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PATRICIA BRENT

Abstract. In order to explore Representation Theory as a logical follow-up
to group theory, I attempt to enumerate the irreducible representations of

GL2(Fq). In order to do so, I first introduce the idea of a representation and

provide a simple example. Next, I prove the existance of an irreducible decom-
position for a given representation and introduce a useful result of characters.

Finally, four types of the representations desired are shown to completely de-
scribe all irreducible representations of GL2(Fq).
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1. Introduction

Representation theory, simply put, brings group theory into the domain of lin-
ear algebra. In a representation, group elements are associated to matrices, whose
properties (determinant, trace, eigenvalues, etc.) can be used to further inform a
description of the group under consideration. Representations may also provide
geometric intuition for abstract groups or, on a more advanced level, aid in under-
standing Galois groups and Lie algebras.

Definition 1.1. Given a group G and a vector space V (typically considered over
C), a representation ρ : G → V is defined to be a homomorphism from G into the
group of endomorphisms of V. This latter group is GL(V).

In order to provide an elementary example of a representation, we will consider
a well-known family of groups: namely, the dihedral groups. I will denote its
members by D2n, where 2n is the order of the group.1 Letting G = D6 and V = C2,
then, we may consider the representation below, with group elements defined by
the presentation specified.

1The reason for this notation will become clear momentarily.
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Example 1. Consider D6 =
〈
(r, s)|r3 = 1; s2 = 1; rs = sr−1

〉
and let ρ : D6 →

GL2(C2) be defined by

s→
[
1 0
0 −1

]
r →

[
−1/2

√
3/2

−
√

3/2 −1/2

]
To better understand this representation, it may be helpful to consider D6 according
to its geometric definition as the rigid motions of an equilateral triangle (i.e. an
n-gon, for n = 3). In this case, one may picture the triangle with one point on the
positive x-axis and the other two in the second and third quadrants, respectively.
The matrix r represents rotation by π/3 radians; this is easily checked via the
standard matrix for rotation by θ. The element s corresponds to a matrix for
reflection across the x axis. Observation shows that these matrices both permute
vertices of the triangle (noncommutatively) and satisfy the order constraints of the
abstract definition.

2. Irreducibility

Given two representations into the endomorphisms of vector spaces V and W,
respectively, there exist representations of the same group into V ⊕W and V ⊗W.
The same is true of alternating and symmetric powers of any representation space
V as well as the dual space V∗. In light of these larger representations, a natural
question to ask is whether, given a representation, it is possible to break it down into
a direct sum of somehow smaller or simpler representations. This concept, known
as (ir)reducibility, turns out to provide an intuitive organization of all possible
representations for a given group. Before we rush forward, however, it behooves us
to formalize our terms.

Definition 2.1. A representation ρ : G → GL(V) is irreducible if V is not 0 and
contains no G-stable subspaces.

By G-stable subspace we mean simply a subspace of V fixed by all the elements
in the image of G by ρ. As it turns out, if we can find just such a stubborn
subspace, the representation space can be broken down into two G-stable pieces
(and potentially more, until we obtain an irreducible decomposition).

Theorem 2.2. Given a linear representation ρ : G → V and W a G-stable subspace
of V, there exists a G-stable complement W ′ of W in V.

Proof. Take any complement of W and call it W ′. Let p be the projection of V
ontoW such that the kernel of p isW ′. Now, as suggested by Serre, we define p0 to
be the averaging function2 of the conjugates of p by elements of G, where g is the
order of G and is assumed not to divide the characteristic of the field over which V
is a vector space.

p0 =
1
g

∑
t∈G

(ρt · p · ρ−1
t )

Note that, by definition, p maps V into W, and ρt maps W into itself. It follows
that p−1

t x ∈ W for all x ∈ W. Then, since p acts as the identity on W,

p · ρ−1
t x = ρ−1

t x

2Note that the averaging function is fixed by the action of elts. of G.
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Composition on both sides by ρt gives:

ρt · p · ρ−1
t x = x, i.e.p0x = x

Since p0 acts identically on W and (because it includes p) sends elements of V to
W, it is also a projection of V onto W. Then, taking W ′ to be the kernel of p0,
we have a complement of W which turns out via a few short calculations[4] to be
G-stable. �

By thus establishing the reducibility of any given representation to irreducible
parts, we obtain a set of atomic pieces that uniquely determine the given repre-
sentation, up to isomorphism. With this conception in mind, we may return to
the question of finding all possible representations for a given group. It will be the
goal of this paper to investigate the irreducible representations of G = GL2(Fq) for
finite q. Finite fields are simple to define but can behave counterintuitively with
regard to geometry. In addition, representations involving matrices over finite fields
have given rise to a number of unexpected finite simple groups, including the Mon-
ster Group. Thus, by selecting this particular G, we can investigate an interesting,
non-commutative group while considering only two-dimensional matrices so that
calculations remain reasonable.

3. Characters

One extremely useful way of finding these irreducible representations comes from
character theory. In general, a character χ is a homomorphism, from G to a field
(commonly C), satisfying certain properties. In the case of GL2(Fq), we may con-
sider a map onto GLn(C). Taking the trace of these matrices allows us to consider
single-dimensional elements of a more familiar field which nonetheless interact sim-
ilarly to the original matrices.

Definition 3.1. Given a representation ρ of a group G, the character χρ is defined
for each g ∈ G as the trace of the matrix ρ(g). Recall that the trace does not
depend on a choice of basis elements.

Theorem 3.2. Given characters χρi
and χρj

of representations ρi and ρj, define
an inner product (χρi

,χρj
) = 1

g

∑
t∈G χρi(t) ·χρj (t) where g is the order of G. Then

the following statements hold:
(i) χρi

is irreducible3 ⇐⇒ (χρi
,χρi

) = 1
(ii)Ifχρi and χρi are irreducible with i 6= j, then (χρi , χρj ) = 0 ⇐⇒ χρi � χρi

4

This theorem and the next are given as a simple consequence of often much more
complicated derivations, none of which is immediately relevant to the topic at hand;
for this reason, proofs are omitted[1, 3]. However, to solidify the idea, I will pro-
vide a few examples for the specific groups we will be considering in the next section.

Theorem 3.3. The number of distinct irreducible representations of a group G is
the number of conjugacy classes of G.

3An irreducible character is a character of an irreducible representation
4Two representations are isomorphic if there exists a group-action-preserving isomorphism

between the vector spaces into which they map.
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In combination, Theorems 3.2 and 3.3 give rise to a disarmingly simple frame-
work for uncovering the irreducible representations of a group. One need only
generate a list of possible characters and check their norms and inner products
with one another until the number of conjugacy classes is reached. Compared to
the arduous process of uncovering all the irreducible representations for a given
group and searching for isomorphisms between between them, checking this inner
product is computationally uncomplicated, to the extent that it can easily be done
by computer.

4. Representations of GL2(Fq)

To facilitate the search for all possible representations, I will better organize the
group itself. The different conjugacy classes of GL2(Fq) may each be represented
in one of four forms, owing to the reduction of matrices to Jordan Canonical Form.
First, we consider matrices with a repeated eigenvalue. If a matrix has minimal
polynomial of the form (x− a), it is conjugate to a matrix of the first form; other-
wise, it becomes one of the second form. For two different eigenvalues, one obtains
the third form. Finally, since it is not unreasonable to consider that Fq is not al-
gebraically closed, we have the fourth form, which accounts for the possibility of a
characteristic polynomial with a root outside Fq.[

a 0
0 a

]
(4.1)

[
a 1
0 a

]
(4.2)

[
a 0
0 d

]
(4.3)

[
b dx
d b

]
(4.4)

with entries satisfying a 6= d and a, d 6= 0 and where x is an element of a
second-degree field extension over Fq as suggested5. Calculating the total number
of conjugacy classes from these forms is straightforward: there are q − 1 nonzero
elements of Fq and thus q − 1 conjugacy classes of each of the first two forms.
Similarly, in the third form, there are q − 1 possible values for a, and selection
of a restricts a choice of d. Bearing in mind that interchanging the basis vectors
for a matrix is easily accomplished by conjugation, we divide this product by two
in order to prevent double-counting classes and arrive at 1

2 (q − 1)(q − 2) classes
of the third form. Similar logic leads us to believe there are 1

2 (q)(q − 1) classes
of the fourth form, which turns out to be correct for slightly more complicated
reasons[3, 2]. Then GL2(Fq) possesses, all together, q2 − 1 conjugacy classes and
thus irreducible representations.

