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Abstract. By associating a subfield of R to a set of points P0 ⊆ R2, geo-

metric properties of ruler and compass constructions on P0 can be understood

algebraically, creating a powerful tool for proving the possibility or impossibil-
ity of certain constructions. In this paper, field theory will be used to prove

the impossibility of doubling the cube and squaring the circle, and will be used
in studying the constructibility of regular n-gons.

1. Background

There are several conventions for defining a ruler and compass construction, all
of which are for the most part equivalent. Ian Stewart’s book Galois Theory is the
source of the definitions and conventions used in this paper [1].

Definition 1.1 (Ruler and Compass Construction). A ruler and compass con-
struction on a set of points P0 ⊆ R2 is defined by two operations:

(1) draw a straight line between two points in P0

(2) draw a circle centered at some point p ∈ P0 with radius equal to the distance
between two points in P0.

Definition 1.2 (Constructibility). A point p ∈ R2 is said to be constructible
in one step from P0 if p is the intersection of two circles, two lines, or a line
and a circle constructible on P0. If ri = (xi, yi) is constructible in one step from
Pi−1, then we denote Pi = Pi−1 ∪ {ri}. A point rn is said to be constructible
from P0 if there exists a finite sequence of points r1, . . . , rn ∈ R2 such that for all
i ∈ {1, ..., n}, ri is constructible in one step from the set P0 ∪ {r1, . . . , ri−1}.

Given these definitions for a ruler and compass construction, we can now asso-
ciate a subfield of R with a set of points in R2.

Definition 1.3 (Point field). Let P0 be a set of points in R2. Then the point
field of P0, denoted K0, is the smallest subfield of R containing every coordinate of
every point in P0. If some point ri = (xi, yi) is constructible in one step from Pi−1,
then the point field Ki of Pi = Pi−1 ∪ {ri} is the smallest subfield of R containing
Ki−1, xi, and yi.

A very simple result follows from our definition of a point field:

Lemma 1.4. Let ri = (xi, yi) be a point constructible from P0, and let Ki be the
point field of Pi. Then both xi and yi are roots of quadratic polynomials over the
field Ki−1.
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Proof. Note that if ri is constructible from P0, it must be constructible in one step
from some set of points Pi−1. Therefore ri must be the intersection of two lines,
two circles, or a circle and a line constructible on Pi−1, and we need only prove the
lemma for these three cases. These can be proven with simple coordinate geometry.
We will only prove the line-meets-circle case, but proofs of the other two cases are
very similar.

Consider a line from A = (p, q) to B = (r, s), and a circle centered at C = (t, u)
with radius w, where w is the distance between two points in Pi−1, and let D =
(x0, y0) be a point of intersection.

The equation of AB is
x− p
r − p

=
y − q
s− q

.

The equation of the circle is

(x− t)2 + (y − u)2 = w2.

Solving for x0 gives

(1.5) (x0 − t)2 +
[

(s− q)
(r − p)

(x0 − p) + q − u
]2
− w2 = 0.

The coordinates of A,B,C, and D are all elements of Ki−1, as are w and w2.
Therefore Equation 1.5 is a quadratic equation over Ki−1, and x0 is a root of a
quadratic equation over Ki−1. Solving for y0 gives a similar quadratic equation. �

We are almost ready to prove the key theorem for ruler and compass construc-
tions, but first we will need the following lemma from basic field theory, which we
will not prove here.

Lemma 1.6. Let K, L, and M be fields such that K ⊆ L ⊆ M . Then [M : K] =
[M : L][L : K].

Corollary 1.7. If K0 ⊆ . . . ⊆ Kn, then [Kn : K0] = [Kn : Kn−1] · · · [K1 : K0].

Proof. This is a simple proof by induction using Lemma 1.6. �

Theorem 1.8. Let P0 ⊆ R2, and let K0 be its point field. Then for all constructible
points r = (x, y), the degrees [K0(x) : K0] and [K0(y) : K0] are powers of 2.

Proof. The point rn = (x, y) is constructible from P0, so there exists a finite se-
quence of points r1, . . . , rn such that for all i ∈ {1, ..., n}, ri is constructible in one
step from P0 ∪ {r1, ..., ri−1}. By Lemma 1.6, if ri = (xi, yi), then [Ki−1(xi) : Ki−1]
is 1 if the quadratic polynomial over Ki−1 of which xi is a root is reducible over



UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY 3

Ki−1, or 2 if it is irreducible. The same holds for [Ki−1(yi) : Ki−1]. Therefore by
Corollary 1.7, we have

[Ki−1(xi, yi) : Ki−1] = [Ki−1(xi, yi) : Ki−1(xi)][Ki−1(xi) : Ki−1] = 2n

where n = 0, 1, or 2, and Ki = Ki−1(xi, yi), so [Ki : Ki−1] is a power of 2. If Kn

is the point field of Pn, then

[Kn : K0] = [Kn : Kn−1] · · · [K1 : K0]

and by Corollary 1.7 [Kn : K0] is a power of 2. But

[Kn : K0] = [Kn : K0(x)][K0(x) : K0]

so [K0(x) : K0] is a power of 2. Similar steps show the same for [K0(y) : K0]. �

Now we have the tools necessary to prove the impossibility of two significant
constructions: doubling the cube and squaring the circle.

