
CW COMPLEXES OF THE FORM K(G,n)

DENNIS KRIVENTSOV

Abstract. Given a group G we construct CW complexes that are K(G,n)

spaces. We begin by constructing a complex with π1 = F , a free group. This
approach is readily generalized to any group by considering a presentation of

it and adding a cell for every relation. We then consider how to construct such

a complex for πn = G with πi = 0 for all i < n and n ≥ 2, using a similar
approach but different theoretical techniques. In order to control the higher-

order homotopy groups of these complexes, we prove a result about adding

sequences of higher-dimensional cells. We finally apply this construction to
prove a uniqueness theorem about general CW complexes of the form K(G,n).
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1. Background

Below are definitions and results from point-set and algebraic topology utilized in
the discussion. It is assumed that the reader is familiar with basic group theory and
homotopy theory. While sketches of proofs are provided for some of the theorems
in this section, full proofs can be found in [1].

Definitions 1.1. Let Dn be the n-dimensional closed unit ball and Sn−1 the
(n − 1)-dimensional unit sphere (or the boundary of Dn). A CW complex is
a topological space X and a collection of continuous maps φnα : Dn → X, called
characteristic maps, obeying the properties below. enα = φnα(Int(Dn)) is called
an n-cell of X.

(1)
X =

⋃
n≥0,∀α

enα

(2) enα ∩ emβ = ∅ unless α = β and n = m, and φnα|Int(Dn) is a homeomorphism.
(3) Let the n-skeleton be

Xn =
⊔

0≤i≤n,∀α

eiα
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Then for every n ≥ 1 and all α, φnα(Sn−1) ⊂ Xn−1.
A CW complex also has the following two properties (that explain the name ‘CW’).

(1) The closure of each cell of X is contained in finitely many other cells; this
is known as closure finiteness.

(2) A ⊂ X is open or closed if and only if A ∩Xn is open or closed for all n;
this is called the weak topology.

A subcomplex of a CW complex X is a union A of cells in X such that the closure
of each cell is also contained in A; therefore, it is also a CW complex. A CW pair
(X,A) is simply a pair of a CW complex X and subcomplex A.

Definition 1.2. Given a groupG, a topological spaceX is aK(G,n), or Eilenberg-
MacLane space, if πi(X) is isomorphic to G for i = n and trivial otherwise.

Example 1.3. S1 is a K(Z, 1) since it is connected, π1(S1) = Z, and the higher
homotopy groups are trivial. On the other hand, Sn is not a K(Z, n) for n ≥ 2
since its higher homotopy groups are not all trivial.

Theorem 1.4. (van Kampen) Let X be a union of path-connected open sets Aα,
each containing the basepoint x0 with the intersections Aα ∩Aβ and Aα ∩Aβ ∩Aγ
path connected. Let iα,β : π1(Aα ∩Aβ)→ π1(Aα) be the homomorphism induced by
the inclusion map of Aα ∩ Aβ in Aα and let N be the normal subgroup generated
by elements of the form iα,β(ω)i−1

β,α(ω). Then π1(X) is isomorphic to ∗απ1(Aα)/N
where ∗ is the free product.

Sketch of proof. The general motivation behind the proof is to decompose loops in
X into a concatenation of loops each contained in some Aα. To prove surjectivity,
it suffices to find such a decomposition for every loop in X, which is rather simple.
To prove the injectivity, it must be shown that any decomposition is unique up
to the given condition, which can be achieved with a rather technical argument
involving splitting the decompositions into equivalence classes based on whether
adjacent loops can be combined into one loop still in one Aα. �

Definition 1.5. A space X is n-connected if πi(X) = 0 for all i ≤ n. Likewise,
a pair (X,A) is n-connected if πi(X,A) = 0 for all i ≤ n.

Theorem 1.6. (Cellular Approximation) Given two CW complexes X and Y ,
every map f : X → Y is homotopic to a map g : X → Y with the property that
g(Xn) ⊂ Y n for all n. A map g with this property is called a cellular map.
Moreover, g may be taken to equal f on any subcomplex for which f is already
cellular.

