FREE PRODUCT FACTORIZATION

PETER NELSON

ABSTRACT. In this paper proves a result about free products of groups, namely,
that if a group is finitely generated, it can be factored uniquely into the free
product of “indecomposable” groups. This proof uses the theory of funda-
mental groups and covering spaces, so some basics of algebraic topology are
introduced along the way
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1. INTRODUCTION

The goal of this paper is to prove a result on free products of groups, using topo-
logical methods. We assume that the reader has some knowledge of basic group
theory, in particular, the notions of subgroup, homomorphism, normal subgroup,
conjugation, and quotient groups, as well as group presentations. Some comfort
with point set topology may be helpful, especially the product and quotient topolo-
gies. Basic definitions and theorems from algebraic topology (but not proved) are
given and used often, but familiarity with them is not necessary.

2. FREE PRoDUCTS

Our goal in this paper is to study properties of a certain kind of product of
groups, called the free product, so there seems to be no place better to start than
with the definition:

Definition 2.1. The free product of two groups G; and G2, denoted G * G2 is
defined as the unique group H such that there exist injective homomorphisms ; :
G1 — H and iy : Gy — H and for any homomorphisms f: G; — X, g: Go — X
(where X is any group), there exists a unique homomorphism ¢ : H — X such
that the following diagram commutes.
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G1(L> G1 * Go <L>G2
%}
\ . /
H

For those familiar with categorical language, this is just the coproduct in the
category of groups. For those not so familiar, a more concrete description will likely
be more useful. The free product of two groups G and H has as an underlying set
the “reduced” words on nonidentity elements of the groups, alternating between
the groups. (Here, “reduced” means if two elements of the same group are next
to each other, we replace them with their product in the same group. That is if
91,92,... € G and hl,hg, N ]3'7 then glhlgg and h2g2h1g2h3 are “legal” words
in the free product, for example, but gigohs is not, since it could be reduced by
substituting the element g1g2 € G. If g1 and g are inverses, we get the identity,
which we then simply remove. The binary operation in the free product is given
by “concatenate and reduce,” that is, stick one word after the other and reduce
until the result is a reduced word. Then the identity is the empty word, and
inverses are given by reversing the order of letters and then replacing letters by
their inverses. One can check that this is indeed a group, and satisfies the property
in the definition.

A couple more things deserve mentioning. Free products are never abelian unless
one group is trivial. Also, one can take the free product of an arbitrary number
of groups, by requiring one injective homomorphism for each factor in the defini-
tion, and then given one homomorphism from each factor to X, there is a unique
homomorphism from the free product making the larger diagram commute.

One special case is very important:

Definition 2.2. A free group is the free product of some number (possibly infinitely
many) copies of Z. The number of copies is called the rank of the free group. Also,
the trivial group is the free group of rank 0 (being the free product of 0 copies of
X).

One can also think of this as reduced words on some number of letters (one for
each copy of Z), again under the operation “concatenate and reduce.” We will also
need a generalization of free product a few times.

Definition 2.3. Let A, B,C be groups, and f, g be homomorphisms, f:C — A,
g:C — B. Then the free product of A and B amalgamated over f and g (or
the free product amalgamated over C if the maps are injective and understood,
which they usually will be) is the unique group D and pair of homomorphisms
@p: A — D and ¢ : B — D such that given any other pair of homomorphisms
o A— X,¢': B— X, there is a unique homomorphism h making the following
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diagram commute:

This is written as A x¢ B.

Again, this may not be so enlightening for those unfamiliar with categorical lan-
guage (for those who are familiar, its just a pushout). A more concrete description
is that it is the free product of the group, but identifying the images of C' (we
quotient by the normal subgroup generated by things of the form f(c)g(c™!) or
g(e)f(c™1). A more intuitive way of thinking about this comes if f, g are injections.
Then C can be thought of as a subgroup of A and of B, and then the free product
of A and B amalgamated over C is the free product of A and B, but with the
subgroups corresponding to C' thought of as the same subgroup. One should also
note that if C' is the trivial group, this is just the free product.

3. SOME ToPOLOGY

To do what we want to do with free products, we also need some machinery from
topology. We will not prove that any of it works and take it as black box. For those
who want proofs, see Hatcher’s book [1].