2. Impossible Constructions

Theorem 2.1. Given a cube of volume V , a cube of volume 2V is impossible to
construct using rulers and compasses.

Proof. If we have a cube, then we have a side of the cube, and we may, with no loss
of generality, assume that one side of the cube is the line between points (0, 0) and
(1, 0). The volume of such a cube is 1, so constructing a cube of volume 2 would
be equivalent to constructing some point (α, 0) such that α3 = 2. However, the
smallest field containing 0 and 1 is Q, and the minimum polynomial of α over Q is
α3 − 2. This polynomial has degree 3, so we have

[Q(α) : Q] = 3

But by Theorem 1.8, if (α, 0) is constructible from {(0, 0), (1, 0)}, then [Q(α) : Q]
must be a power of 2. This is contradictory; therefore, such a point (α, 0) cannot
be constructed, and we cannot construct a cube of volume 2. �

Theorem 2.2. Given a circle of area A, a square of area A is impossible to con-
struct using rulers and compasses.

In the proof of this theorem, we will use without proof the fact that π and
√
π

are transcendental over Q.

Proof. We can, with no loss of generality, assume that our circle is the unit circle
centered at (0, 0). The area of this circle is π, and constructing a square with area
π is equivalent to constructing a point (

√
π, 0). The smallest field containing 0 and

1 is Q, so the point field obtained from adjoining (
√
π, 0) to Q is Q(

√
π). However,

by Theorem 1.8, [Q(
√
π) : Q] must be a power of 2, and

√
π must be algebraic over

Q, which is clearly not true. Therefore such a point (
√
π, 0) cannot be constructed;

hence we cannot construct a square of area π. �
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3. Field Properties of the Constructible Points

Theorem 3.1. Let P ⊆ R2 contain (0, 0) and (1, 0), and let K be the point field
of P . Then the point r = (x, y) is constructible from P if x, y ∈ K.

The reader should note that, because P contains (0, 0) and (1, 0), we can con-
struct the coordinate axes. We will use this fact extensively in the proof.

Proof. First, we must prove that (x, y) is constructible from P if and only if (x, 0)
and (y, 0) are constructible. Suppose (x, y) is constructible from P . We can con-
struct lines that project this point onto the coordinate axes. The projection onto
the x-axis is the point (x, 0). The projection onto the y-axis is the point (0, y). A
circle centered at (0, 0) with radius y will intersect the x-axis at (y, 0). Doing these
steps in reverse order will construct the point (x, y) from (x, 0) and (y, 0).

Second, we must prove that the set of all numbers z such that (z, 0) is con-
structible from P forms a field containing K, which we will denote FP . To do
so, it will suffice to prove that if (x, 0) and (y, 0) are constructible from P , we can
construct the points (x+y, 0), (x−y, 0), (xy, 0) and (xy , 0). Suppose we have points
(x, 0) and (y, 0). A circle centered at (x, 0) with radius y will intersect the x-axis
at points (x+ y, 0) and (x− y, 0). For (xy, 0), consider the following construction:

The two right triangles constructed are similar triangles, so the ratios of corre-
sponding sides are equal, which gives us the following equivalent equations:

x

1
=

z

y
z = xy.

A similar construction follows for ( 1
y , 0), and from this we can construct (xy , 0). So

the set of all z such that (z, 0) is constructible from P forms a field FP . And K is
the field spanned by the coordinates of all points in P , so clearly FP must contain
K.

Now, suppose x and y are in K. Then x and y must also be in FP . Therefore
the points (x, 0) and (y, 0) are constructible from P . And from the first part of
the proof we know that (x, y) is constructible if and only if (x, 0) and (y, 0) are
constructible, so the point (x, y) must also be constructible from P . �
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Theorem 3.2. Let P0 ⊆ R2, and let K0 be the point field of P0. Suppose K0(α) is
an extension of K0 with degree 2 such that K0(α) ⊆ R. Then for all x, y ∈ K0(α),
the point (x, y) is constructible from P0.

Proof. Since [K0(α) : K0] = 2, the minimum polynomial of α over K0 is quadratic,
so for some p, q ∈ K0, we have

α2 + pα+ q = 0.

From this, we get

α =
−p±

√
p2 − 4q

2
.

However, K0(α) ⊆ R, so α must be real, and we have p2−4q ≥ 0. By Theorem 3.1,
the desired result will follow if for all k ∈ K0, we can construct the point (0,

√
k)

from P0. This is provable with simple coordinate geometry. �

Using induction on the result of Theorem 3.2 gives us the following corollary,
which is stated without proof:

Corollary 3.3. Suppose P0 ⊆ R2, and K0 is the point field of P0. Let x, y ∈ L,
where L is an extension of K0, and L ⊆ R. If there exists a finite series of subfields
K0 ⊆ . . . ⊆ Kn = L such that for all i = 1, ..., n, [Ki : Ki−1] = 2, then (x, y) is
constructible from P0.