Sketch of proof. The argument here proceeds by induction on the dimension of the
skeleton; assuming f is cellular on Xn−1, we look at the cell of highest dimension ek

which is in the image of f |Xn−1∪en (there are only finitely many cells that meet the
image by closure finiteness). A technical argument is used to show that f can be
deformed to miss a point y of ek. But then it can be deformed to miss the entire cell:
Dk−φ−1(y), with φ the characteristic map of ek, deformation retracts to Sn−1, and
composing this homotopy with φ gives the desired deformation. This can be done
for all the cells of dimension larger than n, and these homotopies can be performed
simultaneously for all en in Xn. This homotopy can be extended to the entire space,
completing the induction. Performing these homotopies sequentially, the nth step
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during the time interval [1− 1/2n, 1− 1/2n+1] gives the required deformation. (A
subcomplex on which f is already cellular can be left alone the entire process.) �

Remark 1.7. This theorem is easily extended to a map f : (X,A)→ (Y,B) of CW
pairs. First deform the restriction f : A → B to a cellular map. This can be
extended to a homotopy X → Y , which in turn can be deformed to cellular map
keeping the restriction to A constant. This produces the desired homotopy.

Theorem 1.8. (Excision) Let X be a CW complex which can be decomposed as a
union of subcomplexes A and B with their intersection C nonempty and connected.
Then if (A,C) is m-connected and (B,C) is n-connected, the map πi(A,C) →
πi(X,B) induced by inclusion is an isomorphism for i < n+m.

Theorem 1.9. (Whitehead) Let X and Y be CW complexes. If a map f : X → Y
induces isomorphisms in each homotopy group, then it is a homotopy equivalence.

2. CW complexes with π1 = G

Our first goal is to construct a CW complex with a given fundamental group. The
arguments here will not generalize to higher homotopy groups. Later arguments will
rely heavily on homotopy groups of pairs, which are not groups for n = 1. Moreover,
the fact that higher homotopy groups are abelian is false for the fundamental group.
Thus this special case is indispensable. First we prove a technical lemma which will
come in handy later.

Lemma 2.1. Let X be a 1-dimensional CW complex with basepoint x0 and Y a
CW complex obtained by attaching 2-cells e2α to X via maps φα : S1 → X. Let N
be the normal subgroup generated by elements of the form γαφαγα where γα is the
path from x0 to the basepoint of the loop φα and γα(t) = γα(1− t). Then π1(Y ) is
isomorphic to π1(X)/N .

Proof. We first construct a space Z from Y by attaching for each α a strip Sα =
[0, 1]× [0, 1] as follows: identify [0, 1]×{0} and γα, identify {1}× [0, 1] and an arc on
e2α with (1, 0) the basepoint of the loop φα and the rest contained in the interior of
the cell, and finally identify {0}× [0, 1] with the same edge for all the other Sα. The
edge [0, 1] × {1} is left unidentified, and so Z can be deformed to Y by retracting
each Sa to the union of its edges ({1}× [0, 1])∪ ([0, 1]×{0})∪ ({0}× [0, 1]) and then
retracting the line {0} × [0, 1] (identified in all Sa) to the basepoint x0. Choose in
each e2α a point yα not on the arc described by the {1} × [0, 1] edge of Sα. Then
we set A = Z −

⋃
α {yα} and B = Z −X.

We then have that A deformation retracts onto X by the homotopy described
above followed by the linear deformation retraction of e2α − yα to the loop φα
for each α. B, on the other hand, is contractible. A ∪ B covers Z, so by van
Kampen’s theorem, π1(Z) is isomorphic to the quotient of π1(A) = π1(X) with the
normal subgroup which is the image of the homomorphism induced by the inclusion
A ∩B → A.

Consider next the cover of A ∩B by the sets

Aα = A ∩B −
⋃
β 6=α

e2β .