In topology, if one space can be “continuously deformed” into another, we don’t
really distinguish them (as in the classic doughnut and coffee mug example). In
more technical language, two such spaces are “homotopy equivalent.” We now make
this intuition more rigorous.

Definitions 3.1. A homotopy between two continuous maps f,g : X — Y is a
continuous map h : X x [0,1] — Y (in the product topology), such that for all
x € X,h(z,0) = f(x) and h(z,1) = g(z). Often, h(x,t) is written as h(x). When
such a map exists, we call f and g homotopic and write f ~ g.

Definition 3.2. Two topological spaces X,Y are called homotopy equivalent if
there exists continuous maps f : X — Y and g : Y — X which are “inverses up
to homotopy,” that is, fog ~ idy and go f ~ idx (where idx is the identity
map on X and similarly for V). In this case, we call the maps f and g homotopy
equivalences and write X ~ Y.

Definition 3.3. A topological space X is called contractible if it is homotopy
equivalent to a point.

Definition 3.4. A Joop in a space X with basepoint x is a continuous map = :
[0,1] — X with v(0) = (1) = x. Alternatively, a loop is a map v : S* — X with
the z in the image of ~.

In this paper, we care about a certain way to associate groups to spaces, because
it will allow us to translate questions about groups to ones about spaces. We call
this the fundamental group of a space.
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Definition 3.5. The fundamental group of a topological space X at the point
x is the set of homotopy equivalences of loops with basepoint x, with the group
operation “do one, then do the other.” That is, if v, are representatives of some
homotopy classes then [y][y'] = [7”], where 4" is the loop defined as

iy = 120 if0<t<1/2
TWELyet-1) if1/2<t<1

One can verify that all this is well defined and forms a group with the identity
the constant loop at x and inverses given by “going around backwards.”
Often, the fundamental group is actually independent of the choice of basepoint.

Definitions 3.6. A path between two points x,y € X is a continuous map
v :[0,1] — X such that v(0) =  and v(1) = y. A space X is called path connected
if for any two points x,y € X, there is a path between = and y.

Proposition 3.7. If X is path connected, and x,y € X, then m (X, x) = m (X, y).
If this is the case, we drop the basepoint from the notation, and just write 7 (X).

Proposition 3.8. If X is homotopy equivalent to Y, with basepoints x,y respec-
tively, then (X, x) 2 71 (Y, y)

Definition 3.9. A space X is called simply connected if it is path connected and
its fundamental group is trivial.

We now give a very important example of a nontrivial fundamental group.
Proposition 3.10. m,S!' =2 Z

Fundamental groups of spaces are fairly easy to explicitly calculate due to the
following theorem:

Theorem 3.11 (Van Kampen). If X is path connected and if X = AUB (where A
and B are open subspaces of X ) and if ANB is simply connected (that is m1 (AN B)
is trivial), then m(X) = m1(A) * m1(B). More generally, if X = AUB and A, B
are open in X, then and C = w1 (AN B) then m(X) = m(A4) *¢ m1(B).

Definition 3.12. The wedge sum of two spaces X,Y with distinguish basepoints
x,y is the disjoint union of X and Y, with the points = and y identified.

For example, the wedge of two circles with any point the basepoint is a “figure-8”
space.

In particular, by Theorem 3.11 and Proposition 3.10, the fundamental group of
a wedge of « (not necessarily finite!) circles is a free group of rank a.

We now describe, without being very formal, a very nice class of spaces to work
with, CW complexes.

A CW complex is a space that is built up out of disks of various dimensions. We
start with some collection of points and call these 0-cells. Then we attach some
number of intervals to these points (at the endpoints of the intervals), and call these
1-cells. Now we might have loops (which are just images of S in this space), so we
can attach 2-dimensional disks to these loops along the boundaries of the disks. We
can keep doing this inductively, attaching n-balls to (n — 1)-spheres, calling them
n-cells. What we get from this process is called a CW complex. (The letters CW
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refer to the somewhat technical topology we put on this space. It doesn’t really
matter if we're treating it as blackbox.) If a space only has cells of dimension n
or less, we call it an n-dimensional CW complex. Finally, we sometimes want to
consider only cells of a given dimension or less in a given CW complex X. We call
this space then n-skeleton of X

CW complexes have some nice properties.