We can now use these facts to study for what values of n a regular n-gon is
constructible.

4. Constructibility of Regular N-Gons

The proofs in this section will be less rigorous than those in the the first three
sections, and we will use algebra to better understand the properties of constructible
n-gons. In particular, note that:

(1) In the complex plane, the nth roots of unity are the vertices of a regular
n-gon of unit radius.

(2) Each nth root of unity is a zero in C of the polynomial

tn − 1 = (t− 1)(tn−1 + ...+ t+ 1)

First, we shall see how the constructibility of n-gons implies the constructibility
of other m-gons.

Theorem 4.1. (1) If a regular n-gon is constructible, and m divides n, then
a regular m-gon is also constructible.

(2) If regular n-gons and m-gons are constructible and (m,n) = 1, then a
regular mn-gon is constructible.

Proof. (1) Suppose a regular n-gon is constructible, and n = md, where d ∈ N.
Drawing a line through every dth vertex will result in a regular m-gon.

(2) Suppose regular n-gons andm-gons are constructible, and (m,n) = 1. Then
there exist a, b ∈ Z such that

am+ bn = 1

which implies that
1
mn

= a
1
n

+ b
1
m
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From this equation and Theorem 3.1, we can, given angles of 2π
m and 2π

n ,
construct an angle of 2π

mn , and we can then replicate this angle mn times
to create the vertices of an mn-gon.

�

Already, we have the following obvious corollary for constructing regular n-gons:

Corollary 4.2. Let n = pa1
1 · · · p

ak

k where p1, . . . , pk are distinct primes. Then
a regular n-gon is constructible if and only if, for each pai

i , a regular pai
i -gon is

constructible.

We will need three more lemmas before coming to the final theorem on con-
structible n-gons. These lemmas are proven mostly with algebraic manipulations
of polynomials, so their proofs shall not be given here.

Lemma 4.3. Suppose p is a prime number and a regular pn-gon is constructible for
some n ∈ N. Let γ be a (pn)th root of unity in C. Then the degree of the minimum
polynomial of γ over Q is a power of 2.

Lemma 4.4. Let p be prime and γ be a primitive pth root of unity in C. Then the
minimum polynomial of γ over Q is

f(x) = 1 + x+ . . .+ x(p−1)

Lemma 4.5. Let p be prime and γ be a primitive (p2)th root of unity in C. Then
the minimum polynomial of γ over Q is

g(x) = 1 + xp + . . .+ xp(p−1)

Several facts should be obvious from these three lemmas. First of all, if a regular
p-gon is constructible, then the minimum polynomial of a pth primitive root of
unity in C will be

f(x) = 1 + x+ . . .+ x(p−1)

But then by Lemma 4.3, p−1 must be a power of 2. Therefore we already know that
p = 2r + 1. And from Lemma 4.2, it follows that if a regular n-gon is constructible,
and n = pa1

1 · · · p
ak

k for distinct primes pi, then each pi must be of the form 2s + 1
for some s ∈ N. The final theorem in this paper determines explicitly those values
of n for which a regular n-gon is constructible:

Theorem 4.6. A regular n-gon is constructible using rulers and compasses if and
only if

n = 2rp1 · · · ps
where r and s are non-negative integers, and each pi is a distinct prime of the form
p = 22si + 1, a Fermat prime.

To prove that constructibility of the regular n-gon implies n is a product of dis-
tinct Fermat primes, we must simply combine the conclusions of the previous three
lemmas. To prove the other direction of implication, however, requires knowledge
of Galois groups, which is beyond the scope of this paper, so we will only prove the
first statement.

Proof. Suppose a regular n-gon is constructible. Every positive integer n can be
written as n = 2rp1

a1 · · · psas , where p1, . . . , ps are distinct odd primes. From
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Lemma 4.2, it follows that for each pi, a regular piai-gon must constructible. Sup-
pose that ai ≥ 2. Then pi2 divides piai , so by Theorem 4.1, a regular pi2-gon must
be constructible. However, by Lemma 4.5, the degree of the minimum polynomial
over Q of the (pi2)th root of unity is pi(pi − 1). And by Lemma 4.3, this degree
must be a power of 2. But pi is odd, so pi(pi − 1) cannot be a power of 2. This is
a contradiction. Therefore, for all pi we must have

ai = 1.

So for each pi, a regular pi-gon is constructible. From Lemmas 4.3 and 4.4, it
follows that pi − 1 must be a power of 2, so we have

(4.7) pi − 1 = 2si .

Suppose si has some odd divisor a greater than 1. Then equation 4.7 becomes

(4.8) pi = (2b)a + 1 = (2b + 1)
(

(2b)(a−1) + ...+ (2b) + 1
)
.

But this implies that pi is not prime, so si can only have even divisors, and must
therefore be a power of 2. This gives us

si = 2ri .

Plugging this back into equation 4.7 now gives us

pi = 22ri + 1.

Therefore if a regular n-gon is constructible, n must be the product of a power of
2 and distinct Fermat primes. �
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