Each of these consists of a union of Sβ with the edge {0} × [0, 1] identified and
all the others free, which all retract to the {0} × [0, 1] edge of Sα, which in turn
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Figure 1. The left diagram illustrates the relevant paths in the
space Y while the right one shows how the Sα are added to Y to
create Z in the proof of Lemma 2.1.

retracts to the arc on e2α − yα. But e2α − yα retracts to a loop, and so π1(Aα) = Z
and is generated by the loop φα. Applying van Kampen’s theorem again, we have
any intersection of several of the Aα is contractible (just a union of the Sα with
one edge identified) and so

π1(A ∩B) = 〈γαφαγα〉 = N.

The homomorphism induced by inclusion of A ∩ B in A is injective, so it follows
that π1(Y ) = π1(X)/N . �

We proceed by constructing, using van Kampen’s theorem, a CW complex with
fundamental group the free group on generators gα.

Construction 2.2. Take
∨
α(S1

α, xα), the disjoint union of circles S1
α with base-

points xα identified. This is a CW complex; in particular, it is obtained by the
characteristic maps

φ0(D0) = {x0} , φ1
α(Int(D1)) = S1

α − {x0} , φ1
α(∂D1) = {x0}

Theorem 2.3. π1(
∨
α S

1
α) = 〈gα〉, the free group on generators gα.

U
Α

A
Α

Figure 2. These show the definitions of Uα and Aα in the proof
of Theorem 2.3.
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Proof. For each α, let Uα be an open neighborhood of xα in S1
α andAα = S1

α

∨
j 6=α Uj .

Then each Aα is open under the weak topology and the intersections of two or more
Aα is just

∨
α Uα and so is path connected. Moreover, any loop based at x0 in

∨
α Uα

deformation retracts to the identity loop, meaning that in the van Kampen theorem
iα,β(ω) is trivial for any ω and so N = 0. Then π1(X) is isomorphic to ∗απ1(Aα).
But Aα deformation retracts to S1

α, which has the fundamental group Z; the free
product gives the free group 〈gα〉. �

We now proceed to generalize this result to any group G by adding a 2-cell for
each relation on G and applying the lemma.

Construction 2.4. Let 〈gα|rβ〉 be a presentation of G. First, let X be the CW
complex from Construction 2.2 with π1(X) the free group on generators gα. Each
rβ is a reduced word of the gα’s, so let ‖rβ‖ be the length of the word. Then let Y
be the union of Y with the 2-cells e2β attached via the maps ψβ : S1 → X created
by first parametrizing S1 with the map s 7→ (cos(2πs), sin(2πs)). Now let ψβ be
the map which sends each interval [ n

‖rβ‖ ,
n+1
‖rβ‖ ] onto the loop corresponding to the

(n+ 1)st letter in rβ , with the endpoints of the interval sent to x0.

For example, take the group 〈α1, α2, α3|α1α2α3〉. Applying Construction 2.4,
we get the attaching map in Figure 3. The resulting CW complex will be a wedge
of three circles with a single disk having its boundary identified according to the
attaching map.

x0

x0

x0

Α1

Α2

Α3

x0

Α1

Α2 Α3

Figure 3. This gives an attaching map of a disk (left) to a wedge
of three circles (right).

Theorem 2.5. The CW complex Y has fundamental group G.

Proof. By Lemma 2.1, π1(Y ) is the quotient of the free group on the gα’s by N .
But N is the smallest normal subgroup generated by the words rβ , which means,
by definition of presentation, π1(Y ) = G. �

3. CW complexes with πn = G, n ≥ 2

We now turn our attention to constructing CW complexes with G = πn, n ≥ 2,
which are (n − 1)-connected. Note first that G must be abelian, as πn is always
abelian. We will use the cellular approximation theorem to provide a construction
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analogous to the above. First we prove a different technical result which will end
up being used in place of Lemma 2.1.

Lemma 3.1. Let (X,A) be an r-connected CW pair with A an s-connected sub-
complex of X. Then πn(X,A) ∼= πn(X/A) for n ≤ r + s.

