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DANIEL FELTEY

Abstract. This paper will be a brief introduction to various groups of ma-
trices and their algebraic, analytic, and topological properties. We consider
curves in matrix groups and use them to define the dimension of a matrix
group as an important invariant. We then define the matrix exponential and
use it to further investigate curves in matrix groups, and to prove our main
topological result that every matrix group is a manifold. We follow [1] in this
paper.
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1. Preliminaries: Groups, Rings, Fields, and Skew-Fields.

Before we can begin the study of matrix groups we need to define the terms that
we make extensive use of in this paper. To begin we start with the definition of a
group.

Definition 1.1. A group is a set G together with a binary operation, ∗ , that is a
map ∗ : G×G → G with ∗(x, y) denoted x∗y that satisfies the following properties:

∀ a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.(1)
∃ e ∈ G such that ∀ g ∈ G g ∗ e = e ∗ g = g.(2)

∀ g ∈ G, ∃ g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.(3)

So a group is a pair (G, ∗), that is, a set together with a binary operation
satisfying the above properties. Usually we will refer to a group by referring only
to the set G.

Definition 1.2. A group G is called abelian if for all x and y in G we have that
x ∗ y = y ∗ x.
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Definition 1.3. A subset H of G is said to be a subgroup of G, denoted H ! G if
the following properties hold:

if g, h ∈ H then g ∗ h ∈ H(1)

if h ∈ H then h−1 ∈ H(2)

Beyond these definitions this paper will assume standard results from basic group
theory such as Lagrange’s Theorem.

We now move on to the standard definitions of a ring and a field.

Definition 1.4. A ring is a set, R, together with two binary operations + and ∗
that satisfy the following relations:

(R, +) is an abelian group.(1)
∃ 1 ∈ R such that ∀r ∈ R 1 ∗ r = r ∗ 1 = r(2)
∀ a, b, c ∈ R, a ∗ (b ∗ c) = (a ∗ b) ∗ c.(3)
∀ a, b, c ∈ R, a ∗ (b + c) = a ∗ b + a ∗ c and (a + b) ∗ c = a ∗ c + b ∗ c(4)

When considering rings we call the operation, +, addition and the operation,
∗, multiplication. The additive identity is usually denoted by 0, and we usually
add the requirement that 1 '= 0. A ring is called commutative if the operation ∗ is
commutative (i.e. x ∗ y = y ∗ x for all x and y).

Definition 1.5. A field is a ring, F , satisfying the following:

1 '= 0.(1)
(F \ {0}, ∗) is an abelian group.(2)

In this paper we mainly consider the familiar fields R, and C the fields of real
and complex numbers respectively. We will, however, also deal with one other
mathematical object that differs only slightly yet fundamentally from these two
systems, that is the set of Hamiltonian Quaterions denoted H. The quaternions
form what is called a skew-field which is just a field which is not required to have
the property x ∗ y = y ∗ x, in other words the group of non-zero elements is no
longer required to be abelian.

Definition 1.6. The Hamiltonian Quaternions H is the set of numbers of the form
a + bi + cj + dk under the following conditions:

a, b, c, d ∈ R(1)

i2 = j2 = k2 = ijk = −1(2)

From these relations one can derive all the multiplicative properties of the quater-
nions and show that they indeed form a skew-field.

2. Conjugates and Inner Products

Recall from the basic theory of complex numbers that in C there is a notion
of the complex conjugate, that is for a complex number, z = a + bi we define its
complex conjugate by z = a + bi = a − bi. Clearly for a real number r, r = r. We
now want to extend this to the quaternions as follows.

Definition 2.1. For a quaternion q ∈ H we define the conjugate of q = a+bi+cj+dk
to be q = a + bi + cj + dk = a− bi− cj − dk
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This notion of a conjugate shares most of its properties with that of the complex
conjugate, particularly that: qq = qq = a2 + b2 + c2 + d2 when q = a + bi + cj + dk.
Since the skew-field H is not commutative, however, it no longer holds true that
(q1q2) = (q1)(q2). There is a new rule, however, that is analogous to the one
which holds only in the cases of the more familiar fields R and C, and that rule is
(q1q2) = (q2)(q1).

