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Abstract. This paper provides basic information and theorems about fi-
nite Markov chains. The inspiration for this paper came from Professor Laci

Babai’s Discrete Mathematics lecture notes from the REU program of 2003.

After reading through his chapter on Markov chains, I decided to proceed by
answering as many exercises from the notes as possible. Below is what I have

finished.
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1. Formal definition and basic properties

First we will start with the formal definition of a Markov chain and then we will
go through some basic properties.

A Markov chain is a memoryless, homogeneous, stochastic process with a finite
number of states. A process is a system that changes after each time step t, and
a stochastic process is a process in which the changes are random. The states are
labelled by the elements of the set [n] = {1, . . . , n}, with Xt denoting the state at
time t. If the process undergoes the transition i→ j at time t, this is indicated by
Xt = i and Xt+1 = j.

The transition data of a Markov chain is encoded by an n× n transition matrix
T = (pij), where pij = P (Xt+1 = j|Xt = i) is the probability of transitioning
from state i to state j. The initial distribution is given by an 1 × n-vector q(0) =
(q01, . . . , q0n), where q0i = P (X0 = i) is the probability that i is the initial state.
Note that

∑n
i=1 q0i = 1; that is, we start at some vertex with probability 1.

A process is memoryless if the probability of an i→ j transition does not depend
on the history of the process. A process is homogeneous if it does not depend on
the time t.

Definition 1.1. An n×nmatrix T = (aij) is stochastic if its entries are nonnegative
real numbers and the sum of each row is constant. That is,

∑n
j=1 aij = c where

c ∈ R.

More simply, T being a stochastic matrix means that we will traverse to another
vertex with probability one. Recall that a directed graph G is a pair (V,E) where V
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is the set of vertices and E ⊆ V ×V is a set of ordered pairs of vertices representing
edges. We have E ⊆ V ×V which we present in an n×n matrix called the adjacency
matrix. The data of a directed graph is presented by an n × n adjacency matrix
A = (aij) with aij = 0 or 1 depending on whether there is an edge i → j or not.
However, a Markov chain transition matrix does more than just tell you if there is
an edge between two vertices; it also gives the probability of traversing that edge.
So, instead of assigning a 1 to represent an edge, we assign some weight p ∈ [0, 1].

A Markov chain may be represented by a directed graph in which the vertices
correspond to the states of the Markov chain. For example, a directed cycle of
length n corresponds to a Markov chain with n states. In this case the weight on
each edge is 1 because there is only one direction you can travel at every state.
Let’s look at an example:

Example 1.2. Consider a person on a square where the corners are the vertices
and the lines are the edges connecting the vertices as in the following diagram:

(1.3) v1
1
2 //

1
2

��

v2

1
2

��

oo

v4
1
2

//

OO

v3oo

OO

Suppose this person starts at v1, i.e., q(0) = (1, 0, 0, 0), and flips a coin to decide
between going one way or the other way. So the probability of going to v2 is 1

2 and
for v4 is 1

2 . After n steps, regardless of where our person has been, the probability
of the going one of the two possible directions is still 1

2 and this only depends on the
current state. So P (Xn = vj) = P (Xn = vj |Xn−1 = vi) where i → j. Note that

the transition matrix for the diagram above is represented as


0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0

 .

2. Results

Remark 2.1. The matrix representing a Markov chain is stochastic, with every row
summing to 1.

Before proceeding with the next result I provide a generalized version of the
theorem.

Proposition 2.2. The product of two n × n stochastic matrices is a stochastic
matrix.

Proof. Let A = (aij) and B = (bij) be n× n stochastic matrices where
∑n

j=1 aij =∑n
j=1 bij = 1. We know that (A · B)ij =

∑n
k=1 aikbkj = (ai1b1j + . . . + ainbnj).
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Take:
n∑

j=1

(A ·B)ij =
n∑

j=1

n∑
k=1

aikbkj

= ai1b11 + . . .+ ainbn1 + . . .+ ainbnn

= ai1(b11 + . . .+ b1n) + . . .+ ain(bn1 + . . .+ bnn)
= ai1 + . . .+ ain = 1.

Which proves the claim.

�

Theorem 2.3. If T is a stochastic matrix then T k is a stochastic matrix for all k.

