PROJECTIVE GEOMETRY

KRISTIN DEAN

ABSTRACT. This paper investigates the nature of finite geometries. It will
focus on the finite geometries known as projective planes and conclude with
the example of the Fano plane.
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1. BAsic DEFINITIONS

First, we must begin with a few basic definitions relating to geometries. A
geometry can be thought of as a set of objects and a relation on those elements.

Definition 1.1. A geometry is denoted G = (Q,I), where 2 is a set and I a
relation which is both symmetric and reflexive.

The relation on a geometry is called an incidence relation. For example, consider
the tradional Euclidean geometry. In this geometry, the objects of the set € are
points and lines. A point is incident to a line if it lies on that line, and two lines
are incident if they have all points in common - only when they are the same line.
There is often this same natural division of the elements of {2 into different kinds
such as the points and lines.

Definition 1.2. Suppose G = (,1) is a geometry. Then a flag of G is a set of
elements of 2 which are mutually incident. If there is no element outside of the
flag, F, which can be added and also be a flag, then F is called maximal.

Definition 1.3. A geometry G = (2, 1) has rank r if it can be partitioned into
sets 1,...,€,. such that every maximal flag contains exactly one element of each
set. The elements of €2; are called elements of type .

Thus, these divisions of the set () give a natural idea of rank. Most of the
examples of geometries which are dealt with in this paper are of rank two, that is,
they consist of points and lines with certain incidence structures.
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Lemma 1.4. Let G be a geometry of rank r. Then no two distinct elements of the
same type are incident.

Proof. Suppose not. Then there exist two distinct elements of the same type which
are incident. Then these elements, by definition form a flag. Now, these elements
must be elements of some maximal flag, 7. But then F has two elements of the
same type, but this is a contradiction because G is a geometry of rank r. O

Thus, as we saw with the Euclidean geometry, two lines are incident if and only
if they are truly the same line. Often for geometries of rank 2 the types of elements
are termed points and lines. This is the case for the projective spaces which are
the focus of this paper.

2. AXioMS OoF PROJECTIVE GEOMETRY

Henceforth, let G = (P,L,I) be a geometry of rank two with elements of P
termed points, and those of L termed lines. There are many different such ge-
ometries which satisfy the following axioms, all of which are types of projective
geometries.

Axiom 1 (Line Axiom). For every two distinct points there is one distinct line
incident to them.

Axiom 2 (Veblen-Young). If there are points A, B,C, D such that AB intersects
CD, then AC intersects BD. That is to say, any two lines of a ’plane’ meet.

Axiom 3. Any line is incident with at least three points.
Axiom 4. There are at least two lines.

In projective geometries, the above axioms imply that there are no ’'parallel’
lines. That is, there are no lines lying in the same plane which do not intersect.
The following lemma is derived easily from these axioms.

Lemma 2.1. Any two distinct lines are incident with at most one common point.

Proof. Suppose g and h are two distinct lines, but share more than one common
point. By Axiom 1, two distinct points cannot both be incident with two distinct
points, so g = h. ([l

The above axioms are used to define the following general structures.

Definition 2.2. A projective space is a geometry of rank 2 which satisfies the first
three axioms. If it also satisfies the fourth, it is called nondegenerate.

Definition 2.3. A projective plane is a nondegenerate projective space with Axiom
2 replaced by the stronger statement: Any two lines have at least one point in
common.

It is not too difficult to show that projective planes are indeed two dimensional
as expected, although the notion of dimension for a geometry is defined further into
the paper. A projective plane is therefore what one might naturally consider it to
be. It is a plane, according to the usual conception of such, in which all lines meet
as is expected from the term projective.
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3. LINEAR ALGEBRA WITH GEOMETRIES

Many of the concepts and theorems from linear algebra can be applied to the
structures of geometries which give a new approach to studying these structures.
Before we can apply the tools of linear algebra however, there are a few definitions
to make.

Definition 3.1. A subset U/ of the point set is called linear if for any two points
in U all points on the line from one to the other are also in U.

It is often useful to consider all the points on a give line, so we denote this by
letting (g) be the set of points incident with the line g. Just as in linear algebra,
the notion of a subspace is remarkably useful. For geometries, it is quite natural to
consider a subset of the points of the geometry as a subspace. However, to make
this well defined, we must ensure that the same incidence structure makes sense.
Thus we have the following definition.

