
A COMBINATORIAL APPROACH TO STALLINGS’
ALGORITHM

HIKARU KIYO

Abstract. We reconstruct the Stallings Algorithm for finding the rank of a

subgroup of a free group combinatorially, and investigate the complexity of
the algorithm on different subgroups of free groups.

Contents

1. Introduction 1
2. Labled Oriented Graphs 1
3. Free Groups and Labled Graphs 5
4. Complexity of the Algorithm 10

1. Introduction

Given a finitely geenrated subgroup of a free group, it is a nontrivial question
to ask what the rank of the subgroup is. The reason the inquiry is nontrivial, is
because there may be relations among the generators that are not so obvious. Hence
to find the rank of the subgroup, we are intereted in finding the free basis of the
subgroup. However, it is often not a simple task to determine whether a redundant
generator exists. Consider the example H = 〈a2b−1, ba−1ba, aba−1, a6〉. It’s unclear
whether H has a redundant generator simply by looking at the generators. It
happens to be true that a2b−1 ·ba−1ba · (aba−1)−1 = a2, and hence this implies that
H = 〈a2b−1, ba−1ba, aba−1, a6〉 = 〈a2b−1, ba−1ba, aba−1〉. But again, there may
be another redundant generator among a2b−1, ba−1ba, aba−1, which may require a
much more complicated computation to obtain.

To answer this question, John Stallings came up with an algorithm that not
only eliminates but simplifies the generators of a subgroup of a freegroup. The
algorithm uses graphs, and a function on graphs, which we will later call as folding.
Stallings uses a topological aproach, using fundamental groups as the primary tool
to prove his result. In this paper we reprove the Stalling algorithm with a more
combinatorial construction. Afterwards, we will briefly explore the complexity of
the algorithm, and give examples of subgroups that behave differently with respect
to the algorithm.

2. Labled Oriented Graphs

We begin by defining labled oriented graphs, which will be our primary object
of investigation in this paper.

Date: DEADLINE AUGUST 22, 2008.

1

2 HIKARU KIYO

a
b

c

a

b

c

Figure 1. Constructing a labled oriented graph.

Definition 2.1. Let A = {a1, · · · , an} be a finite set, and let A−1 = {a−1
1 , · · · , a−1

n .
We think of A ∪ A−1 as an alphabet, and each ai, a

−1
i as letters of the alphabet.

Using these letters, we can form words, which is just a finite string of letters and
their inverses.

In case we have a subword of the form aa−1 or a−1a, we can freely reduce the
word by omitting the subword. For example, abaa−1b can freely reduced to ab2.
We say that a word is freely reduced if it doesnt contain any subwords of the form
aa−1 or a−1a for any a ∈ A.

Example 2.2. Let A = {a, b, c}. Then

a5b−2a, c4ab−3, and ab7cabca

are all freely reduced words formed from the alphabet A.

Now we define graphs which we will later lable using alphabets.

Definition 2.3. A graph Γ consists of two sets E and V and two functions f :
E → E and ι : E → V such that f is bijective, e 6= e, and e = e where e is the
image of e under f . Each e ∈ E is a directed edge of Γ, and e is the reverse of e.
V is the set of vertices of Γ. Finally, we define ι(e) as the initial vertex of e and
τ(e) = ι(e) as the terminal vertex of e.

Given a graph ∆, we’ll denote its edge set by E(∆) and its vertex set by V(∆).

Definition 2.4. Let Γ be a graph. Then we can make an oriented graph Γ̂ by
choosing one edge for each pair {e, e}.

Definition 2.5. Let A be an alphabet. Then an A-labled oriented graph, Γ̂, is an
oriented graph where each edge e ∈ E is labled by a letter in A, which we denote
by l(a), with the condition that if l(e) = a, then l(e) = a−1.

