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Abstract. This paper begins by discussing the game SET, and uses it as an

introduction to affine caps. I then go on to find a general upper bound for

affine caps.
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1. Introduction

Marsha Falco created the game SET while doing genetics research on epilepsy
in German Shepherds. The game was published by SET enterprises in 1991. SET
presents an accessible entry into the field of affine caps in finite fields. This paper
starts by discussing the game, the rules, and the gameplay. The second section
discusses the game in mathematical terms, and what a cap means in the game.
In that section I prove that the maximal cap for F2

3 is 4, using SET. The third
section introduces the abstract notion of a cap, and I prove that the maximal cap
in Fk

2 = |Fk
2 | = 2k. In the fifth section I derive a general inequality that puts an

upper bound on the size of the maximal cap in Fk
q .

2. The Game SET

SET is a game of patterns played with cards. Each card has a either one two or
three shapes on it. The shapes are either diamonds, squiggles, or ovals. Each shape
is either red, green, or purple. Each shape is also either solid, shaded or empty.
In other words there are four categories of attributes, number, shape, color, and
shading, and within each category there are three types. Since each card is unique
it is easy to calculate that there are 81 or 34 cards. To begin the game the dealer
sets out 12 cards in a 3 by 4 grid. The players then must find SETs.

Definition 2.1. A SET is a collection of three cards such that, within each cate-
gory, the cards are either all the same or all different.

An example of a SET is a red solid diamond three, a purple shaded diamond
two, and a green empty diamond one. As you can see in color, shading, and number
these cards are all different, but in shape they are all the same. These cards could
have been all different if one was an oval and the other a squiggle, and still made a
SET. The key idea is that two cards do not share an attribute that the other does
not have. When a player identifies a SET in the grid they say ”SET” and collect
the three cards. The dealer puts three more down and play continues until there
are no more cards. The player with the most SETs wins.
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3. Number Theory

To think of SET mathematically the cards and there attributes need to be rep-
resented by numbers. There are a few different ways to make this happen. The
first way is to use the cards restricted to red solids and arrange them in a grid, as
in fig 1. What is interesting here is that any ”tic-tac-toe” line leads to a SET, but
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Figure 1. Here are all of the red solid cards arranged by number
and shape.

slightly more interestingly any ”tic-tac-toe on the torus” line leads to a SET, such
as the two oval, the one diamond, and the three squiggle in fig. 1. As you can see
this sort of understanding depends a great deal on arrangement. If any two cards
were switched this wouldn’t work, as in Fig. 2. So how must they be arranged?
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Figure 2. Here is figure one with the three ovals switched with
the two squiggles. Here straight lines do not necessarily determine
SETs.

Well this brings up the second way of thinking about this. If each category is put
into a component of a vector eg (number, shape, color, shading), and within each
category the types are assigned numbers ( number 1-0, 2-1, 3-2; shape squiggle-0,
diamond-1, oval-2; color red-0, green-1, purple-2; shading solid-0, shaded-1, empty-
3), then a SET is one in which the sum of all three cards, in this form, is zero
mod 3. More mathematically, there is a one to one correspondence between the
SET cards and F4

3, the field of three elements in four dimensions. Given any three
vectors, a1, a2, a3, these vectors make a SET if a1 + a2 + a3 = 0.
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4. Affine Caps

It sometimes happens that when the 12 cards are put down that there are no
SETs. In the rules of SET, if this happens three more cards are put down, and so
on until there is a SET. This prompts the question how many cards must be put
down to guarantee a SET? or equivalently: What is the maximum number of cards
possible in a collection with no SETs?

Definition 4.1. A collection of cards such that there are no SETs is called a cap.

In the case of all red solid cards, or F2
3, the size of the maximal cap is 4. An

example of a maximal cap is shown in Fig. 3.
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Figure 3. The cards shown are an example of a cap of size 4 in
this field. Check to make sure there are no SETs!

Theorem 4.2. The maximal cap size of F2
3 is 4.