Definition 3.2. A space P(U) = (U, L', I') is a (linear) subspace of P, where L'
is the set of lines contained in U/ and I’ is the induced incidence. Also, the span of
subset X is defined as:

(X)=n{U | X CU, alinear set}
Then X spans (X).

From these definitions we can finally formally define the notion of a plane, which
we already have an intuitive conception of.

Definition 3.3. A set of points is collinear if all points are incident with common
line; otherwise, it is called noncollinear. A plane is the span of a set of three
noncollinear points.

The following Theorems and Lemmas should look familiar from linear algebra.
Their proofs are not significantly different from their respective counterparts, and
thus they will be given without proof as a reference for the rest of the paper.

Theorem 3.4. A set B of points of P is a basis if and only if it is a minimal
spanning set.

An important theorem regarding the basis holds here as well. Every independent
set can be completed to form a basis of the whole space. The straightforward proof,
which is along similar lines as that of the corresponding proof from linear algebra,
is not given here.

Theorem 3.5 (Basis Extension Theorem). Let P a finitely generated projective
space. Then all bases of P have the same number of elements, and any independent
set can be extened to a basis.

The basis of a geometry is a fundamental property of a specific structure. Thus
there is a name related to the number of elements which are in such a basis.

Definition 3.6. Suppose P is a finitely generated projective space. Then the
dimension of P is one less than the number of elements in a basis.

Likewise, the subspaces of a space also have dimension, and some of these sub-
spaces are classified accordingly.
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Definition 3.7. Let P have diminsion d. Then subspaces of dimension 2 are called
planes, and subspaces of dimension d — 1 are called hyperplanes.

Finally, we give a very important theorem from linear algebra which appears all
over mathematics. The proof is not given here, but it is not too difficult and again
not far from its linear algebra counterpart.

Theorem 3.8 (Dimension Formula). Suppose U and W are subspaces of P. Then
dim((U, W)) = dim(U) + dim(W) — dim(UN W).
4. QUOTIENT GEOMETRIES

Another important question to consider when looking at finite and even infinite
geometries is how new ones can be found from existing ones. One method for
deriving new methods is akin to projecting down to a lower dimension by making
lines into points and points into lines. Thus, we define the quotient geometry.

Definition 4.1. Suppose @ is a point of the geometry P, then the quotient geom-
etry of @ is the rank 2 geometry P/@Q whose points are the lines through @, and
whose lines are the planes through @. The incidence structure is as induced by P.

Once we have several geometries of the same dimension, it is quite natural to
ask whether they are in fact the same geometry. Therefore we need the notion of
an isomorphism of geometries.

Definition 4.2. Suppose there are two rank 2 geometries: G = (P, B,I) and
G’ = (P',B',I'). If there is a map ¢

¢:PUB—PUB

where P is mapped bijectively to P’ and B to B’ such that the incidence structure
is preserved, then this map is an isomorphism from G to G’. An automorphism is
an isomorphism of a rank two geometry to itself. When the geometry has elements
termed ’lines’, such as for projective planes, the automorphism is alternatively
called a collineation.

Theorem 4.3. Suppose P is a projective space of dimension d, and let Q € P.
Then P/Q is a projective space of dimension d — 1.

Proof. Tt is enough to show that P/Q is isomorphic to a hyperplane which does not
pass through @. In the first place, such a hyperplane exists. Extend ) to a basis
{Q, P1,...,P;} of P. Then the subspace H spanned by Pi,..., P; has dimension
d — 1 and so is a hyperplane not containing () since () was in the basis and is thus
independent of the P;.

Next, we must show that H is isomorphic to P/Q. Define a map ¢ from the
points g and lines 7 of P/Q to those of H by

op:9g—gnNHp:m—wNH.

Remember that the points of Q € P are lines of P which are incident with @) and
the lines are the planes of P incident to Q. Now, we must show that ¢ is a bijection
which preserves the incidence structure:

Injective: Suppose g, h € P/Q, meaning they are lines going through Q. Suppose
both intersect H at the same point X. Then they have two points, () and X in
common. Since X € H and @ ¢ H, these are distinct points and thus distinct
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lines. Similarly, if 7 and o are planes through @ intersecting H at the same line,
then they must be the same planes since they share a line and a point which are
not incident.