Proof. Construct X ∪CA by attaching the cone CA along A to X. We now divide
the proof into three steps:

(1) Note that CA is contractible, so the map X ∪CA→ (X ∪CA)/CA = X/A
is a homotopy equivalence and induces an isomorphism in πn.

(2) Next, consider the long exact sequence for (X ∪ CA,CA):

πn(CA) i∗→ πn(X ∪ CA)
j∗→ πn(X ∪ CA,CA) ∂→ πn−1(CA)

with i∗ and j∗ the maps induced by inclusions and ∂ the boundary map.
But CA is contractible, so the first and last groups are trivial. Then

0 = Im i∗ = Ker j∗,

meaning j∗ is injective, and

Im j∗ = Ker ∂ = πn(X ∪ CA,CA),

meaning j∗ is an isomorphism.
(3) Consider the long exact sequence for (CA,A):

0 = πk+1(CA)
j∗→ πk+1(CA,A) ∂→ πk(A) i∗→ πk(CA) = 0

The outside groups are trivial since CA is contractible. We thus have
an isomorphism between πk+1(CA,A) and πk(A), meaning that as A is
s-connected, (CA,A) is (s + 1)-connected. It is given that (X,A) is r-
connected. We can then apply the excision theorem on the inclusion

(X,A)→ (X ∪ CA,CA)

to get πn(X,A) ∼= πn(X ∪ CA,CA) for n ≤ r + s.
Now we have the following groups isomorphic:

πn(X/A)
(1)∼= πn(X ∪ CA)

(2)∼= πn(X ∪ CA,CA)
(3)∼= πn(X,A)

Which completes the proof. �

Now for the actual construction. In parallel with the previous section, we begin
with free abelian groups and then move on to any presented abelian group.

Construction 3.2. Let X =
∨
α S

n
α, n ≥ 2, with basepoints xα identified to x0.

This is clearly an n-dimensional CW complex.

Theorem 3.3. Construction 3.2 has πn(X) the free abelian group on free genera-
tors the homotopy classes of the inclusions Snα → X and is (n− 1)-connected.

Proof. Any map h : Si → X can be deformed to a cellular map h′ : Si → Xi. But
Xi = x0 for i < n, meaning that πi(X) is trivial and so X is (n− 1)-connected.

Consider first the case of finitely many n-cells in X. We can regard X as the
n-skeleton of

∏
α S

n
α = Y , for Y has one 0-cell, an n-cell for each α, and then more

cells of dimensions that are multiples of n. From this it is also follows that (Y,X)
is (2n− 1)-connected: take any map

f : (Dk, Sk−1, s0)→ (Y,X, x0).
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By cellular approximation this is homotopic to a cellular map

g : (Dk, Sk−1, s0)→ (Y k, Xk−1, x0).

But for k ≤ 2n− 1 Y k ⊂ X, so by the definition of a relative homotopy group,

0 = πk(Y k, X, x0) ∼= πk(Y,X, x0).

Now consider the exact sequence of (Y,X):

πn+1(Y,X) ∂→ πn(X) i∗→ πn(Y )
j∗→ πn(Y,X)

But the first and fourth groups are trivial by the above, so we have

πn(X) ∼= πn(Y ) ∼=
⊕
α

πn(Snα),

which is the free abelian group with generators the homotopy classes of the in-
clusions Snα → Y , which are by cellular approximation the same as the homotopy
classes of the inclusions Snα → X.

Now consider the general case. Let Φ :
⊕

α πn(Snα) → πn(X) be the homomor-
phism induced by the inclusions Snα → X. Now, take any f : Snα → X. Then the
compact image of f is contained in the wedge of finitely many of Snα (by closure
finiteness of CW complexes), so by applying the finite case the homotopy class of
f is in

⊕
α πn(Snα) and Φ is surjective. On the other hand, the compact image of

a nullhomotopy is also contained in the wedge of finitely many of Snα, and so the
finite case implies that Φ is an injection and so an isomorphism. �

Construction 3.4. Given an abelian group G with presentation 〈gα|rβ〉, construct
the complex C as follows: take Cn to be, from Construction 3.2,

∨
α S

n
α, with

one n-cell for each generator and with basepoint x0. Then for each relation, let
gβ,1gβ,2...gβ,k be the trivial word it describes. Let Uβ,1, Uβ,2, ..., Uβ,k be open sets
of the form

Uβ,i = {x ∈ Sn|‖x− xi‖ < εi, xi ∈ Sn} ,

choosing xi and εi to make them disjoint, γβ,i : Uβ,i/∂Uβ,i → Sn homotopy equiv-
alences, and ψβ,i : Snβ,i → Cn characteristic maps. Then add (n + 1)-cells by the
following attaching maps ϕβ : Sn → Cn:

ϕβ(y) =

{
x0 y ∈ Sn −

⋃k
i=1 Uβ,i

ψβ,i (γβ,i(y)) y ∈ Uβ,i

These are well-defined since the sets Uβ,i are disjoint. C, then, is the union of Cn

with these (n+ 1)-cells.

For example, take the abelian group
〈
α1, α2|α1α

2
2

〉
. The complex created as in

Construction 3.4 for n = 2 consists of a wedge of two 2-spheres and a 2-ball glued
on with the attaching map shown in Figure 4. Note that unlike Construction 2.4,
the order in which the attachment is performed is no longer specified with arrows
since the group is abelian.

Theorem 3.5. The CW complex C from Construction 3.4 is (n−1)-connected and
πn(C) = G.



8 DENNIS KRIVENTSOV

Α1

Α2

Α2
Α1 Α2

Figure 4. This is an attaching map of a 2-ball (left) to a wedge of
two 2-spheres. The region of the ball which is unmarked is mapped
to the basepoint of the wedge.

Proof. The (n − 1)-connectedness is obvious from cellular approximation, as C
contains no cells of dimensions between 0 and n.

First note that (C,Cn) is n-connected by the same argument as in the proof
of Theorem 3.2. Cn is (n − 1)-connected since X is. Then, by Lemma 3.1,
πn+1(C,Cn) ∼= πn+1(C/Cn). Then consider the following exact sequence:

πn+1(C,Cn) ∂→ πn(Cn) i∗→ πn(C)
j∗→ πn(C,Cn) = 0

Now, πn(Cn) = 〈gα〉 by definition. On the other hand,

πn+1(C/Cn) = πn+1(
∨
β

Sn+1
β ),

which, by Theorem 3.2, is the free group generated by the homotopy classes of
the characteristic maps Sn+1

β → C/Cn. But the boundary map ∂ takes each of
these to the homotopy class of the corresponding attaching map ϕβ , which is by
its definition rβ = gβ,1...gβ,k. Then we have that Im i∗ = Ker j∗ = πn(C) and
Ker i∗ = Im ∂ ∼= 〈rβ〉, meaning πn(C) ∼= 〈gα|rβ〉 = G. �

4. Constructing CW Complexes of the form K(G,n)

It only remains to be shown, given an (n+1)-dimensional CW complex X, how to
add cells of dimension greater than n+1 to X to cancel out πi(X) for i > n without
affecting the lower homotopy groups. We do this in the following construction by
using the cellular approximation theorem repeatedly.

Construction 4.1. Given an (n+1)-dimensional CW complex X, let ϕα : Sn+1 →
X be maps whose homotopy classes generate πn+1(X) (from a technical perspective,
these can be defined analogously to the maps ϕβ in Construction 3.4). Let Yn+1 be
created by adding (n+2)- cells via attaching maps ϕα to X. Proceeding inductively,
define Yn+k+1 by substituting Yn+k for X in the above. Let Y =

⋃∞
k=1 Yn+k.