We now introduce an inner-product in order to construct the orthogonal groups
which will be our first examples of matrix groups.

Definition 2.2. For k ∈ {R, C, H} define the inner-product of two vectors a =
(a1, a2, ..., an), and b = (b1, b2, ..., bn) in the vector space kn by

〈a,b〉 =
n∑

m=1

ambm

From this definition follow several properties that the inner-product satisfies
which we state without proof as our first theorem.

Theorem 2.3. For all a,b, c ∈ kn and λ ∈ k the inner-product satisfies the fol-
lowing

〈a,b + c〉 = 〈a,b〉+ 〈a, c〉(1)
〈λa,b〉 = λ〈a,b〉(2)

〈a,b〉 = 〈b,a〉(3)

Definition 2.4. We say that two vectors a,b ∈ kn are orthogonal if 〈a,b〉 = 0.

Definition 2.5. A basis B for kn is said to be orthonormal if for all x ∈ B
〈x,x〉 = 1, and for all x,y ∈ B, x '= y we have that 〈x,y〉 = 0.

We finally have enough machinery to move on to the main goal of this paper,
to introduce matrix groups, and we will make our constructions relying heavily on
the properties of the inner-product we have defined.

3. Orthogonal Matrices

Recall that when considering vector spaces and linear maps between them that
we can construct a matrix for every linear map from a vector space to itself. We
call the set of all n× n matrices with coefficients in k, Mn(k), these are the linear
maps from kn to kn. We now get our first examples of matrix groups: the general
linear group, and the orthogonal groups.

Definition 3.1. The General Linear Group, GLn(k) is the set of all matrices in
A ∈ Mnk satisfying det(A) '= 0.

Note that this is in fact a group because the determinant function is multiplica-
tive, only matrices with non-zero determinant have inverses, matrix multiplication
is associative, and there is clearly an identity, namely the identity matrix possessing
ones along its diagonal and zeros everywhere else.

Definition 3.2. The Orthogonal Group over the “field” k is the set

On(k) = {X ∈ GLn(k)|〈aX,bX〉 = 〈a,b〉 for all a,b ∈ kn}
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if k = R we denote this group by O(n) and call it the Orthogonal Group.
if k = C we denote this group by U(n) and call it the Unitary Group.
if k = H we denote this group by Sp(n) and call it the Sympletic Group.

These are our first examples of matrix groups, and it is not difficult to show that
these are, in fact, groups.

4. Tangent Spaces and Lie Algebras

Now that we are familiar with several examples of matrix groups we wish to
investigate other, not so obvious, properties and invariants of these groups that
will allow us to tell “different” groups apart. First we define a curve in a matrix
group.

Definition 4.1. If V is a finite dimensional vector space then a curve in V is a
continuous function γ : (−ε, ε) → V where (−ε, ε) ⊆ R.

We say that such a curve is differentiable at a point if it is differentiable in the
traditional sense of the limit definition, and merely note that if the derivative at a
point c does exist then it will be a vector in V . We denote the derivative at c by
γ′(c).

Recall from calculus that if we choose a basis for the vector space V we can
represent a curve in V by an ordered pair of its coordinate functions. We want to
consider matrix groups so note that each of Mn(R), Mn(C), Mn(H) can be consid-
ered as subspaces of a real vector space of dimension n2, 2n2, and 4n2 respectively.

Definition 4.2. A curve in a matrix group G is a curve in Mn(k) such that for all
u ∈ (−ε, ε), γ(u) ∈ G.

Since G is a group we can form products of elements in G and stay in the group.
Now considering curves in groups we can consider products of curves and get new
curves that stay in the matrix group.