Proposition 3.13. For CW complexes, path-connected is equivalent to connected.
Furthermore, a CW complex is path-connected if and only if its 1-skeleton is con-
nected

Proposition 3.14. If X is a CW complex, and A is a contractible subcomplex of
X, then X/A is homotopy equivalent to X

A natural question is which groups occur as fundamental groups of spaces. The
answer is, even for a restricted set of spaces, all of them, by the following proposi-
tion.

Proposition 3.15. For any group G, there is a 2-dimensional CW complexr Xq
with 1 (Xg) 2 G

We will also need the notion of a covering space, and how it interacts with the
fundamental group.

Definition 3.16. A covering space of X is a space X and a map p : X - X
with the following properties: There is an open cover {U,} of X such that for each
a,p~t(U,) is a disjoint union of open sets in X which are homeomorphic to U,
with p the homeomorphism.

Another reason CW complexes are nice is that a covering space of one is also a
CW complex.

Proposition 3.17. Every covering space of an n-dimensional CW complex is an
n-dimensional CW complez.

The main reason why we care about covering spaces, at least for the purposes of
this paper, is that they correspond exactly to subgroups of the fundamental group.
This allows gives a dictionary between group theory and topology that we will make
good use of.

Theorem 3.18 (Galois Correspondence). If X is nicely behaved, then the sub-
groups of m1(X) correspond exactly to the connected covering spaces of X. More
precisely, if H is a subgroup of m(X) then there is exactly one covering space (up
to homeomorphism) X of X with m(X) = H. Also, if X is a connected covering
space of X, then 771(5( is isomorphic to a subgroup of m (X).

Here nicely behaved means path connected and a couple of other technical as-
sumptions. In particular, CW complexes are nicely behaved.

Finally, we want to say some things about graphs (not quite a combinatorialist’s
graphs, but those are a special case).

Definition 3.19. A graph is a 1-dimensional CW complex.
Definition 3.20. A tree is a contractible graph.
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Proposition 3.21. If X is a connected graph, then w1 (X) is a free group.

Proof. We first define a maximal tree in a graph X to be a tree Y contained in X
such that Y is not contained in any other tree in X. The fact that every graph
has a maximal tree follows easily from Zorn’s Lemma.! Then by Propositions 3.14
and 3.8, collapsing a maximal tree to a point gives a space which has the same
fundamental group as X, but is a wedge of some number of circles (one for each
edge of the graph not in the maximal tree). Then by Proposition 3.21, X has a
free group for its fundamental group. O

Proposition 3.22. FEvery subgroup of a free group is free.

Proof. Let G be a free group, and let H be a subgroup of G. Then let X be a graph
with fundamental group G (for example, a wedge of circles). By Theorem 3.18,
there is a connected covering space X of X with fundamental group H. But by
Proposition 3.17, X is a graph. But then by Proposition 3.21, H is a free group. [

4. MAIN RESULTS

Now we state the primary theorem whose proof is the goal of this paper:

Theorem 4.1. Any finitely generated group G is the free product of finitely many
indecomposable groups G1 * Go % ... * Gy, and this decomposition is unique, that is,
if we also have G = Hy * Hy x ... % H,, then n = m and each G; is isomorphic to
precisely one Hj.

The proof of this will involve some theorems about free products that rely on
some basic facts about covering spaces that we mentioned before.
First, we will go about proving uniqueness. The following theorem will be helpful:

Theorem 4.2 (Kuros). Let G = G1 % Gy and let H be a subgroup of G. Then
H =FxHy*...* Hy, where F is a free group and Hy, ..., Hy are subgroups of
conjugates of G1 and Go, within G1 * Gs.

Proof. First, we make a CW complex X with 71(X) = G using a “dumbbell con-
struction”. Let Xi, X} be CW complexes with fudamental groups G1, Gs, respec-
tively. Now connect the basepoints of X; and X} with an interval E, and declare
its midpoint, v to be the basepoint of the new space, which we now name X. We
also define X; to be the component of X \ {v} which contains X7, together with
the {v}(and again, similarly for X3). Then X; deformation retracts onto X/ (send
the extra interval to the basepoint in X7). Thus, 71(X1) & G;. (And the same
for X5. Now to find the fundamental group of X, we use Van Kampen’s Theorem
(Theorem 3.11). We have that X = X; U X, and also X; N Xo = v, which has
trivial fundamental group, so then 1 (X) = 7 (X7) * 1 (X2) = Gy * Ga.

