
SURPRISINGLY DIFFICULT LATTICE PROBLEMS

WAI LEE CHIN FEMAN

Abstract. I will give a brief description of lattices and the computational
problems associated with them. A lattice is a set of vectors; the two main

problems associated with lattices are: finding a lattice’s shortest vector, and

finding the closest vector to a target vector. As we will see, there are sev-
eral different ways of formulating these problems. I will investigate the com-

putational difficulty of various formulations, and explain reductions between
computational problems. I will then sketch the proof of a very interesting

combinatorial result concerning lattices.

Contents

1. Basics 1
1.1. Computational problems associated with lattices 2
2. Closest Vector Problem 3
2.1. Reduction of SVP to CVP 3
2.2. RUR Reduction 3
2.3. CVP is NP Hard 4
3. Large Domain Theorem 5
3.1. Hypergraphs 5
3.2. Large Domain Theorems 5
3.3. Proof of Weaker Theorem 6
References 9

1. Basics

A lattice is simply a linear operator whose arguments come from Z.

Definition 1.1. A lattice basis in Rm is a set of n linearly independent vectors
(b1, . . . ,bn) ∈ Rm. If we set these vectors to be the columns of a matrix, we get a
linear operator: B = [b1, . . . ,bn] ∈ Rm×n in Rm where n ≤ m

Definition 1.2. A lattice in Rm is defined as the set of integral combinations of
its associated lattice basis.

(1.3) L(B) =

{
n∑
i=1

xibi : xi ∈ Z

}
We can also think of this as {Bx : x ∈ Zm}.
It is clear that two lattice bases can describe the same lattice. Among the multiple
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bases describing a given lattice, some are reduced. The concept of a reduced basis
is key for solving SVP (see later) in dimensions higher than 2. See Complexity of
Lattice Problems Chapter 2 Section 3.

Definition 1.4. A sublattice A of another lattice B is a lattice whose points are
all contained in B.

Definition 1.5. Given computational problems A and B, A is reducible to B if:
given a way instantly finding answers to arbitrary instances of B allows for some easy
method of solving arbitrary instances of A. The source of information concerning
B is called an “oracle” to B. The algorithm for using the answers of B in order to
find answers to A is called the “reduction algorithm.”
There are different kinds of reductions between problems. For example, solving an
instance of A might require having the answer to a single instance of B or to multiple
instances of B. Consider the following definition for another kind of reduction.

Definition 1.6. RUR reduction stands for “reduced unfaithful randomized” re-
duction; a RUR reduction consists of a reduction algorithm and a probability p,
and can only reduce decisional problems to other problems. Suppose we have a
decisional problem A and we have a RUR reduction from A to B. If the reduc-
tion algorithm outputs “NO,” then we can be sure that the answer to A is “NO.”
However, if the algorithm outputs “YES,” then only we know that the answer A is
“YES” with probability p. p is called the “completeness error.”

1.1. Computational problems associated with lattices. The two problems I
will discuss are SVP and CVP. Determining relatively simple pieces of information
about lattices can show itself to be quite difficult. We will show that CVP is
NP-hard in dimension N, and give a reduction from SVP to CVP.

Definition 1.7. The Decisional Shortest Vector Problem (SVP): An instance of
SVP consists of the pair (B, r) where B is a lattice basis and r is some rational
number. A solution to decisional SVP is a program which accepts such an instance
and decides whether there exists some nonzero integer vector x satisfying ‖Bx‖ ≤ r
(under a fixed norm) in a given lattice.

Definition 1.8. The Promise Shortest Vector Problemγ : An instance of the Promise
SVPγ consists of a lattice basis and a rational number (B, r). A solution to the
Promise SVPγ accepts an instance of the problem and outputs YES if:

(1.9) ∃x 6= 0 : ‖Bx‖ ≤ r
and it outputs NO if:

(1.10) ∀y ∈ Zm ‖By‖ > γ · r
Definition 1.11. The Promise Closest Vector Problemγ : An instance of the
Promise CVPγ consists of the triple (B, t, r) where B is a lattice basis, t is a
target vector (not necessarily in the lattice), r is a rational number. A solution to
the Promise CVPγ accepts an instance of the problem an outputs YES if:

(1.12) ∃x : ‖Bx− t‖ ≤ r
and it outputs NO if:

(1.13) ∀y ∈ Zm ‖By − t‖ > γ · r
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At this point, I should remark that: given an oracle to decisional SVP, one can
find the shortest vector of any lattice in polynomial time. In other words, one can
reduce Search SVP to Decisional SVP.

