
THE SHRINKING WEDGE OF CIRCLES

JOHN DYER

Abstract. This paper describes certain properties of the fundamental group

of the shrinking wedge of circles. Covering space theory is an inadequate tool
since the shrinking wedge of circles is not semi-locally simply connected. We
conclude with the fact that the shrinking wedge of circles is not homotopy

equivalent to the wedge product of a countable number of circles.
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1. The Fundamental Group

The idea of the fundamental group is to associate with each space a group so
that homotopic spaces have isomorphic fundamental groups. This group will be
the set of equivalence classes of loops in the space with the binary operation of
concatenation.

Definition 1.1. A map is a continious function.

Definition 1.2. A path in a space X is a map f : I → X. A loop is a path
withf(0) = f(1).

Definition 1.3. A homotopy of paths in X is a family of paths ft : I → X, 0 ≤ t ≤ 1
such that:

(1) ft(0) = x and ft(1) = y
(2) The function F : I × I × I → X defined by F (t, s) = ft(s) is continious.

Definition 1.4. Two paths f, g are equivalent, denoted f ∼ g, if they are homo-
topic through paths from x to y.

Theorem 1.5. Path equivalence is an equivalence relation.

Proof. We have reflexivity since f is equivelent to f by the constant homotopy
ht(s) = f(s). For symmetry suppose that f ∼ g, then there exists a homotopy
ht(s) from f to g. Define jt = h1−t. Since j is the composition of two maps it
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is also a map; furthermore j0 = h1 = g, j1 = h0 = f . It follows that g ∼ f .
For transitivity, suppose α ∼ β via ft and β ∼ γ via gt. Let h(t) equal f(2t) for
0 ≤ t ≤ 1/2 and g(2t − 1) for 1/2 ≤ t ≤ 1. This function is well defined since
f(1) = g(0) = β and continuous since it is defined on the union of the two closed
sets [0, 1]× [0, 1/2] and [0, 1]× [1/2, 1] and continuous on each by the continuity of
f and g. �

Definition 1.6. Define π1(X,x) to be the set of equivalence classes of loops in the
space X that start and end at the point x.

Definition 1.7. For paths f : x → y, g : y → z, define the binary operation of
concatenation, denoted g · f , by traversing f twice as fast and then g twice as fast.
Explicitly,

(f · g)(t) =

{

f(2t) if 0 ≤ t ≤ 1/2,

g(2t − 1) if 1/2 ≤ t ≤ 1

Furthermore define cx(t) = x, the constant loop at x, and f−1(t) = f(1 − t) the
loop traversed the other way around f .

Theorem 1.8. Concatenation is well defined on equivalence classes.

Proof. If f0 ∼ f1 via ft and g0 ∼ g1 via gt then f0 · g0 ∼ f1 · g1 via ft · gt. �

Theorem 1.9. (π1(X,x), ·) is a group with identity cx. With the binary operation

understood, we call π1(X,x) the fundamental group of the space X at basepoint x.

Proof. For closure, since the elements of π1(X,x) are loops beginning and ending at
x their concatenation is also a loop beginning and ending at x. For associativity, we
have h ·(g ·f) ∼ (h ·g) ·f by a reparametrization. For the identity, cx ·f ∼ f ·cx ∼ f
by another reparametrization. For inverses, f · f−1 ∼ cx = e by the homotopy:

h(s, t) =











f(2s) if 0 ≤ s ≤ t/2,

f(t) if t/2 ≤ s ≤ 1 − t/2

f(2 − 2s) if 1 − t/2 ≤ s ≤ 1

Additionally f−1 · f ∼ cx by a similar homotopy. �

Example 1.10. Any convex set X in R
n has a trivial fundamental group, since any

two loops f0, f1 are homotopic via the linear homotopy ft(s) = (1− t)f0(s)+ tf1(s)

Theorem 1.11. If there exists a path h connecting x0 to x1 in the space X then

π1(X,x0) is isomorphic to π1(X,x1).