Surjective: Suppose X € H, then the line QX is a point in P/Q which maps to
it. Likewise, if 7 € H is a line, then the plane m € P defined by @ and the line 7
is a line of P/@Q which maps to it.

Incidence: Suppose g a point and 7 a line in P/Q. Then

gCregnNHCTNH S ¢(g9) C ¢(m)
Thus, P/Q is a projective space of dimension d — 1. O

5. FINITE PROJECTIVE SPACES

Lemma 5.1. Suppose g1 and go are lines of a projective space P. Then there is a
bijective map

¢ (91) — (92)

taking the points of one line to the points on the other.

Proof. Without loss of generality, suppose g1 # go. First, consider the case where
the two lines intersect at some point S. Choose points P; on g; and P, on g, which
are distinct from S. Then, by Axiom 3, there must be a third point, P on the
line P, P,. Since g1 # g2, P is not on either line. By Axiom 2, a line through P
containing X # S on the line g; intersects the line go at some uniquely determined
point ¢(X) # S. This follows because the line XS must intersect the line PP; (at
point P, in fact) and Axiom 2 gives that then X P must intersect the line SP; at
a point distinct from S.

®(X)

Consider a map defined by this procedure:
¢: X - XPNgs.

Suppose X7 # X2 both mapped to the same ¢(X). Then both points would be on
a line incident with P and ¢(X), but then by Axiom 1, they must be the same line,
5o X7 = X3. Thus ¢ is injective. Now suppose there is a point ¢(X) on the line go.
Then, by Axiom 2, since PP, intersects S¢(X), P$(X) must intersect SPy = gy at
some point X as desired. So ¢ maps X to ¢(X) and the map is surjective. Thus ¢
is a bijection from (g1)\{S} to (g2)\{S}. Define ¢(S) = S, and then ¢ is a bijection
from (g1) to (g2) as desired.

Now, in the case that the two lines do not intersect at some point, pick a point
on each line and consider the line h through those two points. From the first case,
there are the following bijections:

¢1:(91) — (k) and ¢ : (h) — (g2)-
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Therefore, we can find a bijective map ¢ = ¢ o ¢; from the points of g; to those
of gs. O

In particular, this lemma implies that all lines of a projective plane are incident
with the same number of points, making projective geometries particularrly nice.

Definition 5.2. The order of a finite projective space is denoted by ¢ and is one
less than the number of points incident with each line (which is a fixed number by
the preceding lemma).

The dimension, d, one less than the number of points in the geometry, and the
order g are the two important parameters for a finite projective space. In fact,
two geometries with the same order and dimension are isomorphic. Additionally,
knowing these two numbers, many others calculations can be made regarding the
finite projective plane.

Lemma 5.3. Suppose P is a finite projective space with dimension d and order q.
Then for every point Q, P/Q also has order q.

Proof. By Theorem 4.3 we know that P/Q is isomporphic to any hyperplane, and
so we have that P/Q is a projective space of order g. O

Theorem 5.4. Suppose P is a finite projective space with dimension d and order
q. Let U is a t-dimensional subspace of P. Then:

(a) The number of points of the subspace is:

qt+qt1+...+q+1:qtqﬂ_—11

(b) The number of lines of U through a fized point of U is:
¢t g+

(c) The total number of lines of U is:

@+ . +qg+ D@+ g+ 1)
q+1 ’

Proof. We start with induction on ¢ to prove the first two claims. Suppose t = 1,
then from Lemma 5.1 and the definition of order, the subspace clearly has ¢ + 1
points, and being a line itself, has one line.

Suppose the first two claims hold for ¢ — 1 > 1. Then, by Theorem 4.3 and
Lemma 5.3 we have that the quotient geometry is a projective space of dimension
t—1 and has order ¢. By induction the number of points of U/Q is ¢!~ ' +...+q+1,
which by definition is the number of lines of U through @, which gives the second
claim.