Now let H be a subgroup of G. By the correspondence between connected
covering spaces of X and subgroups of 71 (X) (Theorem 3.18) there is a connected
covering space X of X and with projection map p : X — X. Since X is a covering
space of X, p~1(X;) is a covering space of X; (p is still a local homeomorphism)
and similarly for X,. However, p~!(X;) may not be connected, but each component
of p~1(X1) will be a connected covering space of X, and thus will correspond to
a subgroup of m1(X1). Also, p~!(E) is a union of connected covering spaces of E.

LAnd is in fact, equivalent to the Axiom of Choice.
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Since FE is contractible, there is only one connected covering space of E, that is,
E itself (again, by Theorem 3.18). Thus, p~*(E) is a union of copies of E. These
copies of E attach to the connected covering spaces of X; and X5 at elements of
the preimages of the basepoints. Thus, X is a union of connected covering spaces
of X7 and X, connected to each other with intervals.

We want to proceed here by saying that 71 (X) is the free product of the funda-
mental groups of these smaller covering spaces, as well as an extra free group. This
would certainly be true if X were a graph with the small covering spaces glued onto
the vertices. However, this is not quite the case. The intervals connecting to one of
the “components” do not all attach at the same point (if they did, no neighborhood
of this point would be homeomorphic to any neighborhood of v). This is not too
difficult to deal with though. The idea is to replace the smaller covering spaces
with homotopy equivalent spaces, where the connecting intervals all attach at the
same point.

Choose a component of p~!(X1) and call it X, First, recall that a covering space
of a CW complex is another CW complex (Proposition 3.17), and that in this case,
connected and path-connected are equivalent. Additionally, if a CW complex is
path-connected, then its 1-skeleton is. Thus, we may chose one O-cell y € X, where
an interval connects and then connect all other such 0-cells to it via paths in the
1-skeleton. If any of these make a loop around a non-contractible portion of the
1-skeleton (e.g. a circle), we may replace that segment of the path with a constant
at its basepoint. Thus, y is connected to all the “connection points” via contractible
paths in the 1-skeleton. The union of all of these form a contractible subcomplex
A of X1, and thus, X;/A is homotopy equivalent to X;. (By Proposition 3.14)
Doing this procedure to each connected covering space of X; or X5 in X, we get a
space which is actually a graph with extra spaces glued on at the vertices. Now by
choosing a maximal tree in this graph and collapsing it to a point, we get a space
which is the wedge sum of some covering spaces of X; and X5 as well as some more
circles, which came from the edges of the graph which were not in the maximal
tree. Thus, 71(X) isomorphic to the free product of subgroups of G; and Gy as
well as an additional free group.

What we actually want, though, is for these isomorphisms of subgroups to be
given by conjugation. To show this, let ¥ be the basepoint of X and remember that
H = p.(m (X, )). Also, let C be some component of p~1(X7), and let v be a path
from some element of p~!(v) which is in C to 9. The po~ is a loop in X; based
at v, o p.(m1(C, D)) is conjugate to some subgroup of Gy (via some element of the
fundamental group which is represented by p o 7. g

As a consequence of this theorem, we get the following corollary, and another
proof of Proposition 3.22:

Corollary 4.3. Let H be indecomposable (that is, H is not a free product of any
two nontrivial groups), and suppose H # 7. If H < G % G, then H is a subgroup
of a conjugate of Gy or Go

Proof. Since H < G1xG2, H is isomorphic to a free product of subgroups of G; and
G- as well as a free group F', by the theorem. But then since H is indecomposable,
F must be trivial or Z, otherwise , we could express F' as a free product of another
nontrivial free group and Z, and then H would be the free product of two nontrivial
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groups. Now if the F' = Z, all of the subgroups of G; and G5 composing H must
be trivial, or again, H would not be indecomposable. But then H = Z, which we
assumed it wasn’t. Thus, F' is trivial. Then H is the free product of subgroups
of conjugates of G; and G4, but all but one of these must be trivial, since H is
indecomposable. Thus, H is a subgroup of a conjugate of G or Gs. O

Alternate Proof of Proposition 3.22

Proof. Let F be a free group and let H < F. Then F 2 Z xZ *Z % .... Then by
the Theorem 4.2, H is a free product of conjugates of subgroups of Z and a free
group. But any nontrivial subgroup of Z is isomorphic to Z, and conjugates of a
subgroup are still isomorphic to that subgroup. Thus, H is the free product of two

free groups, which is free, since free groups are the free product of several copies of
Z. O

Now we just need to state one more lemma, and we can prove uniqueness of the
free product decomposition.