Proof. Let φh : π1(X,x1) → π1(X,x0) be defined by φh(f) = h · f · h−1, where
h−1(t) = h(1 − t), the string traversed in the opposite direction. We show this is
an isomorphism. First it is well defined since for ft a homotopy of loops based at
x1 then φh(ft) is a homotopy of loops based at x0. φh is a homomorphism since
φh(f · g) = h · f · g · h−1 = h · f · h−1 · h · g · h−1 = φh(f) · φh(g). Finally, it is an
isomorphism since it has inverse φh−1 . �

Theorem 1.12. If a space X retracts onto a subspace A, then the homomorphism

i∗ : π1(A, x0) → π1(X,x0) induced by the inclusion i : A → X is an injection. If A
is a deformation retract of X, then i∗ is an isomorphism.
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Proof. Suppose r : X → A is a retraction. Since ri is the identity map we have that
r∗i∗ is the identity homomorphism. Thus i∗ is injective. Furthermore, if rt : X → X
is a deformation retraction of X onto A, then for loop f based at x0 ∈ A, rtF gives
a homotopy of F to a loop in A. Consequently, i∗ is also surjective. �

Lemma 1.13. If φt : X → Y is a homotopy, f ∈ π1(Y, φ1(x0)), and h is the path

φt(x0) formed by the images of a basepoint x0 ∈ X, then the following diagram is

commutative:

π1(X,x0)

φ1∗

��
φ0∗

((P

P

P

P

P

P

P

P

P

P

P

P

π1(Y, φ1(x0))
h·f ·h−1

// π1(Y, φ0(x0))

We omit the proof of this lemma.

Theorem 1.14. If φ : X → Y is a homotopy equivalence, then the induced homo-

morphism φ∗ : π1(X,x0) → π1(Y, φ(x0)) is an isomorphism for all x0 ∈ X.

Proof. Let ht(s) = n(ts), 0 ≤ t ≤ 1 for h given in the above lemma. If f is a loop
in X based at x0, then the product ht · (φtf) ·h−1

t is a homotopy of loops at φ0(x0).
Thus we have φ0∗(f) = h · φ1∗(f) · h−1. �

2. Van Kampen’s Theorem

Van Kampen’s Theorem allows us to determine the fundamental group of spaces
that constructed in a certain manner from other spaces with known fundamental
groups.

Theorem 2.1. If a space X is the union of path-connected open sets Aα each

containing the basepoint x0 ∈ X such that each intersection Aα ∩ Aβ is path-

connected, then the homomorphism induced by the inclusion map from the free

product of the fundamental groups of the Aα to the fundamental group of X, Φ :
∗απ1(Aα) → π1(X), is surjective. Furthermore, if each intersection Aα∩Aβ∩Aγ is

path-connected, then ker(Φ) is the normal subgroup, N , generated by all elements of

the form iαβ(ω)iβα(ω)−1 where iαβ : π1(Aα ∩Aβ) → π1(Aα) is the homomorphism

induced by the inclusion Aα ∩ Aβ in Aα, and so we have π1(X) ≈ ∗απ1(Aα)/N

We omit the proof of Van Kampen’s Theorem.

Example 2.2 (Wedge Sums). The wedge sum of a collection of spaces
∨

α Xα is
the quotient space of the disjoint union of the spaces in which a basepoint xα ∈ Xα

is identified to a single point x. Thus, if each xα is a deformation retract of an
open neighborhood Uα contained in Xα, then Xα is a deformation retract of the
open neighborhood Aα = Xα

∨

β 6=α Uβ . Thus we have that the intersection of two
or more Aα is the wedge product of the Uα. These deformation retract to x0 so by
Van Kampen’s Theorem π1(

∨

α Aα) ≈ ∗απ1(Xα). In the specific case of the wedge
sum of circles we have π1(

∨

α S1
α) = ∗αZα

3. Covering Space Theory

Covering Space Theory provides a tool for clarifying the structure of the funda-
mental group of a space.
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Definition 3.1. A covering space of a space X is a space X̃ with a map p : X̃ → X
such that there exists an open cover{Uα} of X such that for each α, p−1(Uα) is a

disjoint union of open sets in X̃ and each is mapped by p homeomorphically onto
Uα.

Definition 3.2. A universal cover of a space X is a covering space (X̃, p) such

that X̃ is simply connected.

Definition 3.3. A lift of a map f : Y → X in a covering space (X̃, p) is a map

f̃ : Y → X̃ such that pf̃ = f .

Theorem 3.4 (Homotopy Lifting Property). Given a covering space p : x̃ → X, a

homotopy ft : Y → X, and a map f̃0 : y → X̃ lifting f0, then there exists a unique

homotopy f̃t : Y → X̃ of f̃0 that lifts ft.

