
FUNDAMENTAL GROUPS AND COVERING SPACES

ETHAN JERZAK

Abstract. In this paper, I will briefly develop the theory of fundamental
groups and covering spaces of topological spaces. Then I will point toward
the manner in which covering spaces can be used prove some cool things in
group theory. I presume a cursory knowledge of topological spaces—open
and closed sets, continuous functions, and homeomorphisms should be enough
background knowledge.
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1. Fundamental Groups: An Intuitive Introduction

Given a topological space X and a point x0 ∈ X , we want to know what the one
dimensional structure of the space surrounding this point looks like. In particular,
we wish to know how many “different” ways (up to homotopy equivalence) we can
travel in continuous loops from that point and back to that point. This information
is what the fundamental group tells us. Let us first have some definitions.

Definition 1.1. A loop at x0 in a topological space X is a continuous function
f : [0, 1] → X such that f(0) = x0 = f(1). That is, we start at x0, wander around
continuously for t ∈ (0, 1), and return to x0 at t = 1. Given two loops f and g,
with the same base point, define f • g to be a loop that runs them, one after the
other, in double speed: (f • g)(t) = f(2t) for t ∈ [0, 1/2], and (f • g)(t) = g(2t− 1)
for t ∈ [1/2, 1].

Definition 1.2. Two loops f and g are homotopy equivalent if there is a con-
tinuous function h : [0, 1] × [0, 1] → X such that, for all t ∈ [0, 1], h(t, 0) = f(t)
and h(t, 1) = g(t), and, for all s, h(0, s) = x0 = h(1, s). That is, h continuously
deforms f to g through loops at x0. It is easy to see that homotopies between loops
at a given base point divide loops into equivalence classes, which we call homotopy
equivalence classes.

Definition 1.3. Given a topological space X and a base point x0, the funda-

mental group of X at x0 is the set of all homotopy classes of loops at x0, and is
denoted π1(X, x0). It is a fact (unproved here) that the operation • gives π1(X, x0)
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the structure of a group; the constant loop is the identity of the group, and, for a
loop f(t), the inverse g(t) = f(1 − t) runs the same loop backwards.

Remark 1.4. Generally π1(X, x0) depends on the base point; but if our space X is
path-connected, then all base points give isomorphic fundamental groups, and we
can simply write (for all our purposes here) π1(X).

Definition 1.5. A space X is simply connected if it is path connected and if
the fundamental group on that space is trivial (i.e., all loops are homotopic to the
constant loop f(t) = x0).

Proposition 1.6. Sn is simply connected for n ≥ 2.

Proof. We know that Sn is path-connected, so let us show that its fundamental
group is trivial. Let f be a loop in Sn at base point x0. It suffices to show that
the image of f in Sn misses one point x, because we can easily show that Sn\{x}
is homeomorphic to R

n, which is simply connected. Let us first sketch a proof of
this:

Embed both Sn and R
n in R

n+1, putting Sn above R
n with the missing point

x farthest away from R
n. Construct the stereographic projection of Sn onto R

n

by constructing rays φ starting at x, passing through y ∈ Sn and landing on R
n.

Construct our homeomorphism such that each y ∈ Sn goes to the place where this
projection hits R

n. This map will yield a homeomorphism onto R
n. It is easy to

visualize with n = 1:

We now have only to show that f is homotopic to a loop g that misses at least
one point in Sn. Take any point x 6= x0, and find a small open ball B around x. If
the number of times f passes into the ball, hits x, and leaves the ball is finite, then
we are done—just push each individual portion of f off of x. We must therefore
show that this is in fact the case.

Now, the set f−1(B) is open in [0, 1] since f is continuous, and thus is equal to
the union of (possibly infinitely many) disjoint intervals. Recall that any open cover
of a compact set has a finite subcover. Now consider f−1(x). The set {x} is closed,
which implies that f−1(x) is also closed (since with a continuous function, the
preimage of a closed set is closed). But f−1(x) ⊂ f−1(B), which is bounded—we
therefore have f−1(x) closed and bounded, and hence compact. Now, the intervals
of f−1(B) form a cover of f−1(x), and since f−1(x) is a compact set, we can find
a finite subcollection of intervals I1, ..., In that cover f−1(x).