Lemma 4.4. Let G = Gy * Go (assuming G1,Ga nontrivial) and w € G. Then if
w™rGirw NG, (i € {1,2}) is nontrivial, theni = 1,w € G, and thus, w™'Giw = Gj.

Proof. Let g be a nontrivial element of G; with w™lgw € G;. Also, we can let
w = aw’, where a € G and w' is a reduced word in starting in Go. Then w™lgw =
w'la"tgaw’ = w'~tg'w’, where ¢’ is a nontrivial element of G;. Thus, w'~!'g'w’
is a reduced word, since w is a reduced word and the last letter of w'~1 and the
first letter of w are both in G5. But, w'~'¢/w’ is in G;, and thus has length
1. Then w’ is trivial, and thus, w = o € G;. So, w™'Giw = G;. But then
wlGiw N G; = G1 NG, is nontrivial, but this can be the case only if i = 1, since
G is the free product of G; and Gs. [l

We may now prove uniqueness.

Theorem 4.5. If G = G1+xGax*...xG, and G = HyxHy*...x H,,, where each G;
and H; is indecomposable and nontrivial, then m = n and (possibly by permuting
the Hls), G; = H; for all i.

Proof. First suppose that, for all i, G; =2 Z. Then G is free, and then since H; < G
for all 4, H; is free by Corollary 3.22 and since H; is indecomposable and nontrivial,
H = 7. Then by abelianizing Gy % ... *x G, and Hy * ... x H,,, we get Z" = Z™,
which is true only if m = n.

If not all G; are isomorphic to Z, we may reorder the G;’s so that G1,...,Gy 2 Z
and Ggy1,...,Gn 2 7Z. Now G1 < Hy *...x H,,, and it is also indecomposable, so
by Corollary 4.3 G is a subgroup of a conjugate of some H;, but we may reorder
and make it H;. Then for some v € G,u"*Gu C H;. So then H; 2 Z and we may
apply Corollary 4.3 again, this time to Hy < Gy * ... * G, so for some v € G and
some i, v Hjv C G;. But then (uv)"'Giuv C G;, and by Lemma 4.4, uv € G4
and ¢ = 1. Now we have

G = (uv)_lGluv Cv 'Hiv CGy.

Thus H; is conjugate to G in G, and so G & H;.

From this same argument we get that G; = H; for 1 <i < k. For any H;, there
is only one G; conjugate to it, since otherwise two different GG;’s would be conjugate,
and that can’t happen by the Lemma. So then Gy % ...*x Gy = Hy *...x Hy.
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Now let G’ be the normal subgroup generated by G containing Gy *...* G and
let H' be the smallest normal subgroup of G containing Hy * ... * Hy. Since G; is
conjugate to H; for 1 <i <k, G' = H’, so

Gry1%...%G, 2 G/G =G/H 2 Hyyq1 % ...x Hy,.

But Giy1 * ... * G, is free, since for ¢ > k,G; = Z. But then Hiy1 *...x H,,
is free, since its isomorphic to Ggiq * ... *x Gy, so for each i > k, H; =
by abelianizing, we see that m — k = n — k. Thus, m = n, and H; & G; for
1<i<n. O

Remark 4.6. Notice that this proof works for any group that can be written as
the free product of indecomposable groups, not just finitely generated ones. The
hypothesis that G be finitely generated is only necessary to guarantee the existence
of such a decomposition. There are groups which do not admit such decompositions,
and we will now give an example of one.

First, remember that for two elements a,b of a group G, the notation [a,d]
means the aba~'b~!, which is called the commutator of a and b, and is the identity
iff ab = ba.

Example 4.7. The group G = (ag, a1, as, ...,b1, b, ... |[an,byla; |, n > 1) cannot

be written as any free product of indecomposable groups.