Definition 2.6. Let Γ̂ be a A-labled oriented graph. Then a path p in Γ̂ is a
sequence of edges p = e1, e2, · · · , ek, ei ∈ E(Γ̂), such that τ(ei) = ι(ei+1) for
each i. We define the origin of p as ι(p) = ι(e1), and the end point of p as

A COMBINATORIAL APPROACH TO STALLINGS’ ALGORITHM 3

τ(p) = τ(ek). The length of p is k, and for each path there is a word that lables
the path, l(p) = l(e1)l(e2) · · · l(ek). Hence l(p) is a word in the alphabet A. If
ι(p) = τ(p) = v, then we say that p is a loop based at v .

A path from v1 to v2 is exactly what one thinks it is, its a sequence of connected
edges that takes you from v1 to v2. Note that you can have many distinct paths
from v1 to v2. To read the lable of the path, just read the lable of the sequence
of edges, except when you go through an edge in the opposite direction than its
orientation, you read the inverse of the lable.

Note that in our definition of a path, we can have a path that contains a subpath
of the form ee or ee for any edge e. We will define paths that have no subpaths
of such form to be path reduced (sometimes we will just say a reduced path). Fur-
thermore, we will say that a path is freely reduced if the word it represents is freely
reduced.

From now on, unless otherwise stated, we will assume that our graphs are con-
nected, which implies that given any pair of vertices {v1, v2}, there exists a path p
such that ι(p) = v1 and τ(p) = v2.

Definition 2.7. Let Γ̂ be a A-labled oriented graph. Let v be a vertex of Γ̂, and
suppose these exists e1, e2, edges of Γ̂ such that ι(e1) = ι(e2) and l(e1) = l(e2).
Then we construct a new A-labled oriented graph, ∆̂, by identifying τ(e1) with
τ(e2), and e1 with e2. More precisely,

(1) Let V(∆̂) = (V(∆̂)\{τ(e1), τ(e2)}) ∪ {v12}. We obtain v12 from identifying
τ(e1) and τ(e2).

(2) Similarly, let E(∆̂) = (E(∆̂)\{e1, e2}) ∪ {e12}. e12 is added to replace e1

and e2 that have been identified.
(3) We let τ∆̂(e) = τΓ̂(e) for any e ∈ E(Γ̂) such that e 6= e1, e2, and τ∆̂(e12) =

v12. Similarly, ι∆̂(e) = ιΓ̂(e) for any e ∈ E(Γ̂) such that e 6= e1, e2, and
ι∆̂(e12) = ιΓ̂(e1) = ιΓ̂(e2).

(4) The lables of ∆̂ are defined as l∆̂(e) = lΓ̂(e) if e 6= e1, e2, and l∆̂(e12) =
lΓ̂(e1) = lΓ̂(e2).

Thus we get a A-labled oriented graph ∆̂. We can construct an analogous construc-
tion in the case τ(e1) = τ(e2) and l(e1) = l(e2), by identifying the two end points
and the two edges. We call this process folding, and we say that we obtained ∆̂ by
folding Γ̂ along e1 and e2.

The reader is encouraged to experiment some examples of folding. It can be
somewhat complicated when there are many edges coming out of the vertices that
are to be identified with each other. Also, its worth trying examples where folding
results in creating a loop, as illustrated in figure 2.

Definition 2.8. Let Γ̂ be a A-labled oriented graph. Then we say that Γ̂ is folded
if for every v ∈ V(Γ̂) and letter a ∈ A, there is at most one edge e1 ∈ E(Γ̂) such
that l(e1) = a and ι(e1) = v, and there is at most one edge e2 ∈ E(Γ̂) such that
l(e2) = a and τ(e2) = v.