The rest is straightforward: homotope f to, for example, the loop g that avoids x
on each Ii by going around the boundary δB. Then we have that f is homotopic to
some loop g such that the image g(I) is contained in Sn\{x}, which is contractible.
Hence our original loop f is nullhomotopic, and thus π1(S

n) is trivial. We can
visualize this final homotopy thus:
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�

Remark 1.7. This method fails for S1 because when we remove a ball from S1, we
cannot homotope the path around, say, δB–there is only one way to get from one
side of the “ball” to the other (while retaining the same direction). In fact, the
fundamental group of the circle is isomorphic to (Z, +), but to prove this we need
more advanced tools than we have at our disposal. For us, it will be an unjustified
fact.

Definition 1.8. Let X and Y be topological spaces, and let f : X → Y be a
continuous map. Define f∗ : π1(X, x0) → π1(Y, f(x0)) by

[αx0
] 7→ [f ◦ αx0

]

for loops αx0
based at x0. We can check that f∗ is a homomorphism, and satisfies

functoriality conditions:

(1) f∗([cx0
]) = [cf(x0)]

(2) (f ◦ g)∗ = f∗ ◦ g∗
(3) (f−1)∗ = f−1

∗

Corollary 1.9. R
2 is not homeomorphic to R

n if n > 2.

Proof. We will use the previous proposition, and proceed by contradiction. If there
were a homeomorphism φ : R

2 → R
n, then there would also be a homeomorphism

φ′ : R
2\{0} −→ R

n\{φ(0)}.

Note that φ(0) must be a point in R
n since φ is a homeomorphism (and for contin-

uous maps, the image of a point is a point). In particular, since φ is a bijection, φ
must take nonzero points of R

2 to points in R
n 6= φ(0).

Now take the inclusion
i : S1 →֒ R

2\{0}

as the unit circle, and define

p : R
2\{0} → S1

to be the function which collapses each ray from 0 to infinity onto the point where
that ray hits the unit circle. It is easy to see that p ◦ i = IdS1 , and that i ◦ p is
homotopic to IdR2\{0} via the straight line homotopy. This implies that R

2\{0} is

homotopy equivalent to S1, and hence π1(R
2\{0}) ∼= π1(S

1) ∼= (Z, +).
But we can perform this same inclusion with Sn to show that π1(R

n\{0}) ∼=
π1(S

n) ∼= 0 by Prop. 1.6. But since we have a homeomorphism φ′, this would
imply that
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(Z, +) ∼= π1(S
1) ∼= π1(R

2\{0}) ∼= π1(R
n\{0}) ∼= π1(S

n) ∼= 0.

Thus π1(R
2\{0}) and π1(R

n\{0}) have isomorphic fundamental groups. But this
is absurd since the integers are not isomorphic to the trivial group. Thus there is
no homeomorphism from R

2 → R
n for n 6= 2. �

We can also use facts about functoriality to prove a cool fact about continuous
functions on the two dimensional unit disc, D2:

Proposition 1.10. Any continuous map f : D2 → D2 has a fixed point—i.e., there
exists z ∈ D2 such that f(z) = z.

Proof. We proceed by contradiction. Suppose there exists a continuous map f with
no fixed point. Define r : D2 → S1 thus: First, for each x, define a ray that passes
from f(x) through x, and then let r(x) be the point on S1 where this ray passes
through it. Note that if we assume that there is no point such that f(z) = z, this
is a well-defined, continuous function on S1.

Let
i : S1 →֒ D2

be the inclusion of the boundary. Then

r ◦ i : S1 → S1 = IdS1

since r does not change anything on the boundary of the disc. Thus we have

r∗ ◦ i∗ = (IdS1)∗ = Idπ1(S1).

Thus r∗ is onto, so we have a surjection

r∗ : π1(D
2) → π1(S

1).

But D2 is just a convex subset of R
2, and hence π1(D

2) is trivial; but π1(S
1)

is (Z, +), which is far from trivial. Hence r∗ is not a surjection, thus r(x) cannot
be well-defined and continuous. But if f really does not fix a point, r(x) must be
well-defined and continuous. Thus there must be a fixed point z such that f(z) = z.

