
ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY
NON-TRIVIAL MAP

HONG GYUN KIM

Abstract. I studied the construction of an algebraically trivial, but topo-
logically non-trivial map by Hopf map p : S3 → S2 and a collasping map
q : T 3 → S3.
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1. Introduction

Let p : S3 → S2 be the Hopf bundle and let q : T 3 → S3 be the quotient map
collapsing the complement of a ball in the 3-dimensional torus T 3 = S1 × S1 × S1

to a point. I would like to show that pq : T 3 → S2 induces the trivial map on H∗,
but is not homotopic to a constant map.

I will prove that pq induces the trivial map by calculating homology groups of S2

and T 3, then prove that pq is not homotopic to a constant map by the homotopy
lifting property of fiber bundle.

2. Homology Groups of S2 and T 3

First we calculate the homology groups of S2 and T 3.

For Sn in general, we have following proposition.

Proposition 2.1. H̃n(Sn) = Z and H̃i(Sn) = 0 for i 6= n
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Proof. Take (X,A) = (Dn, Sn−1) so X/A = Sn. The long exact sequence of
homology group for the pair (X,A) would be

· · · // H̃n(Sn−1)
i∗ // H̃n(Dn)

j∗ // H̃n(Sn)
∂ //

H̃n−1(Sn−1)
i∗ // · · · // H̃0(Sn) // 0

H̃n(Dn) = 0 since Dn is contractible.

Exactness of the sequence then implies that the maps H̃n(Sn) → H̃n−1(Sn−1)
are isomorphisms for all i > 0.

Based on the fact that H0(X) = Z for any nonempty and path-connected space
X, the result follows by induction on n. ¤

Applying this proposition to S2,

Corollary 2.2. H̃2(S2) = Z and H̃i(S2) = 0 for i 6= 2

Now we calculate the homology groups of T 3 by considering the cellcular chian
complex.

Proposition 2.3. Hi(T 3) is Z for i = 0, 3, Z3 for i = 1, 2, and 0 for i > 3

Proof. For T 3 we have a CW structure with one 3-cell, three 2-cells, three 1-cells,
and one 0-cell. Thus the cellular chain complexes have the form

0 // Z
d3 // Z3

d2 // Z3 0 // Z // 0

Having the fact that the cellular boundary maps d3, d2 are zero by cellular boundary
formula, the result follows. ¤

3. Inducing Algebraically Trivial Map

Based on these facts, we can determine what kind of map does pq induce on H̃∗.

Proposition 3.1. The induced map pq∗ : H̃n(T 3) → H̃n(S3) → H̃n(S2) is a zero
map.

Proof. Since H̃n(S2) = 0 for n 6= 2 by Corollary 2.2., the result follows for the case
n 6= 2.

For n = 2, we have pq∗ : H̃2(T 3) → H̃2(S3) → H̃2(S2). Since H̃2(S3) = 0, pq∗
must be a zero map. ¤

4. Fiber Bundle

Definition 4.1. A fiber bundle structure on a space E, with fiber F, consists of a
projection map

p : E // B

such that each point of B has a neighborhood U for which there is a homeomorphism

h : p−1 // U × F



ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP 3

making the diagram at the below commutes.

p−1 h //

p

²²

U × F

{{wwwwwwwww

U

The map h is called a local trivialization, the Space B is called the base space of
the bundle, and E is the total space.

Definition 4.2. A map p : E → B has homotopy lifting property with respect to
a space X if, given a homotopy gt : X → B and a map g̃0 : X → E lifting g0, i.e.
pg̃0 = g0, then there exist a homotopy g̃t : X → E lifting gt.

Proposition 4.3. A fiber bundle p : E → B has the homotopy lifting property with
respect to all CW pairs (X,A).

Proof. The homotopy lifting property for CW pair is equivalent to the homotopy
lifting property for disks, or equivalently, cubes.

Let G : In × I → B, G(x, t) = gt(x), be a homotopy we want to lift, starting
with a given lift g̃0 of g0.

Choose an open cover {Uα} of B with local trivializations hα : p−1(Uα) →
Uα × F . Since In × I is compact, we may subdivide In into small cubes C and
I into intervals Ij = [tj , tj+1] so that each product C × Ij is mapped by G into a
single Uα.

We may assume by induction on n that g̃t has already been constructed over ∂C
for each of the subcubes C. To extend this g̃t over a cube C, we may proceed in
stages, constructing g̃t for t in each successive interval Ij . This reduces us to the
case that no subdivision of In× I is necessary, so G maps all of In×I to a single Uα.

Then we have G̃(In×{0}∪∂In×I) ⊂ p−1(Uα), and composing G̃ with the local
trivialization hα reduces us to the case of a product bundle Uα×F . In this case the
first coordinate of a lift g̃t is just the given gt, so only the second coordinate needs to
be constructed. This can be obtained as a composition In×I → In×{0}∪∂In×I →
F where the first map is a retraction and the second map is what we are given. ¤

Since fiber bundles have homotopy lifting property, we can have the long exact
sequence of homotopy groups by following theorem.