Theorem 4.3. If γ, σ are both curves in a matrix group G then so is the product
curve γσ. If both γ, and σ are differentiable at c then so is γσ and

(4.4) (γσ)′(c) = γ(c)σ′(c) + γ′(c)σ(c)

We omit the proof of this theorem because it is not difficult and is just an exercise
in symbol manipulation as it is just repeated use of the product rule for real scalar
functions.

Definition 4.5. If G is a matrix group the tangent space to G at the identity is
the set TG = {γ′(0)|γ : (−ε, ε) ,→ G is a differentiable curve in G with γ(0) = I}

Theorem 4.6. TG is a subspace of Mn(k) as a real vector space.

Proof. We prove the theorem in two parts.
• First we show that TG is closed under addition.

Suppose that γ′(0), and σ′(0) are in TG and consider the curve (γσ)(t),
then (γσ)(0) = γ(0)σ(0) = II = I. Then since γ and σ are both differen-
tiable at 0 so is γσ and so (γσ)′(0) is in TG. But (γσ)′(0) = γ(0)σ′(0) +
γ′(0)σ(0) = Iσ′(0)+γ′(0)I = σ′(0)+γ′(0). So TG is closed under addition.
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• We now show that TG is closed under scalar multiplication.
If γ′(0) is in TG and r is in R consider the curve σ(t) = γ(rt). Again

it is clear that σ(0) = γ(0) = I and γ is differentiable at 0 hence so is σ
and σ′(0) belongs to TG. But σ′(0) = rγ′(0) so TG is closed under scalar
multiplication.

• Thus TG is a subspace of Mn(k) and since the latter in finite dimensional
so is TG.

"
Definition 4.7. The dimension of a matrix group G is the dimension of the
tangent space TG, and is denoted by dim(G).

Example 4.8. TGLn(R) = Mn(R), that is the tangent space of GLn(R) is Mn(R)
and from this it clearly follows that dim(GLn(R)) = n2.

Proof. To show this we first note that the function det : Mn(R) → R that sends
a matrix to its determinant is continuous since it is a polynomial in the entries of
the matrix. Continuity of the determinant allows us to find an δ-ball around I in
Mn(R) such that if a matrix A is in this ball then det(A) '= 0. Then for any matrix
B in Mn(R) we can define the curve γ : (−ε, ε) → R by γ(t) = I + tB. Then this
is a differentiable curve through I and that has B as its derivative at 0, ie a curve
satisfying γ(0) = I, and γ′(0) = B. Now it just remains to be seen that γ is a curve
in GLn(R), and this will be true if ε is chosen carefully based on the determinant
of B such that I + tB will be in the ball around I and det(I + tB) '= 0. Thus
TGLn(R) = Mn(R) and dim(GLn(R)) = n2 "

We now show that the dimension of a matrix group is invariant under isomor-
phism of matrix groups.

Since all of our matrix groups live inside some larger vector space we can speak
of continuity when considering functions from one matrix group to another. More
importantly we can consider continuous homomorphisms, and from now on all
homomorphisms will be assumed to be continuous. Then if we have two matrix
groups G and H and a homomorphism φ : G → H then every curve,γ, in G will
give rise to a curve in H simply by the composition φ ◦ γ.

Definition 4.9. A homomorphism φ : G → H is smooth if for every differentiable
curve γ in G the curve φ ◦ γ is differentiable.

Then every tangent vector in the tangent space of G will give us a corresponding
vector in the tangent space of H if there is a smooth homomorphism between G
and H. So if γ′(0) is in TG we define dφ(γ′(0)) = (φ ◦ γ)′(0) to be the tangent
vector in TH that we get as a result of the homomorphism φ. This gives us a map
from TG to TH.

Definition 4.10. If φ : G → H is a smooth homomorphism we call the map
dφ : TG → TH the differential of φ.

Theorem 4.11. If φ is a smooth homomorphism then dφ : TG → TH is a linear
map.