We omit the proof of the Homotopy Lifting Property.

Definition 3.5. A space X is semi-locally simply connected if every point x ∈ X
has a neighborhood U in X such that any loop in U with basepoint x is homotopic
to cx.

Theorem 3.6. If a space X has a universal covering space, then X is semi-locally

simply connected.

Proof. Suppose p : X̃ → X is a covering space with X̃ simply connected, then every
point x ∈ X has a neighborhood U having a lift Ũ ⊂ X̃ projecting homomorphically
to U by p. A loop in U lifts to a loop in Ũ , and this loop is homotopic to the
trivial loop in X̃; thus, composing this homotopy with p, we have the loop in U is
homoeomorphic to the trivial loop in X. �

4. Fundamental Group of the Circle

Theorem 4.1. The fundamental group of the circle π1(S
1) is isomorphic to Z via

the isomorphism Φ : Z → π1(S
1) sending n ∈ Z to the homotopy class of the loop

ωn(s) = (cos 2πns, sin 2πns) based at (0, 1).

Proof. R is a covering space of S1 via the map p : R → S1 given by p(s) =
(cos 2πs, sin 2πs) if we take our open cover of S1 to be two open arcs whose union
is S1. The path ω̃n(s) = ns lifts ωn. To show Φ is a homomorphism, Φ(m + n) =
ωm+n ∼ ωm · ωn = Φ(m) · Φ(n). Additionally, Φ(n) is equal to the homotopy class

of the loop pf̃ for f̃ any path in R from 0 to n. For surjectivity, let f be a loop at
the basepoint, then by the homotopy lifting property there exists a lift f̃ starting
at 0. This path f̃ ends on some integer n since the preimage of the origin under p
is Z, and so we have Φ(n) = [pf̃ ] = [f ]. For injectivity, Φ(m) = Φ(n) implies that
ωm ∼ ωn, by the homotopy ft. By the homotopy lifting property, ft lifts to the
unique homotopy f̃t of ω̃n and ω̃m, which implies that m = n since a homotopy
leaves endpoints fixed. �

5. The shrinking wedge of circles

The shrinking wedge of circles gives an example of a space that is not semi-
locally simply connected and as a consequence has no universal covering space.
This removes the possibility of using covering spaces to discover the fundamental
group of this space. One might confuse this space for the wedge product of a
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countable number of circles, but while the fundamental group of the infinite wedge
of circles is countable the fundamental group for the shrinking wedge of circles in
uncountable. This uncountable group is called a Big Free Group, but it is not free.

Definition 5.1. The shrinking wedge of circles C is a subset of the xy-plane that
is the union of countably many circles

⋃

1≤n≤∞ Cn where Cn is the circle of radius

1/n and center (1/n, 0). The shrinking wedge of circles is compact, globally path
connected, and locally path connected. Define (0, 0) = O to be the basepoint, and
G to be the fundamental group π1(C,O).

Theorem 5.2. C is not semi-locally simply connected.

Proof. Every neighboorhood of O contains all but a finite number of the circles
{Cn}. A loop around any one of these circles is not homotopic to CO. �

Theorem 5.3. G is uncountable.

Proof. Let rn : C → Cn be the retraction that takes all {Ci|i 6= n} to O. Now
take the surjection ρn : π1(C,O) → π1(Cn, O) ≈ Z induced by rn. The product of
the ρn is the homomorphism ρ : π1(C,O) →

∏

∞ Z. The surjectivity of ρ follows
from the following construction. Let {kn} be a sequence of integers and f to be
the loop that traverses kn times around Cn on the interval [1 − 1

n
, 1 − 1

n+1
]. This

loop is continuous since every neighborhood of O contains all but finitely many of
the circles Cn. Thus, π1(C,O) is uncountable since

∏

∞ Z is uncountable. �

Corollary 5.4. C is not homotopy equivalent to the wedge sum of a countable

number of circles.

Proof. By Van Kampen’s theorem the fundamental group of the wedge product of
a countably infinite number of circles is equal to ∗iZ which is a countable set. The
fundamental group of C is uncountable, however. �

References

[1] J. Cannan and G. Conner, The Combinatorial Structure of the Hawaiian Earring Group,
Topology and its Applications 106 (2000), 225-271.

[2] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[3] J. P. May, A Concise Course in Algebraic Topology, University of Chicago Press, 1999.