Proof. First, note that G = (by)* (a1, az,...,ba, b3, ... |[an,bpla;ty,n > 2) 2 ZxG.
(We dropped the ag since it is identified with [a1,b;1].) Thus, we may write G as a
free product of any finite number of groups. Because of this, G cannot be the free
product of any finite number of indecomposable groups, because if we could write
it as the free product of n indecomposables, our unigeness result would apply and
it could not be a free product of any n + 1 groups, which is a contradiction. So G
is not the free product of any finite number of indecomposable groups.

To rule out the infinite case, we need a lemma, which will be stated without

proof.

Lemma 4.8. If G = A x B, A, B nontrivial, and if g = [g1, 2] is a nontrivial
element of A, then g1,gs € A.

Also, note that G = (a1, b1) *¢, {ag, b2) x¢, - . ., where C; 2 Z for all i, and where
the inclusion maps are given by sending a generator of C; to a; (for C; — {(a;, b;))
and the same generator to [a;11,b;11 (for C; — {(a;11,b; + 1)).

Now suppose G = G1 #*Go *. .., where each G; is indecomposable and nontrivial.
(G is at most a countable free product, since it is countable generated) Consider
the element ag € G. Then for some n, ag must lie in Gy * ... *x G,. (This is
actually true for any element of G, since every element is a finite word.) Now set
A=G1*...«G,and B= G411 %Gpio%.... Then G = Ax B, where A and B are
nontrivial, and ag € A. The decomposition of G into an infinite amalgamated free
product given above shows that each a; is nontrivial in G. Then by Lemma 4.8,
since ag € A,a1,b; € A. But then for all 7, a; and b; are in A, so G C A, and B is
trivial, which is a contradiction. Thus, G cannot be written as the free product of
any number of indecomposable groups. ([l
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Finally, we go about proving the existence of a free product decomposition for
finitely generated groups. This will follow as a corollary to to the following theorem.

Theorem 4.9 (Grusko). Let F be a free group, G = G1 x G and let ¢ : F — G
be a surjective homomorphism. Then there are F,Fy < F with F = Fy x F5 and

o(fi) = Gi.

Remark 4.10. Note that this theorem is really talking about the generators of G.
It says that if G is the free product of two groups, and can be generated be n
elements, then there is a set of n generators of GG, each of which is an element of
G or Gs, and not a longer word.

Proof. Again we use the “dumbell” construction. Let X7, X} be CW complexes
with 71 (X]) 2 G;, and connect their basepoints with and interval E and call this
space X. Declare the basepoint v to be the midpoint of E. Finally, let X; be the
closure of the component of X \ {v} which contains X/ (so that X; also contains
v) and define X5 similarly. Also, X; and has fundamental group G, since X3
deformation retracts to X7, and similarly for X5 and Gs.

Now we make a quick definition.

Definition 4.11. Let K be an arbitrary pointed topological space, and let f : K — X
be a basepoint-preserving continuous map. We say that f represents ¢ if there is
an isomorphism ¢ between 71 (K) and f with the diagram below commuting

Fl(K) d F
g
G:7T1(X)

Actually, for the rest of the proof, we only care about the case where K is a
2-dimensional CW complex and f is a cellular map.

Maps representing ¢ exist, since we can take K = V' ;S (n being the rank of
F). In this case f, is basically equal to ¢ since m(K) = F. However, this may
not give the "right” map, so we modify it until it suits our purposes. ”Suits our
purposes” in this case means that we want f~!(v) to be a tree, because then the
theorem follows almost immediately.

So, let Ky be the wedge of n circles (with n the rank of F'), and pick a cellular
map fo representing ¢ so that f~1(v)is a finite number of O-cells in K. Particularly,
fo ' (v) is a forest (a disjoint union of trees). If it is connected, it’s just a single
point, but in particular, its a tree. If it’s not a tree, we want to find another space
K and another map f which represents ¢ which is a tree. The following lemma
allows us to do that.

Lemma 4.12. Let K be a pointed CW complex and f: K — X be a map repre-
senting ¢ such that f~1(v) is a forest with n > 2 components. Then there erists
a pointed CW complex K' and a map f' : K' — X representing ¢ and f'~(v) a
forest with n — 1 components.