Theorem 4.2. In Construction 4.1, πi(Y ) is trivial for i > n and isomorphic to
πi(X) for i ≤ n.
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Proof. Begin by considering Yn+1. For i ≤ n, the inclusion map X → Yn+1 in-
duces the isomorphisms πi(Yn+1) ∼= πi(X); to see this, consider the following exact
sequence:

πi+1(Yn+1, X) ∂→ πi(X) i∗→ πi(Yn+1)
j∗→ πi(Yn+1, X)

In the proof of Theorem 3.3, we showed that (C,Cn) is n-connected by cellular
approximation of pairs, and as X is the n+ 1 skeleton of Yn+1 the first and fourth
groups of the sequence are trivial. The induced isomorphism follows.

Now take any map Sn+1 → Yn+1; by cellular approximation this is homotopic
to a cellular map Sn+1 → X. But the homotopy class of the latter is generated
by the homotopy classes of the ϕα, each of which is trivial by construction. Thus
πn+1(Yn+1) = 0.

Finally, apply the above inductively, setting X = Yn+k. Then Yn+k+1 has
πn+k+1(Yn+k+1) trivial, and by taking infinite union we cancel all the homotopy
groups higher than n. �

We are now in a position to attack the central question. Combining the previous
constructions, we can create a CW complex of the form K(G,n) for any G and n.

Construction 4.3. Given group G and n ≥ 1, construct the CW complex X using
Construction 3.4 or 2.4, depending on whether n = 1. Then apply Construction
4.1 to X to get a CW complex Y . Then Y has, by theorems 4.2 and 3.4 or 2.4,
only one nontrivial homotopy group; specifically, πn(Y ) = G.

5. Uniqueness

A consequence of the construction is that CW complexes of the form K(G,n)
turn out to be unique in a rather strong sense, as we show below using Whitehead’s
theorem.

Theorem 5.1. Two CW complexes X and Y of the form K(G,n) for the same G
and n, n ≥ 1, are homotopy equivalent.

Proof. We assume without loss of generality that X is created via Construction 4.3,
for homotopy equivalence is an equivalence relation and by transitivity the more
general case will follow.

We first show that for any homomorphism φ : πn(Xn+1) → πn(Y ), there exists
a map f : Xn+1 → Y that induces φ. Note that Xn+1 is of the form∨

α

Snα ∪
⋃
β

(Dn+1
β − ∂Dn+1

β )

(i.e., of the form of Construction 3.5 or 2.5). Let f(x0) = y0 where x0 is the
natural basepoint of Xn+1 and y0 is some basepoint in Y (Y is path-connected
since it is a K(G,n)). Next, for each α let f map Snα to Y via a map fα : Sn → Y
in the homotopy class φ([iα]), where iα is the inclusion Snα → Xn+1. Then we
have f∗([iα]) = φ([iα]), and since by Theorem 3.3 (or 2.3) [iα] generate πn(Xn),
f∗([σ]) = φ([σ]) for all σ : Sn → Xn.

For each (n + 1) cell we consider the composition of the attaching map ϕβ :
Sn → Xn with f on Xn as defined above. Now, ϕβ is nullhomotopic in Xn+1, so
we need to show that f ◦ ϕβ is nullhomotopic in Y . By the preceeding paragraph,
[f ◦ ϕβ ] = f∗([ϕβ ]) = φ([ϕβ ]). However, [ϕβ ] = 0, so φ([ϕβ ]) = 0 since φ is a
homomorphism. Thus f ◦ ϕβ is indeed nullhomotopic in Y . We can then extend f
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to each cell of Xn+1, obtaining the extension f : Xn+1 → Y . We then have f∗ = φ
as the [iα] generate πn(Xn+1) by cellular approximation.

Setting φ to be an isomorphism between πn(Xn+1) ∼= πn(X) ∼= G and Y ∼= G,
we get f : Xn+1 → Y that induces said isomorphism. We extend it inductively
using the same argument as provided above for the (n + 1) cells: extending f to
each cell of Xn+k+1 is possible because the attaching map of the (n + k + 1)-cell
composed with f on Xn+k is nullhomotopic as πn+k(Y ) = 0. Then f : X → Y
induces an isomorphism in every homotopy group and by Whitehead’s theorem is
a homotopy equivalence. �
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