�

2. Covering Spaces

Connected with the study of fundamental groups is the study of covering spaces:
a space X is covered by another space Y , roughly, when there is a surjective local
homeomorphism from Y onto X . As we will see in Section 3, the theory of covering
spaces has some interesting applications to group theory.

Definition 2.1. Let X be a topological space. A covering space X̃ over X is a
topological space together with a continuous and surjective map

p : X̃ → X

such that, for every x ∈ X , there exists an open neighborhood U ⊂ X such that

x ∈ U and p−1(U) is a disjoint union of open sets
∐

α
Cα ⊂ X̃ such that, for each

α, p|Cα
is a homeomorphism.

Remark 2.2. Here we call X the base space, X̃ the covering space, and p the
covering map.
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Example 2.3. Let our base space be the unit circle S1 embedded in R
2. Then R

is a covering space of S1 using the map

p : R → S1

p : t 7→ (cos(t), sin(t)).

Note that for each point in x ∈ S1, there are infinitely many t ∈ R such that
p(t) = x — namely, any number of the form 2nπ + j where j is a number such that
p(j) = x and n ∈ Z. It is a cover because it is continuous and surjective, and given
a proper open set U on the circle, the preimage p−1(U) is a disjoint union of open
sets in R; it is easy to see that for any open interval in S1 we get an open interval
on R, and then we remember that any open set can be decomposed into intervals.
This map is a homeomorphism on each interval because each interval cannot map
to a point in U more than once, since U is a proper open subset of S1 and each
interval must be less than distance 2π away from another interval that maps to the
same point in S1. If we had x1 and x2 with p(x1) = p(x2), then the line connecting
x1 to x2 would have as its image all of S1, and U would not be a proper open subset
of S1.

We can visualize this thus:

0 1
| |< >

R

S1•

p

��

Definition 2.4. Let p : X̃ → X be a covering map. A lift of a map f : Y → X is
a map f̃ : Y → X̃ such that pf̃ = f .

Theorem 2.5. Given a covering space p : X̃ → X, a map f : Y → X, and a map
f̃ : Y → X̃ lifting h(t, 0), there exists a unique homotopy h̃ : Y × I → X̃ of f that

lifts f̃ . We can visualize this in terms of a diagram: Given the homotopy on the
bottom of the diagram, there is a unique homotopy lift h̃ represented by the middle
arrow that makes the diagram commute (i.e. such that ∀y, (p ◦ h̃)(y, y) = h(y, t)):

Y

y 7→(y,0)

��

f̃
// X̃

p

��
Y × I

h̃

77
o

o

o

o

o

o

o

f
// X

Sketch of proof. For a detailed proof, see Hatcher [2]. Since p is a covering map, it

is a local homeomorphism, and so we can define h̃ locally. The difficult part of the
proof, which we will not reproduce here, involves showing that these local lifts can
be pieced together to give a well-defined homotopy h̃ : Y × I → X̃. �
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Theorem 2.6. For any path connected covering space X̃ of a simply-connected
space X, the covering map p is a global homeomorphism.

Proof. By the definition of a covering space, p is globally surjective and locally
homeomorphic. Thus it suffices to show that p is one to one globally—that is,
given any x1, x2 ∈ X̃ with x1 6= x2, p(x1) 6= p(x2). (Note that this fails for the
previous example: S1 is not simply connected since π1(S

1) = (Z, +), and p is cer-
tainly not a global homeomorphism since each x in S1 is covered infinitely many
times by p.)

Suppose then that p(x1) = p(x2). Consider any path f from x1 to x2 in X̃.
Since p is continuous, the composition of p with f is a path in X . Now since
p(x1) = p(x2), the image of our path f , p ◦ f , is a loop in X . But X is simply
connected, so π1(X) is trivial, and thus the loop p ◦ f is homotopic to a constant
loop. Now we are in a position to use homotopy lifting. We have a homotopy h
from the loop p ◦ f to a constant loop g in X , and also, we have a lift of p ◦ f ,
namely, f . By homotopy lifting, we get that there exists a unique homotopy h̃ from
f to g̃ where g̃ is some lift (that we cannot choose) of the constant loop g into X̃.
A priori we do not know what g̃ is. But since g is a constant loop in X , and since
p is a local homeomorphism at x, we must have g̃ be a constant loop—otherwise,
we would not have a local bijection. Then we have a homotopy h̃ from f to g̃,
which must be constant. Now we have that h̃ is a map [0, 1] × [0, 1] → X , with
h(s, 0) = f(s), h(s, 1) = g̃(s). Since the original homotopy h fixes the endpoints,