Proof. Again, we will proceed by induction. Our first case is when k = 1 which
is trivial. Assume T k−1 is a stochastic matrix. We know that T and T k−1 are
stochastic, so T k = T k−1 · T is also stochastic. �

Let’s look at the initial distribution.

Theorem 2.4. If q(0) = (q01, . . . , q0n) is an initial distribution for a stochastic
process with transition matrix T , then the distribution at time t is q(t) = q(0) · T t.

Proof. We proceed by induction. The first case when t = 0 is trivial. Assume that
q(k − 1) = q(0) · T k−1 and look at q(k − 1) · T . From our hypothesis we have that
q(k− 1) · T = q(0)T k−1 · T = q(0) · T k. We must show that q(k) = q(k− 1) · T . We
have:

(q(k − 1) · T )i =
n∑

j=1

q(k − 1)j · pji

=
n∑

j=1

P (Xk−1 = j) · P (Xk = i|Xk−1 = j)

=
n∑

j=1

P (Xk = i|Xk−1 = j)

= q(k)i,

which proves the claim. �

This means that the distribution of the states after k steps can be determined
by taking the initial distribution and multiplying it by the transition matrix raised
to the kth power. Thus (T k)ij represents the probability of being in state j after k
steps given that the starting state is i.

3. Eigenvectors and eigenvalues

Definition 3.1. A left eigenvector of an n×n matrix T is a 1×n vector x 6= 0 such
that x ·T = λ ·x for some complex number λ called the eigenvalue corresponding to
the eigenvector x. Similarly, a right eigenvector of T is an n× 1 vector y 6= 0 such
that T · y = µ · y for some complex number µ which is again called an eigenvalue.

Remark 3.2. 0 = (0, . . . , 0) is never an eigenvector.
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Remark 3.3. The left and right eigenvalues of an n× n matrix are the same. The
left and right eigenvectors, however, are not.

Theorem 3.4. If T is an n × n stochastic matrix (in which the rows sum to 1)
then λ = 1 is a right eigenvalue.

Proof. We are solving for x in the equation T · x = x, where x is an eigenvector
to the eigenvalue 1. Let x be a vector such that xi = 1 for all i = 1, . . . , n. Then
(T · x)i =

∑n
j=1 aijxj =

∑n
j=1 aij1 = 1 = xi. �

Consequently λ = 1 is also a left eigenvalue.

Theorem 3.5. If T is an n× n matrix and λ and µ are left and right eigenvalues
to eigenvectors x and y (respectively) with λ 6= µ, then x · y = 0; i.e., x and y are
orthogonal.

Proof. Consider the product
x · T · y.

Using associativity and the fact that x and y are left/right eigenvectors, we know
that:

(x · T ) · y = x · (T · y)
λx · y = µx · y

(λ− µ)x · y = 0.

Since λ 6= µ it follows that x · y = 0. �

Theorem 3.6. If λ ∈ C is an eigenvalue of a stochastic matrix T = (pij) then
|λ| ≤ 1.

Proof. Let x be a right eigenvector corresponding to eigenvalue λ and let xk :=
maxi∈[n] xi. Since T · x = λ · x it follows that,

(λ · x)k = (T · x)k

= (pk1x1 + . . .+ pknxn)
It follows that |λ| · |xk| = |pk1x1 + . . .+ pknxn|

≤ |pk1x1|+ . . .+ |pknxn|
= pk1 |x1|+ . . .+ pkn |xn|
≤ |xk| · (pk1 + . . .+ pkn)
= |xk| ,

which proves the claim. �

Let’s look at an example:

Example 3.7. Consider the following 2-vertex graph.

10.7 ::
0.3 ** 2
0.1

jj 0.9dd

The transition matrix for the graph above is T =
(

0.7 0.3
0.1 0.9

)
. Observe that large

powers of T appear to converge to
(

0.25 0.75
0.25 0.75

)
. To find eigenvalues for T we
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will use the characteristic polynomial fA(x) = det(xI − A) =
∣∣∣∣x− 0.7 −0.3
−0.1 x− 0.9

∣∣∣∣ =

x2− 1.6x+ 0.6 = (x− 1)(x− 0.6). So the eigenvalues are λ1 = 1 and λ2 = 3
5 . Let’s

try and solve for the right eigenvectors v = (v1, v2) and v′ = (v′1, v
′
2). For v we have

that T · v = 1 · v which gives rise to two equations:

0.7v1 + 0.3v2 = v1

0.1v1 + 0.9v2 = v2

0.1v1 = 0.1v2
v1 = v2.