Proof. Let ¢ be a path in K with endpoints in two distinct component of f~!(v)
(that is, ¢ connects two components of f~!(v)). Now attach to K an interval e
which connects the endpoints of ¢, and also a 2-cell D to the loop defined by ¢ and
e. Call this new CW complex K’'. Now we are done if we can extend the map f
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to a map f': K’ — X with the properties f(e) = v and f'~(v) N B° = () (that is,
nowhere in the interior of B maps to v, or the image of the interior of B is contained
entirely in one of XjorXz). This is because f'~!(v) = f~!(v) Ue, which is a tree
with one fewer component than f~1(v), and f’ represents ¢, since K’ deformation
retracts to K (collapse all of B to the path ), so w1 (K') = m;(K).

This can be done if the loop formed by f o £ is entirely contained in one of X,
or X5, and if this loop is contractible. (f o ¢ is a loop based at v, since ¢ connects
two points in f~!(v). If we have both of these, then f o ¢ is homotopic to v and
so there is a continuous map defined by this homotopy from a closed disc (in this
case, B) to X, and we define f’ to be f where f is defined, f'(e) = v, and define
f' by this homotopy on B. Now we just need to guarantee that such an £ exists.

Let A, B be components of f~!(v) and suppose L is a path in K joining A to
B. Now ¢ is onto, so f. is onto, and then there is a loop 7 in K based at L(0) so
that f o~y is homotopic to fo L. Now let f =~~! o L. Then f o/ is a contractible
loop in X (since we defined 7 so that f o~ was homotopic to a point). So now we
just need ¢ to “not cross through v.”

We may assume that ¢ is a cellular map, since we can subdivide the domain of ¢
(which is an interval) and choose L so that this is the case. Then we may express
¢ as a union of smaller paths /; .../ so that the endpoints of each ¢; are in f~1(v)
and so that each f o ¢; lies entirely in X7 or X» (then this is a loop in X; or Xo,
alternating between the two. Set g; = [f o ¢;] € m1(X,v). Then if for some 4, ¢; has
that g; is trivial and the endpoints of ¢; are in the same component of f~(v), we
can remove it, and replace it by a path connecting the same endpoints, but lying
entirely in their component.

Now we have that 1 = g1g2...gr in 71(X), since £ = ¢1 ... ¢, and f o £ is null
homotopic. Also, 71(X) = G1%G3, and the g;’s alternate between G1 and Gs, since
the f o {¢;’s alternate between X; and X5. Then some g; must be trivial. Then for
the same 4, {; connects two distinct components of f~1(v), and fo¥; is contractible,
so we ¢; has all the necessary properties and we are done. ([

Now that we have this result, it is easy to prove the theorem.

Take K and f : K — X be such that f~!(v) is a tree. Then define Y; =
F7UX;),i € 1,2 and F; = 71(Y;). Then clearly Y; UYs = K since X; U Xy = X.
Also Y1 NYy = f~1(v) is a tree, so in particular, its simply connected. Then
we apply Van Kampen’s Theorem and see that m1(K) = Fj % fo. By definition
fY;) C X, so f.(F;) € G;. Now since G; injects into G, we have that f.(F;) = G,
since ¢ is surjective. O

Now if we define pu(H) to be the smallest number of generators of a group H,
we now have that

Corollary 4.13. If G = G1 x G2, u(G) = p(G1) + u(Ga)

Proof. By Theorem 4.9 u(G) > u(Gy) + pn(G2). But also, u(G) < u(G1) + u(Gs),
since the generators of G; together with those of G form a generating set for G,
so we actually have u(G) = p(G1) + p(Gs) O



12 PETER NELSON

Only the trivial group has u(H) = 0, so then, u(G;) < pu(G) if G; and Go are
nontrivial and G is finitely generated. Now finally we have

Corollary 4.14. If G is finitely generated, then G = G1 * G * ... x Gy, for some
n, and each G; is indecomposable.

Proof. If G itself is indecomposable, we are done. If not we write G = G *G», and
each of G; and G5 have fewer generators than (G. Now we just repeat this process
on G; and G5 until we have all the factors indecomposable. This is guaranteed
to terminate, because each step reduces the number of generators and G is finitely
generated. (I
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