t 7→ h̃(0, t) and t 7→ h̃(1, t) give paths from, respectively, x1 to a point in the image
of g and from x2 to the point in the image of g. But both of these paths are entirely
contained within the preimage of the point p(x1) = p(x2), so both paths must be
constant. Thus x1 = x2, and p is a global homeomorphism.

�

It is tempting to think that the composition of covering spaces is a covering
space. But this need not be the case, as the following two examples will illustrate.

Example 2.7. Construct a space as follows: consider the subspace X ∈ R
2 that is

the union of circles Cn of radius 1/n, and center (1/n, 0) for n ∈ N. We can picture
this thus:

This space is interesting in many ways, and will eventually provide a counterex-
ample to the compositions of covering spaces being a covering space. As an aside,
here are some fun properties about this space:

Consider the surjection rn : X → Cn collapsing all Ci’s except Cn to the origin.
Each rn yields a surjection ρn : π1(X) → π1(Cn) ∼= Z, with the origin as the base
point. Taking the product of all the ρn’s yields a homomorphism ρ : π1(X) → Π∞Z

to the direct product of infinitely many copies of Z. It is surjective because, for
every sequence of integers, we can find a loop f : I → X that wraps around Cn

that many times in the interval [1 − 1/2n−1, 1 − 1/2n]. This composition of loops
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is continuous at all t < 1, and it is continuous at t = 1 since every neighborhood of
the base point contains all but finitely many of the circles Cn. π1(X) is uncountable
since it maps onto the uncountable group Π∞Z.

Now let us construct a covering of this space X . Pictures are the best way to get
a sense of what types of covering spaces will give us our desired result, so I have
included many.

Example 2.8. Let us start out with the following covering X̃ of X :

I have just placed a bunch of the inner loops
⋃

i≥2 Ci of these spaces X on the
real line R, with the base points of X hitting R on, say, the integers. For each
integer n, let Xn denote the copy of

⋃
i≥2 Ci with basepoint at n on the real line.

(Where the Ci notation is exactly that of the previous example.) Then define a

covering map p1 : X̃ → X as follows: first, map each segment [n, n + 1] of R to C1

in X via the usual covering map of R to the circle, and have p1 take Xn via the
identity to

⋃
i≥2 Ci. (Ignore for now the dotted loops: they will become important

with the next cover.) I claim that this defines a covering map. Given any point
x on an inner circle Ci of X and any U ⊂ Ci such that x ∈ U but the basepoint
x0 is not in U , p−1

1 (U) consists of one copy of U in each Xn, and p1 restricts to a
homeomorphism on each of these. Similarly, given any point x on the outer loop
C1 of X , there is an open neighborhood U such that the preimage of U consists of
open neighborhoods of R in X̃, each contained in (n, n + 1), and thus p1 restricts
to a homeomorphism on each of those components. Finally, at the base point x0 of
X , we can find a small open neighborhood U that misses at least one point of C1

such that p−1
1 (U) consists of disjoint open neighborhoods around the base points of

X̃ such that each consists of a homeomorphic copy of U ∩
⋃

i≥2 Ci (the intersection

of U with the inner circles) together with an interval in R around the appropriate
integer which is homeomorphic to U ∩C1 (since the latter misses a point of C1 and
any open subset of R is homeomorphic to an open subset of S1). Thus p1 is a local

homeomorphism, and hence X̃ covers X .
Now we will construct a double-sheeted covering of this space X̃ that will result

in a non-cover of the initial space X . It looks like this:
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Here, I have taken two copies of X̃, with the following change: for each dotted
circle in X̃, I have made that circle a dotted line connecting the two sheets. (We
get one dotted line from each sheet, making a dotted loop passing through the two

vertically aligned base points.) Now, construct a covering map p2 from ˜̃X to X̃ as

follows. Map both copies of R in ˜̃X onto R in X̃ via the identity, and map each

Xn in ˜̃X to the copy of Xn directly above it in X̃, skipping only the dotted loop in