In other words, when a graph is folded, we are no longer able to fold the graph.
In figure 2, both examples are folded once the fold is made (in other words, the
graphs on the left is unfolded, and the graphs on the right are folded). Note that
folding a connected graph results in another connected graph. Also, if we have a

4 HIKARU KIYO

a

a

b
b

a

a

b

b

a

a

a

a

a

b

Figure 2. Two exaples of a fold. The bottom example creates a loop.

path p with origin v0 and end point v1, and the image of v0, v1 under folding is v′0,
v′1 respectively, then the image of p under folding is a path p′, with origin v′0 and
end point v′1, where l(p) = l(p′). In other words, the lable of a path is preserved
under folding.

Folding is essentially all we need to construct Stallings algorithm. The algorithm
consists of folding a labled oriented graph until we get a folded graph. We’ll come
back to the actual construction later.

Definition 2.9. Let Γ̂ be a A-labled oriented graph, and v ∈ V(Γ̂). Then we define
the dictionary of Γ̂ based at v to be the set

{l(p) | p is a reduced loop based at v in Γ̂},

which we will denote as Dv(Γ̂).

It’s clear that under the operation of concatenation and path-reduction, Dv(Γ̂)
is a group. We have the trivial word since it’s the lable of the trivial loop, and the
inverse of a word in the dictionary can be obtained by considering the reverse loop.
As for closure, we just concatenate and path reduce the two reduced loops.

Note that even though the dictionary is composed of reduced loops, there may
be words that are not freely reduced in the dictionary. However, when one considers
folded graphs, this is no longer the case.

Lemma 2.10. If Γ̂ is a folded A-labled oriented graph, then for any v ∈ V(Γ̂),
Dv(Γ̂) only contains words that are freely reduced.

Proof. Let v be an arbitrary vertex of Γ̂. In order for some w ∈ Dv(Γ̂) to be not
freely reduced, there must be at least 2 edges e1 and e2 such that l(e1) = l(e2) and
τ(e1) = τ(e2) = v or ι(e1) = ι(e2) = v. But since Γ̂ is folded, this is impossible.
Hence our claim holds. �

A COMBINATORIAL APPROACH TO STALLINGS’ ALGORITHM 5

3. Free Groups and Labled Graphs

Definition 3.1. Let A∪A−1 be an alphabet. Then we define the free group on A
as the collection of all freely reduced words in A, with the group operation defined
as

w1 · w2 = w1w2,

where w1 and w2 are words in A and w1w2 is the freely reduced word we obtain
from the concatenated word w1w2.

Definition 3.2. Let Γ̂ be a A-labled oriented graph, and v ∈ V(Γ̂). Then we define
the reduced dictionary at v to be the set

{w | w ∈ Dv(Γ̂)},

which we will denote as Dv(Γ̂).

Now we show that dictionaries of an A-labled oriented graph are subgroups of
F (A).

Lemma 3.3. Let Γ̂ be an A-labled oriented graph, and let v ∈ V(Γ̂). Then Dv(Γ̂)
is a subgroup of F (A).

Proof. Let x1, x2 ∈ Dv(Γ̂). Then this implies that there exists two loops p1, p2

based at v such that l(pi) = wi and wi = xi for i = 1, 2. Consider the concatenated
loop p1p2, and let p3 be the reduced loop we obtain from p1p2. Then since the lable
of p3 can be obtained by freely reducing w1w2, we get l(p) = w1w2 = w1·w2 ∈ F (A).
Now, since p is a reduced loop based at v, l(p) ∈ Dv(Γ̂). So, Dv(Γ̂) is closed under
multiplication. Now, its clear that x−1

1 can be obtained from the reverse path p−1
1 ,

and hence we have x−1
1 = l(p−1

1). Finally, we also have 1 ∈ Dv(Γ̂). Hence Dv(Γ̂) is
a subgroup of F (A). �

Note that if Γ̂ is folded, by lemma 2.10 its dictionaries only contain freely reduced
words, and hence Dv(Γ̂) = Dv(Γ̂) is a subgroup of F (A) for each v ∈ V(Γ̂).

Now we prove that the freely reduced dictionary is preserved under folding.

