A More Stable Approach To LISP Tree GP

Joseph Doliner

August 15, 2008

Abstract

In this paper we begin by familiarising ourselves with the basic
concepts of Evolutionary Computing and how it can be used to hasten
searches in large combinatorial optimization problems. We continue
by looking at Holland’s Theorem which address the problem of local-
ity that makes scaling of genetic solutions difficult. We then look at
how these concepts apply to Genetic Programming where the goal is
evolution of computer programs to solve specific tasks. Finally I will
present a novel solution that hopes to overcome the problem of locality.

1 Background

Evolutionary Computing (EC) is a promising subfield of Artificial Intelli-
gence which has only recently become an active topic of research. EC aims
to apply the concepts of biological evolution and natural selection to com-
binatorial optimization problems. Since EC is a new field, exactly how one
should apply the concepts of evolution is still debated. However most EC
implementations do agree on a few things: the process begins with a ran-
dom selection of solutions from the solution space S, often referred to as
the “primordial soup”. This random selection forms the first generation, Gy.
Each solution of the generation (called an organism) is then evaluated by a
fitness function, f: S — R, and assigned a fitness. The generation then
procreates. Organisms are randomly selected (naturally selected) from the
population with respect to a strictly increasing function of fitness to partic-
ipate in simulated sexual reproduction in which offspring are created which
are genetic similar to both of the parents. After reproduction the genetic in-
formation of the offspring is randomized slightly to simulate mutation. The

computation ends when an organism is found to have a certain high level of
fitness (possibly maximal). Many implementations also stop after a certain
number of generations. There are very little consensus on the specifics of
how this should be handled, however EC has proved very good at solving
certain problems which elude other methods such as exhaustive search and
so interest in the field has remained high.

2 Encodings

Generally the aspects of EC that are open to interpretation are the encoding
of the solutions, the algorithm used as the reproduction operation and the
fitness function. In most implementations the reproduction algorithm is
very simple, almost completely evident from the data structures. Thus of
particular interest to this paper is the encoding of the solution, the data
structure which is used to represent elements of the solution space.

2.1 Holland’s Schema Theory

One theory to aid in understanding how EC works is the building block
theory. This theory holds that over time organism discover building blocks
which convey above average fitness. This building blocks then spread through-
out the population and are combined with other above average blocks until
a solution is found. To investigate building blocks we need to introduce the
concept of a schema. Consider a simple encoding of strings of length N
from the alphabet {1,0} in this situation a schema is a string from the
alphabet {1,0,x} where x represents “do not care” for example

*10 represents {1100, 1101, 0100,0101}

Holland’s Schema Theory predicts how the abundance of schema should
change over time [2].

The abundance of the schema H in the generation t is denoted m(H,t)
and is calculated simply as the number of fraction of organisms in the popu-
lation who are representatives of the schema. The number of non-x symbols
is called the order, denoted O(H). The distance between the farthest two
non-+s is called the defining length, denoted £L(H)

Suppose that we use a crossover reproduction. That is to reproduce we
take two strings pick an integer k € [1, N — 1] and create two child strings

in which the first k& symbols in the first child are the same as those in the
first parent and the remaining N — k are the same as those from second
parent. Note we don’t allow reproduction at the very ends of our string as
this would propagate the parents into the next generation, something we
may choose to do separately The second child is the same method but with
the parents roles reversed. Note that this operation (which we denote ©y
depending on our choice of k) is closed under our solution space; this is a
requirement of reproduction operations. For example, if we have the two
strings 1111111111 and 0000000000 (N = 10) then:

1111111111950000000000 = {1111100000,0000011111}

Holland’s Theory states that for a string encoding;:

Theorem 2.1.

L(H)

Em(H,t+1)] = Mp(H,t) - (1 — py)°H) . N_1

(1—p(H,1))

Here M is the size of our population; p,, is the probability of mutating
a bit (recall that our model involves random mutations). p(H,t) is the
probability of selecting a representative of the schema calculated as p(H,t) =

%@()H’t) where f(H,t) is the average fitness of the representatives of H

in generation ¢t and f(t) is the average fitness of an organism in generation t.
Furthermore F [] represents the expected value of a random variable. What
this is saying is that as expected fit schema will increase in abundance will
unfit schema will decrease in abundance. However as our schema grow in
size the chance that crossover will occur somewhere within the schema thus
destroying it increases. This theorem holds for any string encoding that uses
crossover reproduction and for the more advanced encodings we will merely
need to adjust our concept of the length of a schema.