2. Closest Vector Problem

2.1. Reduction of SVP to CVP. There are (at least) two ways of reducing SVP
to CVP. The first involves asking our CVP oracle to solve N instances of CVP, but
is a deterministic reduction. The second only involves asking the CVP oracle to
solve one instance of CVP, but it is an RUR reduction with completeness error of
1/2. We will begin with a lemma, which is neat enough that it provides motivation
for itself.

Lemma 2.1. Let v =
∑n
i=1 cibi be a shortest non-zero vector in a lattice B Then

∃i such that ci is odd.

Proof. Assume that every ci is even. Consider a shortest vector in L(B): Bv =∑n
i=1 cibi. Now, consider the vector v′ = (1/2)v =

∑n
i=1

ci
2 bi. v′ is clearly a vector

in L(B) and it is strictly shorter than v; this is a contradiction. �

2.2. RUR Reduction. In this section I will show a nondeterministic (randomized)
reduction of SVP to CVP. Suppose we are working with an arbitrary lattice L. We
would like to be able to simply apply our CVP oracle to find out the vector closest
to (0, 0) in L [we would like to give our oracle L as the lattice argument and (0, 0)
as a target vector]. This, however, is not possible, because our oracle will return
the closest vector to its target that is not its target.

Before beginning the reduction, I should describe the following Failed reduction
from Promise SVP to CVP. The idea would be to simply use the oracle to find the
closest vector to (0, .0001). In this case, we would know that the output, y, of the
oracle [the vector close to our short target vector] would probably be the vector
closest to (0, 0). However, it is easy to imagine situations where there are vectors
within r of (0, .0001), but (1.13) still holds.

Theorem 2.2. For an arbitrary function γ : N→ [1,∞], there is a RUR reduction
from Promise SVPγ to promise CVPγ with a completeness error of at most 1/2.

Proof. Consider an arbitrary B = [b1, . . . ,bn]. Suppose that (B, r) is a SVP in-
stance. We will create an instance of CVP based on (B, r). Define B′ = [b′1, . . . ,b

′
n]

as follows:
Let c1 = 1 and for 2 ≤ i ≤ n, choose ci ∈ {0, 1} at random. Now, for each i, define
b′i = bi +cib1. It remains to show that, as an instance of Promise CVPγ , (B′, b1, r)
satisfies Def. 1.6. Suppose that (B′, b1, r) does not solve to NO. This implies that,

(2.3) ∃v ∈ L(B′) satisfying ‖v − b1‖ ≤ γ(n) · r.

Note that L(B′) is a sublattice of LB, and b1 is not in L(B′). Now consider the
vector v′ = v − b1: This is clearly nonzero since b1 is not in the lattice containing
v; moreover, it satisfies (2.3). These two conditions show that (B, r) does not solve
to NO. Halfway there!

Assume, now, that (B, r) solves to YES. Let v =
∑n
i=1 xibi be the shortest

vector in L(B). Now, from Theorem 2.1, we know that xj is odd for some j.
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Let α = x1 + 1 −
∑
i>1 cixi. Now, with probabililty 1/2, α is even and therefore

u = (α/2)b1
′ +
∑
i>1 xibi

′ is contained in L(B′) Now,

u− b1 =

(
αb1 +

∑
i>1

xi(bi + cib1)

)
− b1(2.4)

= (x1 −
∑
i>1

cixi)b1 +
∑
i>1

xibi +
∑
i>1

xic1b1 = v.(2.5)

This shows that (B′,b1, r) solves to YES.
�

2.3. CVP is NP Hard. We can show that gap CVPγ is NP Complete (not hard)
by reducing the Subset Sum problem to it. It is well-known that Subset Sum is NP
Hard, and so this reduction will imply that CVP is NP Hard. As we will see, given
an instance I of Subset SumP, it is relatively easy to compute (in polynomial time)
an instance S of Gap CVPγ where the answer to I is yes if and only if the answer
to S is yes.