Lemma 3.4. Let Γ̂0 be a A-labled oriented graph, and let v0 ∈ V(Γ̂0). If Γ̂1 and
v1 are the images of Γ̂0 and v0 respectively under a single folding, then we have

Dv0(Γ̂0) = Dv1(Γ̂1).

Proof. Suppose Γ̂1 is obtained from Γ̂0 by identifying e1, e2 ∈ E(Γ̂0), where ι(e1) =
ι(e2) = x0, x0 ∈ V(Γ̂0) and l(e1) = l(e2) = a, a ∈ A. Let e be the edge that replaces
e1, e2, where l(e) = a, and let x1 be the image of x0 in Γ̂1. Let w ∈ Dv0(Γ̂0), so
that there exists a path-reduced loop p0 based at v0 such that l(p0) = w. Suppose
that p0 has no sub-path of the form e1e2 or e2e1. Then if p1 is the image of p0, p1

is a path-reduced loop based at v1, where l(p1) = l(p0)⇒ l(p1) = l(p0). Hence we
have w = l(p1) ∈ Dv1(Γ̂1). If p0 contains sub-paths of the form e1e2 or e2e1, p1 will
not be path reduced. Let p′1 be the path-reduced loop we obtain from p1. Then we
have l(p′1) = l(p1) = l(p0), which also implies that w ∈ Dv1(Γ̂1). Hence we have
Dv0(Γ̂0) ⊆ Dv1(Γ̂1). Now we show the other inclusion. Let w′ ∈ Dv1(Γ̂1). Then
there exists q′, a path-reduced loop based at v1 in Γ̂1, such that l(q′) = w′. Let q be
the preimage of q′. If q′ doesn’t contain the edge e or e, we clearly have l(q) = w′,

6 HIKARU KIYO

and hence w′ ∈ Dv0(Γ̂0). Suppose q′ contains the edge e or e. Then we can partition
q′ in the following manner: q′ = q1y1q2y2 · · · qnynqn+1 where yi = e or e, and qi is a
reduced path that does not contain e or e. Note that since q′ is path-reduced, qi 6= 1
for i = 2, · · · , n. Now, since each qi does not contain e or e, their preimage in Γ̂0 is
the same path. To construct a reduced path in Γ̂0 with lable w′, for each i, we need
to find an edge zi that will make qiziqi+1 into a path in Γ̂0. Since by folding we’ve
identified e1 and e2 into e, for each yi, we just choose either e1 or e2 if yi = e, and
e1 or e2 if yi = e. Then we will have a reduced path qiziqi+1, which has the same
lable as qiyiqi+1, since l(e) = l(e1) = l(e2). Hence by repeating this process for
each i, we obtain a reduced path q = q1z1q2z2 · · · qnznqn+1 in Γ̂0, where l(q) = l(q′).
Thus l(q) ∈ Dv0(Γ̂0)⇒ l(q) ∈ Dv0(Γ̂0). So, we have Dv1(Γ̂1) ⊆ Dv0(Γ̂0), and hence
we have Dv1(Γ̂1) = Dv0(Γ̂0). �

Now that we’ve shown that the freely reduced dictionary is preserved under
folding, we go on to prove that for any subgroup of F (A), there exists a labled
oriented graph whose dictionary at a certain vertex is precisely the given supgroup.

Proposition 3.5. Let H = 〈h1, · · · , hk〉 be a finitely generated subgroup of F (A).
Then there exists a connected, folded A-labled oriented graph Γ̂ and a vertex v ∈
V(Γ̂) such that Dv(Γ̂) = H.