Theorem 4.4. Suppose p : E → B has the homotopy lifting property with respect
to disks Dk for all k ≥ 0. Choose basepoints b0 ∈ B and x0 ∈ F = p−1(b0). Then
the map p∗(E,F, x0) → πn(B, b0) is an isomorphism for all n ≥ 1.

Hence if B is path-connected, there is a long exact sequence

· · · // πn(F, x0) // πn(E, x0)
p∗ // πn(B, b0) //

πn−1(F, x0) // · · · // π0(E, x0) // 0
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Proof. i) p∗ is surjective.

Represent an element of πn(B, b0) by a map f : (In, ∂In) → (B, b0). The con-
stant map to x0 provides a lift of f to E over the subspace Jn−1 ⊂ In, so the relative
homotopy lifting property for (In−1, ∂In−1) extends this to a lift f̃ : In → E and
this lift satisfies f̃(∂In) ⊂ F since f(∂In) = b0.

Then f̃ represents an element of πn(E, F, x0) with p∗([f̃ ]) = [f ] since pf̃ = f .

ii) p∗ is injective.

Given f̃0, f̃1 : (In, ∂In, Jn−1) → (E, F, x0) such that p∗([f̃0]) = p∗([f̃1]), let
G : (In × I, ∂In × I) → (B, b0) be a homotopy from pf̃0 to pf̃1.

We have a partial lift G̃ given by f̃0 on In×{0},f̃1 on In×{1}, and the constant
map to x0 on Jn−1 × I.

After permuting the last two coordinates of In× I, the relative homotopy lifting
property gives an extension of this partial lift to a full lift G̃ : In × I → E.

This is a homotopy f̃t : (In, ∂In, Jn−1) → (E,F, x0) from f̃0 to f̃1.
Thus p∗ is injective.

iii) The existence of a long exact sequence.

We plug πn(B, b0) for πn(E,F, x0) in the long exact sequence for the pair (E,F).

The map πn(E, x0) → πn(E, F, x0) in the exact sequence then becomes the com-
position πn(E, x0) → πn(E, F, x0) → πn(B, b0), which is just p∗ : πn(E, x0) →
pin(B, b0).

The 0 at the end of the sequence, i.e. π0(F, x0) → π0(E, x0) is surjective, comes
from the hypothesis that B is path-connected, since a path in E from an arbitrary
point x ∈ E to F can be obtained by lifting a path in B from p(x) to b0. ¤

Let us consider the fiber bundles given by projective spaces. Over the complex
numbers we have a fiber bundle

S1 // S2n+1 // CPn

Here S2n+1 is the unit sphere in Cn+1 and CPn is viewed as the quotient space of
S2n+1 under the equivalence relation (z0, · · ·, zn) ∼ λ(z0, · · ·, zn) for λ ∈ S1 The
projection p : S2n+1 → CPn sends (z0, · · ·, zn) to the equivalence class [z0, · · ·, zn],
thus the fibers are copies of S1.

To check the local triviality condition, let Ui ⊂ CPn be the open set of equiva-
lence classes [z0, · · ·, zn] with zi 6= 0 and define hi : p−1(Ui) → Ui × S1 by

(4.5) hi(z0, · · ·, zn) = ([z0, · · ·, zn], zi/|zi|)
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The inverse of this map is

(4.6) ([z0, · · ·, zn], λ]) 7→ λ|zi|z−1
i (z0, · · ·, zn)

Thus hi is a homeomorphism.

Definition 4.7. The Hopf bundle can be consider as the case n = 1 of the fiber
bundle given by projective spaces, S1 → S3 → CP 1 = S2

The fiber, total space, and base space are all spheres in Hopf bundle. Since
Hopf bundle is a fiber bundle, we can apply homotopy lifting property to our map
p : S3 → S2.

5. Topologically Non-Trivial

Now we prove that pq is not homotopic to a constant map.

Assume that pq is homotopic to a constant map c : T 3 → S3. Applying the
homotopy lifting property, for given map q lifting pq, there exists c̃ : T 3 → S3

lifting c which is represented by following diagram.

S3

p

²²
T 3

c̃

>>||||||||
c

// S2

Thus q and c̃ must be homotopic.

Proposition 5.1. c̃∗ : H3(T 3) → H3(S3) is a zero map.

Proof. Since c is a constant map, we can define an element a ∈ S2 where c(t) = a
for all t ∈ T 3.

Since pc̃ = c, pc̃(t) = a. Then c̃(t) ∈ p−1(a) which is a fiber of the Hopf bundle.

The fibers of the Hopf bundle are circles. Thus the image of c̃ lies inside circle.