Definition 2.6. An instance of the Subset Sum problem consists of a set S =
{si, . . . , sn} of integers and a target integer t. The problem consists of deciding
whether there exists some vector x = {x1 . . . xn} satisfying xi ∈ {0, 1}, |S| = |X|,
and,

(2.7)
n∑
i=1

(xi · si) = t

Theorem 2.8. Subset Sum is polynomial-time reducible to gap CVP1 in the lp
norm.

Proof. Suppose we have an arbitrary instance of Subset Sum: S = {si, . . . , sn} and
t =some integer. We will construct a new lattice basis:

(2.9) bi = [si,

i−1︷ ︸︸ ︷
0, . . . , 0, 2,

n−i︷ ︸︸ ︷
0, . . . , 0]T

and a target vector:

(2.10) t = [s, 1, . . . . . . , 1︸ ︷︷ ︸
n

]T

and finally a radius r (see (1.13)):

(2.11) r = p
√
n

In matrix notation, the matrix representing this basis would look like,

(2.12) B =
[
a

2In

]
Where a is the row vector [a1 . . . an].

It remains to show that Promise CVP1 with the aforementioned target vector
and lattice basis has the answer “yes” if and only if our given instance of subset
sum is solvable.
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Now, assume that there exists a solution to the Subset Sum instance in consid-
eration. If x is the vector satisfying

∑n
i=1(xi · si) = t, then we have

(2.13) Bx− t =


∑n
i=1(xi · si)− s

2xi − 1
...

2xn − 1


The pth power of the lp norm of this distance is therefore,

(2.14) ‖Bx− t‖ = |
n∑
i=1

(xi · si)− s|p +
n∑
i=1

|2xi − 1|p

Because x is a solution to the subset sum problem, (2.14) simplifies to n. There-
fore, n is an upper bound on the pth power of the distance of t from L(B). So, the
distance from t to L(B) is at most p

√
n. Therefore, the CVP instance consisting of

(B, t, p
√
n) solves to YES.

Finally, assume that the CVP instance consisting of (B, t, p
√
n) solves to YES.

Then, there exists some x such that, ‖Bx− t‖ ≤ p
√
n. Now, as in (2.14), we have,

(2.15) ‖Bv − t‖p = |
n∑
i=1

(xi · si)− s|p +
n∑
i=1

|2xi − 1|p

Note that we have
∑n
i=1 |2xi − 1|p ≥ n. So, because ‖Bx− t‖p ≤

√
n, the first

summand in (2.14) must equal 0; we also must have ∀i|2xi − 1|p = 1. The first
of these facts directly implies that

∑
i = 1naixi = s; the second of these facts

implies that ∀ixi ∈ {0, 1}. Therefore, x is a solution to the associated Subset Sum
instance! �

3. Large Domain Theorem

3.1. Hypergraphs.

Definition 3.1. A hypergraph is a set (V,Z). As in a graph, V is a set of vertices.
Instead of a set of pairs (defining edges), Z is simply a set of subsets of V .

Definition 3.2. Let U ⊆ V be a set of vertices, and let T = (T1, . . . , Tn), where
the Ti are subsets of V . Define the following operator:

(3.3) T(U) = (|T1 ∩ U |, . . . , |Tn ∩ U |)

3.2. Large Domain Theorems. There is a theorem saying that, if we have a ma-
trix T in {0, 1}n×k where each entry is set independently to 1 with low probability,
then T satisfies the following:

If we have a set Z = {Z1, . . . , Zn} where each Zi ∈ {0, 1}n, containing exactly h
ones and |Z| is very large, then with very high probability,

∃z ∈ Z where Tz = V for arbitrary V ∈ {0, 1}k.

Remark 3.4. Note that T defines a lattice (the columns of T represent the lattice
basis). Therefore, Tz represents a member of the lattice defined by T .

This theorem, in addition to being really neat, is useful for trying to reduce CVP
to SVP. I will sketch the proof of the following theorem:
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Theorem 3.5. Consider an arbitrary set Z = {z1, . . . , zn} with each si ∈ {0, 1}n

containing exactly h ones. If |Z| > h!|V |
√
hn
ε . If we define T as above, then for any

x ∈ {0, 1}k,

(3.6) Pr{x ∈ T(Z)} > 1− 5ε

Where T (Z) represents {Tz : z ∈ Z}.