Proof. It is particularly easy to get lost in notation when proving this result so we
will take it in two steps and show that dφ preserves scalar multiplication and vector
addition separately.
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• dφ preserves scalar multiplication. Consider dφ(aγ′(0)) = (φ ◦ σ)′(0) by
definition where σ(t) = γ(at) since σ is the function that corresponds to
the tangent vector aγ′(0). But (φ◦σ)′(0) = a(φ◦γ)′(0) = adφ(aγ′(0)), and
so dφ does in fact preserve scalar multiplication.

• dφ preserves vector addition. Consider dφ(γ′(0) + σ′(0)) = (φ ◦ γσ)′(0)
since the product curve γσ is the curve corresponding to the tangent vector
γ′(0) + σ′(0). But (φ ◦ γσ)′(0) = (φ ◦ γ)′(0) + (φ ◦ σ)′(0) = dφ(γ′(0)) +
dφ(σ′(0)). So dφ does in fact preserve vector addition.

"
Theorem 4.12. If φ : G → H and ψ : H → K are smooth homomorphisms then
so is ψ ◦ φ and dψ◦φ = dψ ◦ dφ.

Proof. Again we show the two parts of the theorem separately.
• It is obvious that ψ ◦φ is smooth since the composition of smooth functions

is smooth.
• To show dψ◦φ = dψ ◦ dφ consider dψ◦φ(γ′(0)) = (ψ ◦ φ ◦ γ)′(0) = (ψ ◦ (φ ◦

γ))′(0) = dψ(φ ◦ γ)′(0) = dψ ◦ dφ(γ′(0)).
"

Now by corollary we get the following fundamental result which we have been
building towards.

Theorem 4.13. If φ : G → H is a smooth isomorphism then dφ : TG → TH is a
linear isomorphism and so dim(G) = dim(H).

Proof. φ ◦ φ−1 = idH so dφ ◦ dφ−1 = idTH which implies that dφ is surjective.
Similarly since φ−1 ◦ φ = idG we have that dφ−1 ◦ dφ = idTG implies that dφ

is injective, hence it is a bijection and thus a linear isomorphism thus dim(G) =
dim(H). "

5. The Matrix Exponential and One-Parameter Subgroups

Now that we are familiar with curves in a matrix group we have a way of finding
the tangent space of a matrix group it is natural to ask that if we know a vector in
the tangent space of a matrix group can we easily find a curve in the matrix group
corresponding to this vector? To answer this question we introduce the matrix
exponential. We consider only the case of real matrices in this section and note
that constructions for complex and quaternion matrices are similar.

Definition 5.1. For a matrix A in Mn(R) we define the matrix exponential of A
to be the map exp : Mn(R) → Mn(R) where we denote exp(A) by eA and define

eA =
∞∑

k=0

Ak

k!

Making the convention that A0 = I for all real matrices.

Thus the matrix exponential is basically identical to the real exponential, and
just as the real exponential converges for all real numbers so does the matrix ex-
ponential for all real matrices.

Theorem 5.2. If A is in Mn(R) then eA converges.
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Proof. We will prove this result by bounding all of the entries of eA with a clearly
convergent series.

Let aij be the entry of a in row i and column j. Then set m = max1≤i,j≤n |aij |.
Now consider the largest(in absolute value) elements in each of I, A, A2... Clearly
1 is the largest element in I, and m is the largest element in A. It is then easy to
show that nm2 is greater than or equal to the largest element in A2 and in general
nk−1mk is greater than or equal to the largest element in Ak.

Now consider the series

1 + m +
nm2

2
+

n2m3

6
+ ... +

nk−1mk

k!
+ ... = 1 +

∞∑

k=1

nk−1mk

k!

It is easy to check using the ratio test that this series does in fact converge,and
actually converges to

enm + n− 1
n

.

Thus we have a convergent series which dominates all entries of eA so eA does
converge for all real matrices. "

Theorem 5.3. If A and B are in Mn(R) such that AB = BA then eA+B = eAeB.

Corollary 5.4. If A is in Mn(R) then eA is in GLn(R).