Proof. We will construct Γ̂ in the following manner. Let Γ̂1 be a connected A-
labled oriented graph constructed by wedging k A-labled oriented circles together
at a vertex v1. Each circle is to have the lable that corresponds to a generator of
H. So, the ith circle is made up of |hi| edges such that when read from v1 to v1,
the lable is hi. With this construction, its easy to see that the lable of every freely
reduced path in Γ̂1 is a freely reduced word in H, and vice versa. Hence we have
Dv1(Γ̂1) = H. Now, we construct a sequence of graphs by folding graphs at each
stage. At each i, if Γ̂i is folded, we stop the sequence. If not, we construct Γ̂i+1 by
folding. Since each time we fold we decrease the number of edges by 1, and since
we began with a finite numebr of edges, this sequence terminates at Γ̂n, for some
n ∈ N. Now, since folding preserves connectedness, Γ̂i is connected for each i. Also,
by the previous theorem, we have Dv1(Γ̂1) = Dvn

(Γ̂n) where vn is the image of v1

in Γ̂n. Now, since Γ̂n is folded, by lemma 1.11 we have Dvn
(Γ̂n) = Dvn(Γ̂n). Hence

we get the chain of equalities

H = Dv1(Γ̂1) = Dvn
(Γ̂n) = Dvn(Γ̂n).

So, Γ̂n is a connected, folded A-labled oriented graph with vertex vn such that
Dvn

(Γ̂n) = H. �

Now we prove that the folded graph that we obtain is unique up to isomorphism.
First we define morphisms between graphs.

Definition 3.6. Let Γ and ∆ be graphs. Then a map f : Γ → ∆ is a morphism
if f(E(Γ)) = E(∆), f(V(Γ)) = V(∆), and for every e ∈ E(Γ), ι(f(e)) = f(ι(e)) and
τ(f(e)) = f(τ(e)).

Before we get to the actual theorem, we prove two lemmas. The lemmas will
actually do most of the work, as we will see later.

A COMBINATORIAL APPROACH TO STALLINGS’ ALGORITHM 7

a

a

aa

a

a

b

b

b
b

a

a

a

a

a

a

b b

b

a

b

b
b

a a

a
a

b

b

aa

a
a

b

b

a

a

a b

b

b

a
a

b
a

a

ba

b

Figure 3. Finding the graph for H = 〈a2b−1, ba−1ba, ab−1a〉.

Lemma 3.7. Let Γ̂, ∆̂ be connected A-labled oriented graphs, with v a vertex of
Γ̂ and x a vertex of ∆̂. Suppose that ∆̂ is folded. Then there exists at most one
morphism, f : Γ̂→ ∆̂ such that f(v) = x.

Proof. Suppose f, g are morphisms from Γ̂ to ∆̂ such that f(v) = g(v) = x. Let
y be an arbitrary vertex in Γ̂, and let p be a path in Γ̂ such that ι(p) = v and
τ(p) = y. Now, since ∆̂ is foled, this implies that there cannot be two paths p1, p2

such that ι(p1) = ι(p2), and l(p1) = l(p2), since if such two paths existed, we should
be able to fold the graph. So, there can be at most one path p′ in ∆̂ such that
l(p′) = l(p). Now, since l(f(p)) = l(g(p)) = l(p), and ι(f(p)) = ι(g(p)) = x, this
implies that f(p) = g(p), and hence f(y) = g(y). Now, we can prove analogously
that f(e) = g(e) for any edge e ∈ Γ̂. So we have f = g, and hence our claim
holds. �

The next lemma constructs the morphism that we want. The uniqueness will
follow from the previous lemma.

8 HIKARU KIYO

Lemma 3.8. Let F (A) be a finite rank free group with a finite basis A, and sup-
pose K ≤ H ≤ F (A) are subgroups of F (A). Further, suppose that Γ̂ and ∆̂ are
connected folded A-labled oriented graphs such that Dv(Γ̂) = K and Dx(∆̂) = H,
where v ∈ V(Γ̂) and x ∈ V(∆̂). Then there exists a unique morphism f : Γ̂ → ∆̂
such that f(v) = x.