3.3. Proof of Weaker Theorem.

Remark 3.7. Proving Theorem 3.5 is equivalent to proving the following statement
about hypergraphs: Consider an arbitrary h-regular hypergraph (V,Z) of size |Z| >
h!|V |

√
hn
ε . Define T = (T1 . . . Tn), where each Ti ⊆ V and each element of V is

included in Ti independently with probability p = ε
(hn) . Then, for every x ∈ {0, 1}n,

(3.8) Pr{x ∈ T(Z)} > 1− 5ε

Proof. Suppose we have an arbitrary operator T and set Z as defined in Thm 3.4.
We can associate this pair with a hypergraph as follows:
There will be n vertices, where n is the number of rows in the matrix for T . The
set of hyperedges, Z will be defined as follows: treat each zi as though it is a
characteristic vector of a single (unique) hyperedge (if zi has a 1 in the nth place,
then include the nth vertex in the associated hyperedge). Notice that because each
Zi has h ones, this hypergraph is h-regular.

Now, we can associate T with a set T = (T1, . . . , Tn) where each Ti is the ith

row in the matrix representing T .
One simply needs to see that, when z is the characteristic vector of z, we have

T(z) = T (z). This is because,

(3.9) T(z) = (|T1 ∩ z|, . . . , |Tn ∩ z|) =
n∑
i=1

z · Tiei = T (z)

So, it is easy to see that, when T and Z are associated with T and Z as above,
x ∈ T (Z) iff x ∈ T(Z) �

Theorem 3.10. Consider an arbitrary h-regular hypergraph (V,Z) of size |Z| >
h!|V |

√
hn
ε . Define T = (T1 . . . Tn), where each Ti ⊆ V and each element of V is

included in Ti independently with probability p = ε
(hn) . Then, for every x ∈ {0, 1}n,

(3.11) PR{x ∈ T(Z)} > 1− 5ε

I will prove two key theorems, which are the basis of the proof of (3.10). Here is
the first:

Theorem 3.12. Let x ∈ {0, 1}n and let U,U′ ⊂ V be of size d. Let T = (T1 . . . Tn)
be defined as in (3.10), including each element of V with probability p. Then,

Φ(r) = PRT {TU = x = TU ′}(3.13)

= (1− p)(2d−r)n
(

pr

1− p
+
(
p(d− r)

1− p

)2
)‖x‖1

(3.14)

where r = |U ∩ U ′| and ‖x‖1 is the number of 1’s in x
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Proof. Note that the Ti’s are chosen independently. Therefore,

PRT {T (U) = T (U ′) = x} =
n∏
i=1

PRTi{|Ti ∩ U | = |Ti ∩ U ′| = xi}.

Now, it remains to prove that,

(3.15) PRTi{|Ti ∩ U | = |Ti ∩ U ′|} = (1− p)(2d−r)
(

pr

1− p
+
(
p(d− r)

1− p

)2
)xi

.

. Note that the (2d − r)n from before has been replaced with (2d − r). Now,
according to (3.14), proving (3.15) gives us the desired result. It is clear that (3.15)
holds trivially for the case where xi = 0. The case where xi = 1 is not difficult:
When xi = 1, |Ti ∩ U | = |Ti ∩ U ′| = 1 in either of two cases: First, Ti contains a
single element in U ∩U ′ and no other elements of U or U ′; Second, Ti contains one
element of U which is outside of U ′, and one element of U ′ which is outside of U .
Summing these probabilities, we have:

Probability of Case 1: |U ∩ U ′| · p(1− p)|U∪U
′|−1 = (1− p)2d−r

(
pr

1− p

)
Probability of Case 2: |U \ U ′| · |U ′ \ U | · p2(1− p)|U∪U

′|−2 = (1− p)2d−r
(
p(d− r)

1− p

)2

.

Whose sum equals, (1− p)(2d−r)
(

pr

1− p
+
(
p(d− r)

1− p

)2
)
.

Note that in Case 1, there are (|U ∩U ′| choose 1) sub-cases, each corresponding to
a unique element of (U ∩ U ′) being equal to 1. The probability of each sub-case
satisfying xi = 1 is p(1− p)|U∪U ′|−1. Case 2 works similarly.