4.1. Type I. The simplest representations to manage are, as previously suggested,
those which are one-dimensional. With this in mind, we turn to a familiar character
for the first type of irreducible representation: the determinant. By definition, the
determinant takes matrices to single elements of the field whence we obtained the
entries of the matrix, and so we have a map from GL2(Fq) into GL1(Fq). In fact,
composing some homomorphism φ : F∗q → C∗ with the determinant also defines an
irreducible character.

Example 2. Letting q = 2 or 3, it is simple to check that any character of the
form φ◦ det satisfies Theorem 2.i. For q = 2, 1 is the only possible determinant,
so the inner product of the character becomes 1

g

∑
t∈G |12|, which is equal to 1 as

desired. Letting q = 3, the possible values for the determinant are 1 or 2, but each

5Note that all such extensions are isomorphic, so one need not specify a choice of x
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yields 1 when squared. Thus, we obtain the same sort of sum. In F5, there are field
elements of order greater than two, and so things become more interesting.

First, note that elements of F∗q must have finite order, i.e. x ∈ F∗q has xn = 1
for some n|q − 1 < ∞. Since φ is a homomorphism, the same fact must hold
for φ(x) ∈ C∗. Namely, φ(x) must be a q − 1st root of 1, which we will denote
ζkq−1 = e2kiπ/(q−1) for 1 ≤ k ≤ n. For readers without a background in complex
analysis, it is my hope the following calculations prove illuminating (as they did for
me); more experienced readers may feel free to skip them.
The sum from Theorem 3.2.i becomes

(4.5)
1
g

g∑
j=1

ζjq−1 · ζ
j
n

Making the substitution eix = cos(x) + i · sin(x) with our original definition for
ζn yields

(4.6)
1
g

g∑
j=1

(cos(
2jiπ
q − 1

) + i · sin(
2jiπ
q − 1

))(cos(
2jiπ
q − 1

)− i · sin(
2jiπ
q − 1

))

Finally, expanding and applying an identity from trigonometry supplies the de-
sired result:

(4.7) =
1
g

g∑
j=1

cos2(
2jiπ
q − 1

) + sin2(
2jiπ
q − 1

) =
1
g

g∑
j=1

1 = 1

Thus we see that characters of this type are clearly irreducible. Further, since F∗q
is cyclic, any homomorphism φ is determined by where it sends a cyclic generator of
the group. There are q−1 roots of unity and thus possible maps (given a generator).
Suppose, however, that a and b each generate F∗q , and let n be the power such that
an = b. Whatever maps are produced by b are thus also produced by a, so that one
need only consider the maps obtained from a single cyclic generator. Thus Type I
yields precisely q − 1 irreducible characters.

4.2. Type II. In order to introduce the next type of character, we define, as before,
some homomorphism φ : Fq → C∗. Instead of composing φ with the determinant,
however, the character will simply take on the value of φ(ad), i.e. the value of
the homomorphism evaluated at the product of the elements on the main diagonal.
Note, however, that this definition does not give rise only to irreducble characters.
A Type II character on G might be considered as a character of Type I on the Borel
subgroup B ⊂ GL2(Fq), which consists of matrices of the form

(4.8)
[
a b
0 d

]
with a, b, d ∈ Fq

For elements of the Borel subgroup, the product ad is the determinant. Thus,
in order to restrict Type II characters so that we only obtain new, irreducible
representations, we must remove Type I characters from this collection. Once
again, we are left with q − 1 unique irreducible representations.
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4.3. Remaining Types. The constructions of Types III and IV rely heavily on
the introduction of Cartan subgroups, which derive from conjugates of basis vector
matrices for a quadratic extension K of Fq[3]. As one might hope, there are pre-
cisely 1

2 (q−1)(q−2) characters of Type III and 1
2q(q−1) of Type IV, corresponding

nicely to the third and fourth conjugacy classes above[2]. Thus we obtain q2 − 1
irreducible representations of GL2(Fq); by Theorem 3.3, we have found all of them.

General Type Number of Irr. Representations
Type I q − 1
Type II q − 1
Type III 1

2 (q − 1)(q − 2)
Type IV 1

2q(q − 1)
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