Proof. A and −A commute so eA+(−A) = eAe−A, but eA+(−A) = e0 = I, and this
implies det(eA)det(e−A) = det(eAe−A) = det(I) = 1 which implies that det(eA) '= 0
hence eA ∈ GLn(R). "

Theorem 5.5. If A is in Mn(R) and B is in GLn(R) then eBAB−1
= BeAB−1.

Proof. This follows because (BAB−1)n = BAnB−1 and B(A+C)B−1 = BAB−1+
BCB−1. "

Just as in the case of real numbers where we can define an inverse for the expo-
nential function we can do a similar thing for real matrices.

Definition 5.6. For a real matrix X we define the matrix logarithm by the series

log(X) = (X − I)− (X − I)2

2
+

(X − I)3

3
− ... =

∞∑

k=1

(X − I)k

k

And just as in the real case where this series only converges for x near 1 for real
matrices this series only converges for matrices X near I.

Theorem 5.7. For X near I in Mn(R) log(X) converges.

Proof. The proof of this theorem is basically identical to the one above, except
that we must be careful about what is meant by near. So we set Y = X − I
and suppose that |yij | < ε we then proceed as before and bound the entries of
log(X). Proceeding in this manner it turns out that log(X) converges making the
requirement that ε < 1

n thus giving a more concrete notion to what we mean by
near. "
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Theorem 5.8. Let U be a neighborhood in Mn(R) on which log is defined and let
V be a neighborhood of 0 in Mn(R) such that exp(V ) ⊆ U then

For X ∈ U elog(X) = X(1)

For Y ∈ V log(eY ) = Y(2)

This theorem is proved by extensive symbol manipulation with the definitions
for the matrix exponential and logarithm so it is omitted. The important thing
to note is that this theorem says that the matrix exponential is one-to-one on a
neighborhood of 0. This would seem obvious if we get too preoccupied in analogy
with the real exponential since that function is one-to-one everywhere. So we make
a brief aside to present an example that shows the matrix exponential is not in
general one-to-one.

Example 5.9. Let X =
(

0 2π
−2π 0

)
then eX = I

Proof. Note that X is conjugate to the matrix Y =
(

2πi 0
0 −2πi

)
since if Z =

(
1 i
i 1

)
then X = ZY Z−1. Then since Y clearly maps to the identity under the

matrix exponential by theorem 5.5 above X will also map to the identity. "

Theorem 5.10. If X and Y are near I such that log(X), log(Y ), and log(XY )
are all defined and log(X) and log(Y ) commute then

log(XY ) = log(X) + log(Y )

Proof. elog(XY ) = XY = elog(X)elog(Y ) = elog(X)+log(Y ) and since exp is one-to-one
near 0 we have that log(XY ) = log(X) + log(Y ). "

Now we return to the question of curves in matrix groups.

Definition 5.11. A one-parameter-subgroup, γ, in a matrix group G is a smoth
homomorphism γ : R → G.

As with curves in matrix groups we will usually only care about a one-parameter-
subgroup restricted to some small interval around 0 in R.

Example 5.12. For any matrix A in Mn(R) the function γ(u) = euA is a one-
parameter-subgroup of GLn(R) with γ′(0) = A.

This example should suggest how we can find curves in a matrix group given an
element of its tangent space.

Theorem 5.13. If γ is a one-parameter-subgroup in GLn(k) then there exists a
matrix A in Mn(k) such that γ(u) = euA.

Proof. Let σ(u) = log(γ(u) then σ(u) is a curve in Mn(k) satisfying γ(u) = eσ(u).
Set σ′(0) = A, so now we want to show that σ(u) is a line through 0 in Mn(k)

or equivalently that σ(u) = uA. Now fix u in R and consider
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σ′(u) = lim
h→0

σ(u + h)− σ(u)
h

= lim
h→0

log(γ(u + h))− log(γ(u))
h

= lim
h→0

log(γ(u)γ(h))− log(γ(u))
h

= lim
h→0

log(γ(u)) + log(γ(h))− log(γ(u))
h

= lim
h→0

log(γ(h))
h

= lim
h→0

σ(h)
h

= σ′(0)

This proves that σ′(u) = A for all u since its derivative is independent of u thus
σ(u) = uA hence γ(u) = euA. "

Then in general we have the following theorem.