X̃. Map the dotted lines in ˜̃X to the dotted loop in the same Xn in X̃. Thus each

point in X̃ has exactly two preimages in ˜̃X . This is a perfectly acceptable covering
of X̃; for any point x ∈ X̃ which is not an integer in R, a small open set containing
x but not any preimages of the basepoint has the required covering space property,
and for each basepoint n, there is an open neighborhood U around it that does not
contain any other integers and which misses at least one point of the dotted loop

in Xn; then it will have a preimage of two disjoint open neighborhoods in ˜̃X . It
is easy to see that these two pictures are homeomorphic (where the left is an open

neighborhood around a base point in ˜̃X , and the right is the corresponding open
neighborhood around the base point in X̃):

And hence, ˜̃X covers X̃.
Now look at the composition of these two covering maps, p1 ◦ p2. I claim that

there exists a point x ∈ X such that for every open neighborhood U with x ∈ U ,

(p1 ◦ p2)
−1(U) not a disjoint union of open sets in ˜̃X such that p1 ◦ p2 restricts to

a local homeomorphism on each component. Unsurprisingly, the point x for which
this fails will be the base point. Let U be any small open set including x0 ∈ X .
p−1(U) is a small open neighborhood around each of the base points in X̃. But

given any collection of open neighborhoods including the base points in X̃, we can
go far enough along R (i.e., take m large enough) to find a copy of X such that our

open neighborhood Y ⊂ X̃ properly includes an entire dotted circle Cm (since the
dotted circles become arbitrarily small as we go out to infinity in either direction).
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But since the preimage of Y in X̃ contains all of the dotted loop in Xn, when we

take the preimage p−1
2 (Y ) in ˜̃X , we get a connected component, as shown, which

includes two preimages of x0 and therefore is not mapped homeomorphically to U by
(p1◦p2). In pictures, this says that the following two spaces are not homeomorphic:

Hence the composition (p1 ◦ p2) is not a covering map.

By the previous example, the composition of coverings is not necessarily a cov-
ering. But this example seems strange; are there naturality conditions that make
the result hold? It turns out that there are, and to this end let us have a definition:

Definition 2.9. A space X is semi-locally simply connected if, for each x ∈ X ,
there is a neighborhood U such that the map π1(U, x) → π1(X, x) induced by the
inclusion is trivial. That is to say, roughly, that every loop in U can be contracted
in X .

Remark 2.10. It is easy to see that this fails miserably for the wedges in the previ-
ous example: any open neighborhood around the base point x0 contains infinitely
many little circles, none of which can be contracted in X .

Theorem 2.11. Let X be a locally path-connected, semi-locally simply connected

space, and let p1 : X̃ → X be a covering of X, and let p2 : ˜̃X → X̃ be a covering of

X̃. Then the composition p2 ◦ p1 : ˜̃X → X is a covering map.

Proof. Take some x ∈ X , and take a neighborhood U such that i∗ : π1(U, x) →

π1(X, x) induces a trivial map. Now if p1 : X̃ → X is a covering map, we intend
first to show that p−1

1 (U) is a disjoint union of open sets Cα such that p1|Cα
is a

homeomorphism for all α.
To this end, consider the preimage p−1

1 (U), and let Cα be any component of
this preimage. I claim that p|Cα

is one to one: Let x1, x2 ∈ Cα, and have p1(x1) =
p1(x2). Now, find some path f from x1 to x2 in Cα. The image p1◦f is some loop in

U , which is in turn contractible in X . By lifting the contracting homotopy to X̃ , we
see (using, basically, the same method as in Theorem 2.6) that we must have x2 =
x1. Now since p1 is a covering map, it is a local homeomorphism; but since on Cα, p1

is one-to-one, this implies that p1 actually restricts to a homeomorphism everywhere
on Cα. Therefore we must have that the open neighborhoods U around each x such
that the inclusion i∗ : π1(U, x) → π1(X, x) is trivial are also neighborhoods that
satisfy the required properties of covering spaces.