Proof. We will first show that f exists. Let v′ ∈ V(Γ̂), and let pv′ be a reduced
path from v to v′. Then this implies that there exists w ∈ Dv(Γ̂) such that the
initial subword of w ∈ K is l(pv′). Moreover, since K ≤ H = Dx(∆̂), there is a
unique path qv′ in ∆̂ such that ι(qv′) = x and l(qv′) = w. We let f(v′) = τ(qv′),
and show that f(v′) does not depend on our choice of path pv′ . Let p′v′ be another
path in Γ̂ from v to v′, and q′v′ the corresponding path in ∆̂ with ι(qv′) = x and
l(q′v′) = w′. Since pv′(p′v′)

−1 is a loop in Γ̂, w(w′)−1 = y ∈ K = Dv(Γ̂). This
implies that there exists s, a reduced loop based at v such that l(s) = y. Then sp′v′
is a path from v to τ(p′v′), and the path reduced form of sp′v′ has lable k · w′ = w.
Now, since Γ̂ is folded, this implies that there is only one path with lable w and
origin v. Hence the path reduced form of sp′v′ is pv, and hence τ(pv′) = τ(pv),
which implies that out definition is well-defined. Now we deal with the edges. Let
e ∈ V(Γ̂). Then since Γ̂ is folded and connected, there exists b a reduced loop based
at v such that b = b1eb2 where b1 and b2 are paths. Since b is a reduced loop based
at v, l(b) ∈ Dv(Γ̂) = K. Since K ≤ H, we also have l(b) ∈ H. This implies that
there exist c, a unique reduced loop based at x such that l(c) = l(b) = l(b1)l(e)l(b2).
Then we can write c = c1e

′c2, where l(c1) = l(b1), l(e′) = e and l(c2) = l(b2). By
our previous vertex construction, we have τ(c1) = f(ι(e)). So, we define f(e) = e′.
Note that we can only have at most one edge e′ ∈ E(∆̂) such that ι(e′) = f(ι(e))
and l(e′) = l(e), since ∆̂ is folded. Hence our definition is well-defined. So, we have
explicitly constructed the function f that we desired. Note that the uniqueness of
f follows from the previous lemma. �

Now we prove that folded graphs with the same dictionaries at a certain vertex
are unique up to isomorphism. The result follows almost trivially from the above
two theorems.

Theorem 3.9. Let F (A) be a free group with finite basis A and let H ≤ F (A) be a
finitely generated subgroup of F (A). Suppose Γ̂ and ∆̂ are A-labled oriented graphs
such that Dv(Γ̂) = Dx(∆̂) = H, where v ∈ V(Γ̂) and x ∈ V(∆̂). Then there exists
a unique isomorphism f : Γ̂→ ∆̂ such that f(v) = x.

Proof. Since H ≤ H, by Lemma 3.7, there exists a morphism f : Γ̂→ ∆̂ such that
f(v) = x. Similarly, there exists a morphism g : ∆̂ → Γ̂ such that g(x) = v. Then
by composition we obtain a morphism (g◦f) : Γ̂→ Γ̂ such that (g◦f)(v) = v. Now,
by Lemma 3.6, there is at most one such morphism, which implies that (g◦f) is the
identity morphism. We can prove similarly that (f ◦ g) is the idendity morphism.
Hence f is an isomorphism. �

Finally, we prove that once we create a folded graph with the desired dictionary,
we can obtain the free basis of our subgroup and hence its rank. We begin with a
lemma.

A COMBINATORIAL APPROACH TO STALLINGS’ ALGORITHM 9

Lemma 3.10. Let Γ̂ be a connected A-labled oriented graph, and v ∈ V(Γ̂). For
each x ∈ V(Γ̂) such that x 6= v, let px be a reduced path in Γ̂ from v to x. In
addition, for each e ∈ E(Γ̂), let pe = pι(e)e(pι(e))−1, so that pe is a reduced loop
based at v in Γ̂. Then the subgroup H = Dv(Γ̂) is generated by the set X = {l(pe) | e
is a positive edge in Γ̂}.