2.2 Locality

Holland’s Theory considers EC as a search through the possible schema.
As we sort through the schema randomly we come upon certain ones that
are better than others. We select such that these better ones become more
abundant in the next generation than their less fit counterparts and thus
are explored more. As the process continues the schema are perfected and
combined with one another making more complicated (longer) schema. If

we take this to be how EC works then we can expect that it will work best
when the equation above is largely dependant on the fitness of the schema.
Toward this goal we will completely ignore the (1 — pm)o(H) term; since
we have complete control over it; it’s normally close to 1. However the big
problem here is that the equation becomes overly dependant on the term

[%(1 —p(H,t))| as O(H) — N since:

L(H) -1

As: O(H)— N N1

(1 —p(H,t)) — 1

For an EC to perform according the Building Block theory it is important
that it increase the abundance of fit schema will decreasing the abundance
of bad ones. As the theorem shows implementations have trouble doing this
when the schema grow to large. This property of an EC, how good it is at
proliferating fit schema regardless of length is called the locality. Encodings
that exhibit poor locality have a tendency to proliferate superschema of the
fit schema by crossing over within the schema. Encodings the exhibit poor
locality have trouble scaling to find specific solutions in large spaces.

2.3 An Illustrative Example

Consider the following example:

Straight
Solution Set [0,9]™
Fitness Function f(S) = Sup{L(s)|s substring S and s is a straight}
Reproduction Mechanism | Crossover (denoted O k € [1,9])

Here a straight is just a string sysa... s, s.t. Vi 5,41 = s; + 1. Here we use
L(s) as the length for a string, not for a schema. Our intuition about this
example is that it should exhibit poor locality. If we consider the schema
012345678, then despite the fact that this is an exceptionally fit schema
the probability that an offspring will be a member of the same schema is
around % since crossover occurring anywhere but the last position (k = 9)
will result in offspring that aren’t members of the schema.

3 Other Encodings

3.1 LISP Trees

Here we turn to a subset of EC called, Genetic Programming (GP). Genetic
Programming is evolutionary computing in which our solution set consists
of computer programs which are evolved to solve a specific problem. GP
also sometimes refers to the evolution of physical aspects of machines. In
particular it has been used with great success to evolve electronic controllers
and circuits. To solve this type of problem our encodings, and reproduc-
tion operations, have to get more complicated and along with them our
reproduction operators. To begin with, we select a set of of terminals
which are independent variables (inputs to our functions), constants, and
zero-argument functions (these might be used to return a global state of the
machine). Next we come up with a primitive set of functions to be used in
the program. Again, we need a fitness function and a reproduction opera-
tor. The organisms in our population are LISP trees in which every node is
a primitive function with as many children as the function has arguments.
We further specify that the leaves must all be members of the terminal set.
Reproduction occurs by selecting subtrees of the parents and swapping them
at the root of the subtree.

3.2 An Example

This is best understood by an example. Suppose we wish to evolve a pro-
gram to calculate g(x) = 22 +1. We might implement the following solution:

2+ 1
Terminal Set {0,1,x}
Primitive Function Set | {+, x}
Fitness Function f(O) = f_lgo |0(z) — (22 + 1)| du
Reproduction Operator | Subtree Splicing (denoted Q)

Notice that here a perfect solution would have a fitness of 0 with worse
solutions diverging toward co. Continuing with the example suppose that
we select the following initial population:

O() Ol
+ X
T 0 1 +
x 0
f(OO) —_ 20360 f(Ol) — 20??0
02 03
/\ /+\
X + 1 1
T T 0 T
f(02) =101 f(Os) = 558

Next we go through and make new members for our population by breeding
the four above. Because Os is substantially more fit than the others it is more
likely to be chosen so our random choices might result in the combinations:
02000 02003 since each reproduction produces two children this will be
enough to completely repopulate.

0500
+ +
T T
X + x 0
/\ /\
T T 0 T
Child 0 Child 1
- -
/\ /\
X 0 T +
/\ /\
T x 0 T

02,003

x x 0 x
Child 2 Child 3
+ +
/\ /\
X 1 + 1
/\ /\
T T 0 T

Now we would iterate this process again except that this time we find that
Child 2 has maximum fitness so we know that we’ve found as good an answer
as we can expect this algorithm to find (and it happens to be the best answer
anyone’s going to find).

3.3 LISP Tree Locality

Again in LISP trees we have the problem of locality. In our example Os, had
a particularly high fitness and we can see that this is because it figured out
that the answer was the sum of 22 and something. However, our algorithm
lacks a concept of what makes the organism good. It was just lucky that
the algorithm choose to swap the left daughter with 1 and not to make a
more destructive swap. Ultimately the problem boils down to the fact that
with this encoding we have no way of separating the useless or detrimental
parts of an organism’s genetic code from the helpful parts.

4 A Slightly Different Approach

Our problems stem from the fact that our algorithm attempts to build mono-
lithic solutions; it lacks a concept of building blocks. In the previous example
our chances of destroying the building block that made Oy good were higher
than those of making a meaningful improvement. Furthermore, the previous

solution was a trivial test case. For bigger problems in which the correct
trees are bigger we can expect the probability of making a wrong selection
to grow rapidly. The number of possible decisions grow exponentially with
the depth of the tree. And so we can see that this approach has trouble
with scalability.