Theorem 5.14. If A is a vector in the tangent space TG of a matrix group G then
there is a unique one-parameter-subgroup, γ in G satisfying γ′(0) = A.

6. Some Topology

The main result of this section proves that every matrix group is a manifold.
We assume many familiar definitions from topology, mainly (path) connectedness,
compactness, and continuity. Since all of the groups we consider here live inside
the vector space Mn(k) we can consider them as subspaces and hence discuss their
topological properties. Now in the context of topology we can finally define a matrix
group exactly.

Definition 6.1. A matrix group is a closed subgroup of the group GLn(k).

Definition 6.2. A topological space X is an n-manifold if for every point x in X
there is an open neighborhood Ox containing x such that Ox is homeomorphic to
an open ball in Rn.

We say that an n-manifold has dimension n, and this should suggest that a
matrix group of dimension n would turn out to be an n-manifold. Before we prove
this result, however, we need one short lemma.

Lemma 6.3. If G is a matrix group then the function Lx : G → G defined by
Lx(g) = xg is a homeomorphism.

Proof. Given ε > 0 Set δ = ε
|x| then if |g−h| ≤ δ then |Lx(g)−Lx(h)| = |xg−xh| =

|x||g − h| < |x|δ = |x| ε
|x| = ε and Lx is continuous. Then note that Lx−1 is the

inverse of Lx which is clearly continuous for the same reason Lx is. Thus Lx is a
homeomorphism. "

Theorem 6.4. A matrix group of dimension n is an n-manifold.
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Proof. We follow the proof presented in [1] for this result.
The exponential function is a continuous map from TG the n-dimensional tan-

gent space of G to G. We have shown that it is one-to-one on a neighborhood of
0, and has a continuous inverse, the matrix logarithm. Call this neighborhood of
0, O then for any x in G we can consider the map Lx ◦ exp : O → G. Since the
exponential map will send O to a neighborhood of I the composition will map to a
neighborhood of the point x. Thus since this composition results in a homeomor-
phism we have that G is an n-manifold. "

We conclude this paper in a slightly greater generality by classifying subgroups
of topological groups based on the properties of the space.

Theorem 6.5. In a topological group G every open or closed subgroup of finite
index is both open and closed.

Proof. Let H be a subgroup of finite index in G. Then H is homeomorphic to all
of its cosets. So if H is open so is the union of the cosets of H that are not equal
to H, but this implies H is also closed. Since that union is finite if H were closed
then that union is also closed and H is also open, so any subgroup of finite index
in G is both open and closed. "

Theorem 6.6. If G is a connected group then every closed (or equivalently open)
subgroup H of G has infinite index.

Proof. By the above theorem every subgroup of finite index is both open and closed
so if a subgroup H has finite index then we can partition G into H and the cosets of
H not equal to H, these are both open sets, but this is impossible if G is connected,
thus H cannot have finite index. "

Theorem 6.7. A connected group G cannot have an open subgroup.

Proof. The reasoning here is identical to the above, partition G into the disjoint
union of H and the union of cosets distinct from H, both sets are open implying G
is disconnected, a contradiction. "

Theorem 6.8. If G is a compact group then every open subgroup H of G has finite
index.

Proof. Let H be an open subgroup of G. Then the cosets of H partition G and
hence form an open cover of G, since G is compact there is a finite sub-cover, but
since the cosets partition G this means that there are only finitely many cosets and
hence H has finite index in G. "

Now returning to matrix groups, which are also topological groups, if we consider
a matrix group G that is both compact and connected we can classify all of its
matrix subgroups.

Definition 6.9. A matrix subgroup of a matrix group G is a subgroup H of G that
is also a matrix group (ie H is closed in GLn(k)).

Theorem 6.10. If G is a compact and connected group then every matrix subgroup
H of G is closed and has infinite index.

Proof. This follows from the preceding theorems. "
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