Then, because there are ¢ points on these lines through @ which are distinct
from @, and each point of the subspace U must lie on precisely one of these lines,
we have

1+ (@ 4+ q+ )= +¢ + ... +qg+1

points in U, completing the induction.
For the final part, note that U has ¢! + ¢*~' + ... + ¢ + 1 points and each point
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is on exactly ¢~ +...4 ¢+ 1 lines which each have ¢+ 1 points. Thus the number
of lines of this subspace must be

(@P4+¢ "+ g+ D+ g+ D)
qg+1
as desired. O

Theorem 5.5. Suppose P is a finite projective space with dimension d and order
q. Then,

(1) The number of hyperplanes of P is exactly
“ 4. g+
(2) The number of hyperplanes of P through a fized point is
¢t g+ 1.

Proof. (1) Use induction on d. Suppose d = 1. Then the claim is that any line
has ¢ + 1 points, which follow by definition, and if d = 2, then the claim
follows from the preceding theorem.

Suppose the claim holds for dimension d — 1. Consider a hyperplane H
of P. Then all other hyperplanes intersect it in a subspace of dimension
d—2. So any hyperplane distinct from H is spanned by a d — 2 dimensional
subspace U of H and a point P outside of H.

The for every such subspace and point, (U, P) is a hyperplane containing

@+ g+ D) = (TP g+ ) =g

points not in H. Likewise, there are ¢¢ points of P outside of H, giving
a total of ¢ hyperplanes through every U which are distinct from H. By
induction, there are ¢®~' 4+ ... 4 g+ 1 hyperplanes of H. This means that
there are ¢ hyperplanes of the space P corresponding to each subspace of
H. Thus there are

q@@ 4+ g+ ) =¢+ .. Fqg+1

hyperplanes as desired.
(2) Suppose P is a point of P and H is a hyperplane not intersecting P. Then
every hyperplane of P through P must intersect H in a hyperplane of H.
By the previous part, there are precisely ¢~ +...4 ¢+ 1 such hyperplanes.
|

Corollary 5.6. Suppose P is a finite projective plane. Then there exists ¢ > 2 such
that any line has exactly g + 1 points and the total number of points is ¢> +q + 1.

This number ¢ is simply the order of the finite projective plane. The next section
investigates a finite projective plane of order 2.

6. THE FANO PLANE

Simply from the equations derived in the previous section, it is easy to calculate
the number of points in possible projective geometries. What is more difficult,
however, is to show that such geometries exist.
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Since we know that ¢ > 2, the smallest
possible projective plane, if it exists, will have
22 + 24 1 = 7 points.

Such a plane does in fact exist, and is known
as the Fano Plane. As is evident from the dia-
gram at the side, the Fano Plane does satisfy the
axioms of a projective geometry on seven points.
However, not only is the Fano Plane an example
of the smallest order projective geometry, but it

is also the only example. This motivates the
following theorem. The Fano Plane

4

Theorem 6.1. There is one unique projective plane of order 2.

Proof. A projective plane of order 2, must have three lines through each point and
three points on each line by definition. Thus there are three lines through point
1, say the lines {1,0,3}, {1,2,4}, and {5,1,6}. Now, the point 2 is also on two
other lines. Without loss of generality, because it is only a choice of labeling, we
can say these lines are {5,2,3} and {6,0,2}. Now, there must be a line through
points 4 and 5 is incident to one other point. This point cannot be on the same
line as 4 or 5 already, so it must therefore be the point 0 giving the line {4,0,5}.
Likewise, there is a line through points 6 and 4, and by the same argument, it must
be point 3 giving the line {6,4,3}. Thus, except for relabelling, this projective
plane is unique. (I

There is another way to conceptualize the Fano Plane. Instead of begining with
axioms to define a projective space, we can begin with a field. In a general sense
we can consider a vector space over any field. A vector space will have a certain
dimension. In order to make this space akin to a projective space we need to do
away with parallel lines. One way that this is often accomplished is to consider the
planes as lines and the lines as points. Using the field R gives the vector space R™
and this will give an n — 1 dimensional projective space.

In the case of the Fano Plane, consider the field F3, the finite field of two elements.
If we then consider the 3-dimensional vector space over this field, we get 8 different
points: (0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1,) and (1,1,1). We derive
a projective geometry from this structure by projecting lines to points and planes
to lines. That is, every line through the origin becomes a point and every plane
through the origin becomes a line. Since two points define a line, there are clearly
seven points through the origin, giving us seven points. Likewise there are seven
planes giving seven lines.

This must therefore be the Fano Plane, since it is the unique projective plane of
this size. Thus, the Fano Plane can be thought of as Fy X Fy X Fy.
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