�

Corollary 3.16. It immediately follows that, if U ⊆ V and T is chosen as in the
prececding theorem,

(3.17) PRT {T (U) = x} = φ(d) = (1− p)dn
(

pd

1− p

)‖x‖1
.

Proof. Choose U = U ′ in the preceding theorem. �

Remark 3.18. I will use EXPT (V ) to refer to the expected value of a random
variable V over a parameter T .

Theorem 3.19. Let (V,Z) be a d-regular hypergraph. Let T = (Ti, . . . , Tn) be a
sequence of subsets of V , including each element of V independently with probability
p. For each x ∈ {0, 1}n,

(3.20) PRT {x /∈ T (Z)} ≤ EXPR(eθR)− 1

Where θ = np
1−p + n

pd2 and R is the random variable defined as |U ∩U ′| for randomly
chosen U and U ′.

Proof. Let x ∈ {0, 1}n be an arbitrary vector and let T be chosen as described
above. Define for all U ∈ Z,

XU =
{

1 if T (U) = x
0 if T (U) 6= x
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.
Define the random variable X =

∑
U∈Z XU .

Now, X = 0 iff x /∈ T (Z). Therefore,

PRT {x /∈ T (Z)} = PRT {X = 0}

(3.21)

≤ PRT {|X − EXP [X]| ≥ EXP [x]}. and by Chebyshev’s inequality,(3.22)

≤ V AR[X]
EXP [X]2

=
EXP [(X − EXP [X])2]

EXP [X]2
(3.23)

=
EXP [X2 − 2XEXP [X] + EXP [X]2]

EXP [X]2
(3.24)

Note that EXP [X] is simply a constant, so we wind up with,(3.25)

=
EXP [X2]− EXP [2X]EXP [X] + EXP [X]2

EXP [X]2
(3.26)

=
EXP [X2]− EXP [2X]2 + EXP [X]2

EXP [X]2
=
EXP [X2]
EXP [X]2

− 1.(3.27)

.

Remark 3.28. First note that (3.21) gives (3.22) because the former equation implies
the latter (and so the latter occurs at least as frequently as the former).

Now, we need to calculate the expected values of [X] and [X]2.

(3.29) EXPT [X] =
∑
U∈Z

EXPT [XU ] =
∑
U∈Z

PRTT (U) = X = |Z| · Φ(d).

and,

EXPT [X2] = EXPT

(∑
U∈Z

XU

)2


(3.30)

= EXPT

 ∑
U,U ′∈Z

[XU ·X ′U ]

(3.31)

=
∑

U,U ′∈Z
PRT {T (U) = T (U ′) = x}(3.32)

=
∑

U,U ′∈Z
Φ(|U ∩ U ′|)(3.33)

=
n∑
i=1

NΦ(i) where N is the number of pairs U,U ′ with |U ∩ U ′| = i(3.34)

= |Z|2 · EXPR[Φ(R)], where R is defined as above(3.35)
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Now,

PRT {x /∈ T (Z)} =
EXPR[Φ(R)]

φ(d)2
− 1

(3.36)

= EXPR

(1− p)−nR
(

(1− p)R
pd2

+
(

1− R

d

)2
)‖x‖1− 1(3.37)

< EXPR

[(
1 +

p

1− p

)nR(
R

pd2
+ 1
)n]

− 1(3.38)

< EXPR

[
e
pnR
1−p e

nR
pd2
]
− 1(3.39)

= EXPR[eθR − 1](3.40)

�

Now, this inequality is interesting if and only if EXPR[eθR] − 1 < 1 (because
then it gives us useful information about PRT {x /∈ T (Z)). Note that,

(3.41) EXPR[eθR] =
∑
r>0

PRR(R = r)eθr

And therefore, if PRR{R = r} ≥ e−θr more than once, the inequality we have just
established becomes meaningless. So, in general, we need PRR{R = r} < e−θr

Somehow, we need to find a way to ensure that the expected value of R shrinks
exponentially. The rest of the proof of (3.9) involves removing vertices from (V,Z)
until R is very small. The proof argues that, if |Z| is large enough to begin with,
then after removing vertices, it will still be large and EXPR[eθR] will be very close
to 1.
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