is divisible by
p, 0 < n < p− 1. Thus, np−1 − 1 is divisible by p.

Now we will prove that f(n + 1) is divisible by p. Consider f(n + 1), where

(2.7) f(n + 1) = (p− 1)(n) +
1
2!

(p− 1)(p− 2)(n)2 + ... +
1

(p− 1)!
(p− 1)!(n)p−1

Note that

(2.8) f(n + 1) ≡ −n + n2 − n3 + ... + np−1 mod p

This is due to the fact that

(2.9)
(

p− 1
k

)
=

(p− 1)...(p− k)
k!

≡ (−1)k mod p

Thus, f(n + 1) is congruent to a finite geometric series with a ratio of −n. Using
the formula for the sum of a geometric series we obtain

(2.10) f(n + 1) ≡ −n + np

1 + n
mod p

This factors easily into

(2.11) f(n + 1) ≡ (n)(−1 + np−1)
1 + n

mod p

As 0 < n < p− 1, 1 + n is not divisible by p. By assumption, np−1 − 1 is divisible
by p, and therefore f(n + 1) is divisible by p. Thus f(n + 1) is divisible by p. This
completes the proof by induction. �

3. Classic Proof

A version of this proof was first provided by Euler.

Proof. From the Binomial Theorem, we note that

(3.1) (a + 1)p ≡ ap + 1 mod p

This is due to the fact that

(3.2)
(

p

k

)
≡ 0 mod p

for 0 < k < p. Subtract a + 1 from both sides of the congruence in Equation 3.1.

(3.3) (a + 1)p − (a + 1) ≡ ap − a mod p

Thus, we note that if ap − a is divisible by p, then so also must (a + 1)p − (a + 1)
be divisible by p.
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Clearly, 1p−1 is divisible by p. Now by induction, suppose that np−n is divisible
by p. Note that Equation 3.3 then implies that (n + 1)p − (n + 1) is divisible by p,
which completes the induction. This gives the general statement

(3.4) ap ≡ a mod p

We can multiply both sides of Equation 3.4 by the multiplicative inverse of a mod
p to obtain the classical statement:

(3.5) ap−1 ≡ 1 mod p

�

4. Combinatorial Proof

This proof is intuitive and requires less mathematics than the two previous
proofs. It is based upon the concept of bracelets.

Proof. First, we consider an alphabet with a distinct symbols, and we then consider
all possible strings of symbols of length p. Clearly, there are ap distinct strings.
For concreteness, we will use p = 5 and a = 2 for an example. Thus, we can let the
alphabet be {A,B}, and there are clearly 25 = 32 possible strings.

AAAAB AAABA AABAA ABAAA BAAAA
AABAB ABABA BABAA ABAAB BAABA
AAABB AABBA ABBAA BBAAA BAAAB
AABBB ABBBA BBBAA BBAAB BAABB
ABABB BABBA ABBAB BBABA BABAB
ABBBB BBBBA BBBAB BBABB BABBB
AAAAA
BBBBB

Now we bring the ends of each string together to create bracelets. Note that for a
fixed string x0, . . . , xp−1, the set of strings that determine the same bracelet as that
string (excluding the string itself) is {xk, . . . , xp−1, x0, . . . , xk−1 | 1 ≤ k ≤ p − 1}.
For example, each row above consists of strings which determine the same bracelet.

Now, we claim that for each non-constant string x0, . . . , xp−1, there are precisely
p strings that determine the same bracelet (including itself). Suppose for contra-
diction that a rotation by k, 0 < k < p, yields the original bracelet. Then it follows
that x0 = xk = x2k = . . . = x(p−1)k. Here xtk := xr for the unique r such that
0 ≤ r ≤ p − 1 and tk ≡ r mod p. Since p is prime, we note that as t takes on all
values from 0 ≤ t ≤ p− 1, r takes on all values in the interval 0 ≤ r ≤ p− 1. Thus,
the string is constant, which is a contradiction.

We also note that there are precisely a strings which are constant, such as
AAAAA and BBBBB. Thus, there are ap − a non-constant strings. We know
that we can partition these strings into groups of size p, and thus ap−a is divisible
by p. This implies that

(4.1) ap ≡ a mod p

For a not divisible by p, this is clearly

(4.2) ap−1 ≡ 1 mod p

�
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5. Concluding Remarks

In this paper, we have presented an original proof of Fermat’s Little Theorem.
The significance of this proof lies in the fact that it relies only on mathematical
techniques older than either the statement of the theorem by Fermat or the first
proof by Euler, but was not discovered until now. In other words, the proof is not
the result of more modern mathematical tools, but rather was perfectly accessible
to mathematicians at the time of Fermat, and certainly to those in the more than
fifty years that elapsed between the statement by Fermat and the proof by Euler.
We then compared this new proof to the proof by Euler, and to an intuitive proof
based on the concepts of strings and bracelets. This provided context in which to
view the new proof.
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