So we have v = c(1, 1) where c ∈ R. To solve for T · v′ = 3
5 · v

′:

0.7v′1 + 0.3v′2 = 0.6v′1
0.1v′1 + 0.9v′2 = 0.6v′2

0.1v′1 = −0.3v′2
v′1 = −3v′2.

Similarly to above, we have v′ = c(−3, 1), where c ∈ R.
For the the left eigenvectors we will do the same thing, but also normalize the

eigenvector to eigenvalue 1; i.e., |x1| + |x2| = 1 where x = (x1, x2) is the left
eigenvector to eigenvalue 1. So our first set of equations for x are:

0.7x1 + 0.1x2 = x1

0.3x1 + 0.9x2 = x2

|x1|+ |x2| = 1
0.1x2 = 0.3x1

x2 = 3x1

⇒ |x1|+ |3x1| = 1
4|x1| = 1

|x1| =
1
4

⇒ |x2| =
3
4
.

Observe that the vector (|x1|, |x2|) = ( 1
4 ,

3
4 ) represents the rows of the matrix that

T k converges to. This will come up later.

Lemma 3.8. Let T be a 2 × 2 stochastic matrix whose rows sum to 1. Observe

that T is of the form T =
(

1− a a
b 1− b

)
. For all n ≥ 1 we have:

Tn =
1

a+ b

(
b a
b a

)
+

(1− a− b)n

a+ b

(
a −a
−b b

)
.
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Proof. We must show that the formula for T holds for n = 1. I will only prove this
for the 1, 1 entry.

(T 1)1,1 =
b

a+ b
+
a(1− a− b)1

a+ b

=
b+ a− a2 − ab

a+ b
=
a(1− a) + b(1− a)

a+ b

=
(1− a)(a+ b)

a+ b
= (1− a).

Suppose it holds for n = k − 1. Now we must show that it holds for k.

We know (T k)1,1 = (T k−1 · T )1,1

=
(1− a)(b+ a(1− a− b)k−1

) + ab− ab(1− a− b)k−1

a+ b

=
b+ ((1− a− b)k−1)(a− a2 − ab)

a+ b

=
b+ a(1− a− b)k

a+ b
,

which proves the claim. �

Proposition 3.9. Under the hypotheses of Lemma 3.8, powers of T converge to

the matrix 1
a+b

(
b a
b a

)
.

Proof. Using Lemma 3.8 we can write

lim
n→∞

Tn =
1

a+ b

(
b a
b a

)
+ lim

n→∞

(1− a− b)n

a+ b

(
a −a
−b b

)
.

Since |(1− a− b)| < 1 it follows that (1 − a − b)n → 0 as n → ∞ and thus

limn→∞ Tn = 1
a+b

(
b a
b a

)
. �

Remark 3.10. Not all transition matrices converge. If we look at W =
(

0 1
1 0

)
,

notice that the powers of W alternate between
(

1 0
0 1

)
and

(
0 1
1 0

)
; so W never

converges.

Definition 3.11. A stationary distribution for a Markov chain is a vector q =
(q1, . . . , qn) such that qi ≥ 0 and

∑n
i=1 qi = 1 which is also a left eigenvector to

eigenvalue 1; i.e., q · T = q.

Remark 3.12. Observe that the left eigenvector to eigenvalue 1 in Example 3.7 is
the stationary distribution.

Remark 3.13. If at time t, the distribution q(t) is stationary then q(t) = q(t + x)
for all x ∈ N.
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Proof. Suppose we are at time t in our transition step. From Theorem 2.4 we know
that q(t) = q(0) · T t. Because q(t) is a stationary distribution it follows that:

q(t) = q(t) · T
= q(0) · T t · T
= q(0) · T t+1

= q(t+ 1).

Using the same argument it follows that q(t+ 1) = q(t+ 2) = . . . = q(t+ x). �

Proposition 3.14. Suppose T is a stochastic matrix. If T∞ = limt→∞ T t exists,
then every row of T∞ is a stationary distribution.

Proof. We must establish that T · T∞ = T∞. T∞ = limn→∞ Tn, so T · T∞ =
T · limn→∞ Tn = limn→∞ Tn+1 = T∞. The claim immediately follows from this
argument. �

Notice that this holds for T from Example 3.7.
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