Proof. Let e be a positve edge in Γ̂. Then let p′e be the reduced path we obtain from
pe. Then we have l(p′e) ∈ Dv(Γ̂) and l(pe) = l(p′e), and so we have l(pe) = l(p′e) ∈
Dv(Γ̂) = H, which implies that 〈X 〉 ≤ H. Now, note that by our definition we
have pe = (pe)−1, and hence l(pe) = (l(pe))−1. We show that any element h ∈ H
can be written as a product of l(pe). Since h ∈ H = Dv(Γ̂), this means that there
exists q, a loop based at v in Γ̂ such that l(q) = h. Now let q = e1, · · · , ek, where
ei ∈ E(Γ̂). Now, consider the path q′ = pe1 · · · pek

. Note that we can expand q′ in
the following manner,

q′ = qv1e1(qv2)−1qv2e2(qv3)−1 · · · qvk
ek(qvk+1)−1,

where vi = ι(ei), and pvi
is a reduced path from v to vi for each i. This implies that

q′ can be reduced to obtain q, and hence we have l(q′) = l(q) = h. Also, we have
l(q′) = l(pe1) · · · l(pek

) ∈ 〈X〉. This implies that h ∈ 〈X〉. So, we have H ≤ 〈X〉,
and hence we get 〈X 〉 = H. �

All that remains to be proved is that our set is indeed a free basis, not just a
generating set.

Theorem 3.11. Let F (A) be a free group, and H ≤ F (A) be a subgroup. Let Γ̂
be the corresponding folded A-labled oriented graph with v ∈ V(Γ̂) and Dv(Γ̂) = H,
and let T be a spanning tree of Γ̂. For each e ∈ E(Γ̂), define pe = qeeqe′ , where
qe is a reduced path in Γ̂ from v to ι(e) and qe′ is a reduced path in Γ̂ from τ(e)
to v so that pe is a reduced loop based at v in Γ̂ and l(pe) is a freely reduced word
in A. Let X be the set of positively oriented edges of Γ̂ that are not in T . Then
X = {l(pe) | e ∈ X} is a free basis for the subgroup H.

Proof. Let e be a positive edge in T . Then pe = qe1eqe2 can be reduced to the
trivial path, and hence we have l(pe) = 1. This implies that the edges of Γ̂ that
are in T do not contribute to the group generated by {l(pe) | e is a positive edge in
Γ̂}. Hence H is generated by X , by the previous lemma. Now we show that X is
indeed a free basis. Let h be a nontrivial freely reduced word in X where h = l(p)
for some reduced loop based at v in Γ̂. Then we can write h = l(pe1) · · · l(pek

),
where ei ∈ E(Γ̂\T), and ei 6= (ei+1)−1 for each i. Now, by defnition of pei

, we can
rewrite p in the following form,

p = qe1e1qe′1qe2e2qe′2 · · · qek
ekqe′

k
.

Note that given a, b, c vertices in a tree, a path from a to b concatenated with a
path from b to c can be reduced to a path from a to c. So, since qe′

i−1
, qei

are both
paths in T , we can reduce the path into qi, a reduced path in T with ι(qi) = ι(q′ei−1

)
and τ(qi) = τ(qei). Hence we obtain p′ by reducing p, where

p′ = qe1e1q2e2q3 · · · qkekqe′
k
.

10 HIKARU KIYO

b

a

a

b

Figure 4. Finding the free basis of H from figure 3. We first
take a spanning tree, which is bolded, then read loops based at
the initial vertex where every edge but one is in the tree, until we
cover every edge. Hence the free basis of H is 〈aba−1, a2, b〉.