Then the map c̃ can be decomposed in following sense:

(5.2) c̃ : T 3 → S1 ↪→ S3

which induces

(5.3) c̃∗ : H3(T 3) → H3(S1) ↪→ H3(S3)

However, since H3(S1) = 0, c̃∗ must be a zero map. ¤

Proposition 5.4. If M is Z-orientable, the map Hn(M ;Z) → Hn(M, M−{x};Z) ≈
Z is an isomorphism for all x ∈ M

To prove this proposition we need some definitions and a lemma.

Definition 5.5. Every manifold M has an orientable two-sheeted covering space
M̃ which is constructed in general,

M̃ = {µx|x ∈ M and µx is a local orientation of M at x}
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Definition 5.6. The covering space M̃ → M can be embedded in a larger covering
space MZ → M where MZ consists of all elements αx ∈ Hn(M,M−{x}) as x ranges
over M .

We topologize MZ via the basis of sets U(αB) consisting of αx’s with x ∈ B and
αx the image of an element αB ∈ Hn(M, M −B) under the map Hn(M,M −B) →
Hn(M, M − {x}). The covering space MZ → M is infinite-sheeted since for fixed
x ∈ M , the αx’s range over the infinite cyclic group Hn(M, M − {x}). Restricting
αx to be zero, we get a copy M0 of M in MZ. The rest of MZ consists of an infinite
sequence of copies Mk of M̃ , k = 1, 2, · · ·, where Mk consists of the αx’s that are k
times either generator of Hn(M,M − {x}).
Definition 5.7. A continuous map M → MZ of the form x 7→ αx ∈ Hn(M,M −
{x}) is called a section of the covering space.

Lemma 5.8. Let M be a manifold of dimension n and let A ⊂ M be a compact
subset. Then :
(a) If x 7→ αx is a section of the covering space MZ → M , then there is a unique
class αA ∈ Hn(M,M − A;Z) whose image in Hn(M,M − {x};Z) is αx for all
x ∈ A.
(b) Hi(M,M −A;Z) = 0 for i > n.

Proof. In this paper, we only need the case when A is union of convex compact
sets, while the actual proof contains the case for an arbitrary compact set. Here
I’ll only present the sketch of three steps of the proof.

(1) We check that if the lemma is true for compact sets A, B, and A ∩ B, then
it is true for A ∪ B by considering the Mayer-Vietoris sequence 0 → Hn(M, M −
(A ∪B)) → Hn(M, M −A)⊕Hn(M,M −B) → Hn(M,M − (A ∩B)).

(2) We reduce to the case M = Rn. A compact set A ⊂ M can be written
as the union of finitely many compact sets A1, · · ·, Am each contained in an open
Rn ⊂ M . We apply the result in (1) to A1∪, · · ·,∪Am−1 and Am. The intersection
of these two sets is (A1Âm)∪, · · ·,∪(Am−1Âm), a union of m− 1 compact sets each
contained in an open Rn ⊂ M . By induction on m this gives a reduction to the
case m = 1/ When m = 1, excision allows us to replace M by the neighborhood
R ⊂ M .

(3)When M = Rn and A is a union of convex compact sets A1, · · ·, Am, an
inductive argument as in (2) reduces to the case that A itself is convex. When A is
convex the result is evident since the map Hi(Rn,Rn − A) → Hi(Rn,Rn − {x}) is
an isomorphism for any x ∈ A, as both Rn − A and Rn − {x} deformation retract
onto a sphere centered at x.

¤

Proof. (of Proposition 5.4) Choose A = M , a compact set by assumption.

Let ΓZ(M) be the set of sections of MZ → M . The sum of two sections is a
section, and a scalar multiple of a section is a section, so ΓZ(M) is an Z-module.
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There is a homomorphism Hn(M ;Z) → ΓZ(M) sending a class α to the section
x 7→ αx, where αx is the image of α under the map Hn(M ;Z) → Hn(M, M−{x};Z).

Part(a) of the lemma asserts that this homomorphism is an isomorphism.If M
is connected, each section is uniquely determined by its value at one point, so the
proposition is apparent from the structure of MZ. ¤
Proposition 5.9. q∗ : H3(T 3,Z) → H3(S3,Z) is an isomorphism.

Proof. We know that Hn(Tn,Z) ≈ Z and Hn(Sn,Z) ≈ Z

Applying Proposition 5.4 to our case, let M = T 3

H3(T 3, T 3 − {x};Z) ≈ H3(R3,R3 − {0};Z) by excision

≈ H̃2(R3 − {0};Z) since Rn is contractible

≈ H̃2(Sn−1;Z) since R3 − {0} ' Sn−1

≈ H3(S3;Z)

Thus q∗ : H3(T 3, Z) → H3(T 3, T 3 −{x};Z) ≈ H3(S3,Z) is an isomorphism. ¤
Since the two maps q∗ and c̃∗ are different maps, the map q cannot be homotopic

to c̃.

Thus by contradiction, pq is not homotopic to a constant map.
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