4.1 The Encoding

Instead of using the trees of the prior example, which are the equivalent of
expressions, we make a slight modification to allow trees with inputs marked
as xs, making them equivalent to LISP functions. We’ll call these functional-
trees. For example:

/+\
T

This would be equivalent to the function f(x1,x9,x3) = (1 X 22) + z3. In
this encoding we also allow numeric constants or 0 argument functions as ter-
minals, however this is not the method by which the independent variables
are placed. Notice that this notation can also be considered as a schema, if
we consider the stars as don’t cares, meaning that they could be replaced
with any tree. To complete these as schema there is an implied x at the top
of the tree, ie not only can a member of the schema contain arbitrary trees
in place of the stars, but it also need only contain the functional-tree as a
subtree. Above tree is an example of the schema represented by both of the
following trees:

4.2 Reproduction

With this encoding we lose a natural way to evaluate fitness, since we have
members of the population that accept the wrong number of arguments.
However, reproduction becomes a very graceful procedure. We have the
very natural procedure of piping one function’s output in as another’s input
to compose them. This operation is versatile in that it allows us to create
a great range of functions. However its most elegant feature is that, if we
think of our agents as schema then combining two schema under this oper-
ation yields a subset of their intersection, so we can expect to learn more
about each. As elegant as this operation is, it has a very noticeable defi-
ciency. When we removed the independent variables as terminals, we made
the process of specifying where the variables are inputted harder. Suppose
the above example were being used in a population to derive 22+ 1; it would
be impossible, since there’s simply no way to specify that the two branches
of the x node should use the same variable. So along with our pipe opera-
tion we add in a pinch operation which combines two input slots into one:

|

X *
* *
™ 7

With this the tree is very close to finding a solution.

4.3 Evaluating Fitness

Notice that our trouble with evaluating these organisms is not universal.
Some organisms happen to accept the correct number of arguments and can
be evaluated in a straightforward manner. In searching for a global way to
evaluate organisms of this encodings, we should recall our treatment of these
as schema. As such, the question we want to answer about each element
is: how well would members of this schema that do accept the correct num-

ber of arguments fare. Now we could begin looking at the members of the
schema; of course we can’t do this exhaustively since the trees grow without
bound, but we always knew that we wouldn’t be able to exhaustively search
an infinite set so placing an upper bound on tree size is acceptable. But
doing exhaustive searches is expensive inelegant and precisely what genetic
solutions are supposed to replace. The whole point of Evolutionary Com-
puting is that we have something better than randomly sampling. We have
an entire population of better than average subtrees. We can use these as
smarter building blocks to do a smarter evaluation.

4.4 A More Elegant Version

sh This process of evaluation, wherein we combine selections of our popu-
lation in order to evaluate them, can be made just a touch more elegant.
Our population itself is composed entirely of combinations of elements each
generation building upon the last by combining old to make new. As men-
tioned some members of our population can be evaluated easily. However
these elements are composed of other elements from the population. So we
can consider fitness not as an assigned value but as a currency, the func-
tions that happen to be evaluable are assigned a fitness but must share a
certain amount with their constituent functions. This is much more elegant
as we need only evaluate a subset of our population and need not deal with
sampling the schema to evaluate. Note that an organism that was born
in the nth generation. Is composed of organisms born in the generations
prior to generation n so for this system to work organisms need to serve for
multiple generations to give them a chance be used in compositions. This
property of organisms surviving into later generations is commonly known
as incest.

5 Computation

Genetic Programming is a very computationally intensive task. Furthermore
Genetic Programming is more than theoretically interesting it’s an extremely
useful technique which can be used as an “invention machine” to rival human
invention. As such we're interested in being able to do this fast and on a
large scale. The main key to speed is how well this algorithm parallelizes.
Parallelizing GP is really a trivial task because it’s composed of a number
of discrete computations that can be done independently.

10

6 Conclusion

This modification of LISP tree based GP may seem contrived at first. How-
ever it is really a very natural response to the problem of locality. A running
theme in EC is that anytime we the implementer relinquish control over an
aspect of the encoding and evolution process the evolution takes control of
this and thus naturally selects the best way to handle it. This is just a logical
next step wherein we stop imposing contrived locations where our organism
may crossover their genetic information and instead let them specify these
locations for themselves.

References

[1] D E Goldberg, B Korb, K Deb, Messy Genetic Algorithms: Motivation,
Analysis and First Results 1989.

[2] R. Poli, Hyperschema Theory for GP with One-Point Crossover, Building
Blocks, and Some New Results in GA Theory, 2001.

11