Proof. Suppose there exists a cap of size 5. This must mean that there are two
elements in two of the rows and only one in the other row (eg Fig 4).
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Figure 4. An example of a ”5-cap”

Let the A be the element that is the only one in its row. There are four SETs
using A, or four lines going through A (as below)

One of the four lines will be the row that contains A. That leaves three lines that
contain the entire ’cap’. So by the pigeon hole principle one of the lines must
contain two other points, making a SET. In the example the purple line contains
a SET. �
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Figure 5. All possible SETs with A

5. Generalizing Caps

Now that we have seen caps in an elementary way, we can generalize to fields of
arbitrary size and dimension. In this section we will find an upper bound on cap
size for general finite fields.

Definition 5.1. C ⊂ Fk
q is a cap if for any a1, a2, a3 ∈ C there exist λ1, λ2, λ3 ∈ Fq

and λi 6= 0 for all i with λ1 + λ2 + λ3 = 0 such that λ1a1 + λ2a2 + λ3a3 6= 0.

In our original problem we were dealing with F4
3. In this case we get a slightly

simpler definition.

Theorem 5.2. C ⊂ Fk
3 is a cap if for any a1, a2, a3 ∈ C, a1 + a2 + a3 6= 0.

Proof. C ⊂ F4
3 is a cap so for any a1, a2, a3 ∈ C there exist λ1, λ2, λ3 ∈ F3 with

all λ non-zero and λ1 + λ2 + λ3 = 0 such that λ1a1 + λ2a2 + λ3a3 6= 0. now if
λ1, λ2, λ3 ∈ F3 and λ1 + λ2 + λ3 = 0 then λ1 = λ3 = λ3 since in order for their
sum to be zero in F3, it must be a multiple of three. so it is enough to assume
that λ1 = λ3 = λ3 = 1, since they cannot be zero, and if they equaled two the sum
would not change, since we mod by 3. �

Definition 5.3. C(q, k) is the maximum cap size for the field Fk
q .

Theorem 5.4. C(2, k) = |Fk
2 | = 2k.

Proof. Take λ1, ..., λ3 ∈ F2 and λi 6= 0 for i = 1, 2, 3 with
∑3

i=0 λi = 0. Since for
any x ∈ F2, x = 0 or x = 1 and λi 6= 0 for i = 1, 2, 3 then λ1 = λ2 = λ3 = 1, but
λ1 +λ2 +λ3 = 1+1+1 = 1 6= 0. Thus no λs exist to satisfy the definition, meaning
the entire space is a cap. �

The rest of this paper is devoted to finding a generalized equation for an upper
bound of caps.

Theorem 5.5. Let q > 2 with q = p for p prime, k > 3, V = Fk
q , A ⊂ V a cap,

Q = |V | = qk, and ζ a complex primitive pth root of unity. Given a1, a2, a3 ∈ A we
can find λ1, λ2, λ3 ∈ Fq with

∑
i λi = 0. Let

(5.6) S =
∑

y∈V \{0}

∑
a1,a2,a3∈A

ζ(
∑

i
λiai)·y.
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Then S = |A|(Q− |A|2).

Proof. Notice that
∑

a1,a2,a3∈A ζ(
∑

i
λiai)·0 =

∑
a1,a2,a3∈A 1 = |A|3 So we have

(5.7) S =
∑
y∈V

∑
a1,a2,a3∈A

ζ(
∑

i
λiai)·y − |A|3

Now we have to prove that

(5.8)
∑
y∈V

∑
a1,a2,a3∈A

ζ(
∑

i
λiai)·y = Q|A|

To prove this it is enough to show that whenever
∑3

i=1 λiai 6= 0

(5.9)
∑
y∈V

∑
a1,a2,a3∈A

ζ(
∑

i
λiai)·y = 0

If (5.9) is true then, since A is a cap, the only non-vanishing sums are when a1 =
a2 = a3. So if