Now we can proceed. Since X̃ covers X , any loop in any Cα must be contractible
in X̃ , because we can always just lift a contracting homotopy from its image in X .
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Therefore the inclusion of Cα also induces the trivial map on homotopy groups.

Thus if p2 : ˜̃X → X̃ covers X̃ , we can apply the same reasoning as above: the
preimage under p2 of each Cα must be a disjoint union of sets Cαβ such that p2|Cαβ

is a homeomorphism to Cα. Then we just have a simple composition of homeo-

morphisms, p1 ◦ p2 : ˜̃X → X . Then, given x ∈ X , there is an open neighborhood

U ⊂ X such that x ∈ U and (p1 ◦ p2)
−1(x) is a disjoint collection of sets Cαβ ⊂ ˜̃X

such that, for each α and β, (p1 ◦ p2)|Cαβ
is a homeomorphism. Therefore p1 ◦ p2

is a covering map, and ˜̃X covers X . �

3. Cayley Complexes

A beautiful thing about covering space theory is that it gives us a very intuitive
way to describe groups geometrically as graphs. First let us see that for every group
G there is some cell complex that, roughly, corresponds to the group.

Definition 3.1. The wedge sum of two spaces X and Y , X
∨

Y , is the quotient
of the disjoint union X

∐
Y obtained by identifying x0 with y0 to a single point.

Example 3.2. S1
∨

S1 is simply a figure eight—two circles, connected at one point.

Theorem 3.3. For every group G there is a two-dimensional cell complex XG with
π1(XG) ∼= G.

Proof. Let us choose some presentation of 〈gα|rβ〉 of G. (This is just the group
generators enumerated on one side, and all the group relations on the other. This
presentation exists by the fact, unsubstantiated here, that every group is a quotient
of a free group.) Now just take a wedge of circles

∨
α S1

α, and attach two-cells e2
β by

the loops corresponding to words rβ . Thus for every generator g ∈ G, there is some
S1

α corresponding to that element with a fundamental group of Z corresponding
to self-concatenating that basis element some n times—and then for each relation
between the generators, we have a new two-cell e2

β that connects basis elements.

The fundamental group of this space, therefore, is just the basis elements S1
α with

connections at the relations e2
β that bring us back to the identity. This fundamental

group is by construction homeomorphic to G. �

Definition 3.4. A Cayley complex is a cell complex X̃G covering XG such that
X̃G/G ∼= XG, constructed as follows:

Let the vertices of X̃G be the elements of G themselves. Then, at each vertex
g ∈ G, insert an edge joining g to ggα for each of the chosen generators gα. This
graph is connected since every element of G is a product of gα’s, so there is a path
in the graph joining each vertex to the identity vertex. Each rα yields one loop in
the graph, starting at any vertex g, and for each such loop, attach a two-cell.

For the covering map, take each vertex of X̃G to the basepoint of G, and have
each edge corresponding to gα wrap once around S1

α in XG. Take each two cell e2
β

in X̃G to the two cell in XG whose attaching map is the image of the attaching
map of e2

β.

This is clearly a covering space of XG, since at any vertex of X̃G we can find a
small open neighborhood of that vertex which is homeomorphic to a small neigh-
borhood of the basepoint of XG.
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Example 3.5. Let G be the free group on two generators, a and b. XG is simply
S1

∨
S1, and X̃G is the graph pictured below. It is a cover via the natural map

which takes every vertex in the graph to the single vertex S1
∨

S1, and everything
else to the edges coming out of the vertices. It is easy to see that this is a cover—
locally, they look identical. For any path on S1

∨
S1, there is a path on the graph

below that corresponds to it (going right or left on the graph corresponds to going
around the right loop in S1

∨
S1, and going up or down on the graph corresponds

to going around the left loop in S1
∨

S1).

This theory of covering spaces of graphs generated by groups comes in useful in
proving things about groups themselves. For example, the next two results, which
I shall state but not prove as a motivation for further study, give some idea of how
the connections can be made:

Lemma 3.6. Every covering space of a graph is also a graph, with the vertices and
edges being all the lifts of the vertices and edges in the base graph.

Theorem 3.7. Every subgroup of a free group is free.
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