Now, since qe1 , qi, and qe′
k

are all paths in T and ei are paths in Γ̂\T , q′ is path
reduced. Hence p′ is a nontrivial loop based at v in Γ̂. This implies that since Γ̂ is
folded, the lable of p′ is a nontrivial word in A. Hence we get h = l(p) = l(p′) =
l(p′) 6= 1. Hence a nontrivial word of X defines a nontrivial element of F (A), and
so X is a free basis for H. �

Figure 4 is an example of how to find the free basis of a subgroup once you obtain
the corresponding folded graph. We essentially read a loop for each edge that were
not included in the spanning tree. Note that depending on which spanning tree
you take, you may get different bases. Also, note that the generators have become
simpler. In our example H, we started with H = 〈a2b−1, ba−1ba, ab−1a〉, and found
that actually H = 〈aba−1, a2, b〉. Hence, the rank of H is 3.

Let us now go over the entire algorithm. Consider H = 〈a2b−1, ba−1ba, ab−1a〉,
which has been used as our example. Our first goal is to obtain a folded graph that
is associated with the subgroup. We did this in figure 3, where the bottom graph is
the folded graph we wanted. Then we wanted to obtain a free basis of H by reading
the folded graph, which is what we did in fire 4, obtaining H = 〈aba−1, a2, b〉. Hence
we conclude that the rank of H is 3, which implies that we did not have a redundant
element in our initial set of generators.

4. Complexity of the Algorithm

We are interested in giving a bound to the number of folds that we need to make
in order to produce a folded graph. As mentioned before, when we fold a graph,
the resulting graph has one less edge than the previous graph. Since we begin with
a finite number of edges, the most trivial upper bound is the number of edges we
begin with. On the other hand, the most trivial lower bound is 0, where we cannot
fold at all. There is a better upper bound, but it is not much better, as the following
proposition shows.

A COMBINATORIAL APPROACH TO STALLINGS’ ALGORITHM 11

a

b

a a

a

a

a

a

b

b

b

b

b

b

x 2
a

a

aa

a

a b

b
b

b

b

a

aa

a

bbbb

b
b

a
a

a

a

a

a

aa

b

b

b

x 4

a b

b

b

a
b

b b

a

x 2

b

a

a

a

ac

a

ac

b

c

b

b

Figure 5. The sequence of graphs for H1 = 〈ab2a, b3, a−1b, a4〉
and H2 = 〈a2cb, ba2c, cba〉. H1 folds until there is one edge per
each letter, and H2 doesn’t fold at all. Note that H1 = F ({a, b}).

Proposition 4.1. Let H = 〈h1, · · · , hk〉. Then if p is the number of folds needed
to produce a folded graph by the construction in theorem 2.4, then

0 ≤ p ≤
k∑
i=1

|hi| − |A|

where |A| is the number of letters in A.

Proof. It is easy to see that there are subgroups whose initial wedge-graph cannot be
folded. Let A = {a1, · · · , an}. Then just consider 〈a1a2, a2a3, · · · , an−1an, ana1〉.
If Γ̂ is the graph obtained by wegding circles as shown in theorem 2.4, there are no
edges that can be folded. Hence p = 0, and so there are no better lower bounds.

12 HIKARU KIYO

Now, for the upper bound, we know that since folding decreases the number of edges
by 1, p can be at most the number of edges we begin with, which is

∑k
i=1 |hi|. But

we also know that since folding never eliminates a lable, for every letter in A, there
is at least one edge whose lable is that letter. Hence p is at most

∑k
i=1 |hi|−|A|. �

In figure 5, the initial wedge-graph of H1 has |ab2a| + |b3| + |a−1b| + |a4| = 13
edges, and is folded 13−|{a, b}| = 11 times until it becomes a folded graph. This is
the maximum number of folds that a 13 edge graph can go through. On the other
hand, the wedge-graph of H2 cannot be folded and hence we cannot get a simpler
set of generators for H2. Hence one sees that we cannot do much better than the
trivial bound for the number of folds required.