∑3
i=1 λiai = 0 then∑

y∈V

∑
a1,a2,a3∈A

ζ(
∑

i
λiai)·y =

∑
y∈V

∑
a1∈A

ζ0·y

=
∑
y∈V

∑
a1∈A

1 =
∑
y∈V

|A| = |V ||A|

So now on to proving (5.9). Let x =
∑3

i=1 λiai and take A to be a bijective
transformation such that AT x = e1. so∑

y∈V

ζx·y =
∑
y∈V

ζx·A(A−1y)

=
∑
y∈V

ζAT x·A−1y =
∑
y∈V

ζA−1y∗e1

= C
∑
y∈V

ζy1 = C
∑

y1∈Fq

ζb

for some constant C and where y1 is the first component of y.∑
y∈V

ζx·y = C
ζq − 1
ζ − 1

= 0
since ζ = e

2iπ
q

�

Definition 5.10. Let 0 6= λ ∈ Fq and 0 6= y ∈ V . Define U(λ)y =
∑

a∈A ζ(λa)·y,
and u(λ)y = |U(λ)y|. Let u(λ) be a real vector of length Q− 1 whose coordinates
are parametrized by 0 6= y ∈ V the corresponding entry being u(λ)y.

Here we start to see the beginnings of our inequality.

Theorem 5.11. Let 0 6= λ ∈ Fq and 0 6= y ∈ V . Then

u(λ)y ≤ qC(q, k − 1)− |A| = C(q, k − 1)
qk

Q− |A|

where A is a cap.
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Proof. Since caps remain caps through affine transformations λA is a cap. Thus
we can assume that λ = 1. For every c ∈ Fq define vc as the number of elements
a ∈ A such that a · y = c. The SET of elements v ∈ V satisfying v · y = c forms a
subspace of Fk−1

q . Now since the SET of elements a ∈ A with a · y = c is a subset
of both A and AG(k − 1, q) so vc ≤ C(k − 1, q), since C(k − 1, q) is the maximum
cap size. It follows from the definition of u(λ)y that

u(λ)y = |
∑
c∈Fq

vcζ
c|

=
∑
c∈Fq

(C(k − 1, q)− vc)ζc|

since
∑

c∈Fq
ζc = 0 then C(k − 1, q)

∑
c∈Fq

ζc = 0. so by the triangle inequality

u(λ)y ≤
∑
c∈Fq

(C(k − 1, q)− vc) = qC(k − 1, q)− |A|

Since
∑

c∈Fq
vc = |A|. �

Theorem 5.12. Let 0 6= λ ∈ Fq Then

||u(λ)||2 = |A|(Q− |A|)

Proof.
||u(λ)||2 =

∑
y∈V \{0}

u(λ)2y

=
∑
y∈V

|
∑
a∈A

ζ(λa)·y|2 − |
∑
a∈A

ζ(λa)·0|2

=
∑
y∈V

|
∑
a∈A

ζ(λa)·y|2 − |A|2

Now by a similar argument as in the proof of theorem 5.5∑
y∈V

|
∑
a∈A

ζ(λa)·y|2 = Q|A|

so
||u(λ)||2 = |A|(Q− |A|)

�

Definition 5.13. c(k, q) = C(k,q)
qk

This simple substitution makes the following Theorem much easier. This is where
we get our upper bound on cap size.

Theorem 5.14. Choose A such that |A| = C(k, q), in other words, choose A to be
a maximal cap. (c(k − 1, q)− c(k, q))2 ≥ c(k, q)(1− c(k, q))/(qk − 1)

Proof. First u(λ)y ≤ c(k − 1, q)Q− |A| = c(k − 1, q)qk − qkc(k, q) so we have

u(λ)y ≤ qk(c(k − 1, q)− c(k, q)

so ∑
y∈V \{0}

(u(λ)y)2 ≤
∑

y∈V \{0}

qk(c(k − 1, q)− c(k, q)

||u(λ)||2 ≤ q2k(c(k − 1, q)− c(k, q))
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now since ||u(λ)||2 = |A|(Q− |A|) = qkc(k, q)(qk − qkc(k, q)),

q2kc(k, q)(1− c(k, q)) ≤ q2k(c(k − 1, q)− c(k, q))

�
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