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Abstract

We here present the main conclusions and theorems from a first rig-
orous inquiry into linear algebra. Although some basic definitions and
lemmas have been omitted so to keep this exposition decently short, all
the main theorems necesary to prove and understand the spectral, or di-
agonalization, theorem are here presented. A special attention has been
placed on making the proofs not only proofs of existence, but as enlight-
ning as possible to the reader.

1 Introduction
Since William Rowan Hamilton developped the concept of quaternions in 1843,
and since Arthur Caley suggested and developped the idea of matrices, linear
Algebra has known a phenomenal growth. It has become central to the study
of many fields, with the noticeable example of statistics. For that reason, the
study of linear algebra has increasingly imposed itself as an unavoidable field
for students endeavoring to do empirical research. Hence the pages to follow
consist in a pedagogical presentation of standard material in linear algebra up
to and including the complex and real spectral theorem.

Throughout the paper, we assume the reader has had some experience with
vector spaces and linear algebra. We hope to provide all the necessary infor-
mation regarding the study of operators. As indicated by the title, we work
towards proving the spectral theorem. We do so as we believe it is one of the
most important results in the applications of linear algebra, and why it is true
thus deserves some attention.

2 The Rank-Nullity Theorem
We start by giving a proof of the rank-nullity theorem as it will be used through-
out our way towards proving the spectral theorem.

Let V be a finite-dimensional vector space. Let L(V ) be the space of linear
transformations from V to V .
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2.1 Theorem: The Rank-Nullity Theorem
Let T ∈ L(V ). Then dimV = dim rangeT + dim kerT .

Proof
RangeT and KerT are both subspaces, thus they both have basis. Let

(w1, ..., wn) be a basis for the former, and (u1, .., uk) be a basis for the latter.
That is, dim rangeT = n and dim kerT = k.

Now we define the set (v1, ..., vn) such that T (vi) = wi, i = 1, ..., n.
Take any v ∈ V , then

T (v) = α1w1 + ...+ αnwn

for some αi ∈ F, i = 1, ...n. So

T (α1v1 + ...+ αnvn − v) = 0

and thus, α1v1 + ...+ αnvn − v ∈ kerT . Hence,

α1v1 + ...+ αnvn − v = β1u1 + ...+ βkuk,

so

v = α1v1 + ...+ αnvn − β1u1 − ...− βkuk.

Therefore (v1, ..., vn, u1, ..., uk) spans V . Now assume

α1v1 + ...+ αnvn + αn+1u1 + ...+ αn+kuk = 0.

Applying T on both sides of the above equality, we get

T (α1v1 + ...+ αnvn + αn+1u1 + ...+ αn+kuk) = α1w1 + ...+ αnwn = 0.

But the wi’s are linearly independent ⇒ α1, ..., αn = 0

⇒ αn+1u1 + ...+ αn+kuk = 0

but the ui’s are linearly independent, thus αn+1, ..., αn+k = 0. Hence
(v1, ..., vn, u1, ..., uk) is linearly independent and thus a basis of V . Thereofore

dimV = n+ k = dim rangeT + dim kerT.

.

3 Eigenvalues and Eigenvectors

3.1 Definition: Operator
An operator is a linear map from a vector space to itself.
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3.2 Definition: Invariant Subspace
Let T ∈ L(V ). A subspace U is invariant under T if Tu ∈ U for every u ∈ U .

3.3 Definition: Eigenvalue
Let T ∈ L(V ). A scalar λ ∈ F is an eigenvalue if there a non-zero vector v ∈ V
such that Tv = λv.

Nota Bene: T has a 1-dimensional invariant subspace if and only if T has
an eigenvalue.

Observe that Tu = λu⇔ (T − λI)u = 0. Therefore λ is an eigenvalue of T
if and only if (T − λI) is not injective ⇔ (T − λI) is not surjective ⇔ (T − λI)
is not invertible. This, of course, only makes sense for higher dimensions.

3.4 Definition: Eigenvector
We call the v in Tv = λv an eigenvector of T .

Note that because Tu = λu ⇔ (T − λI)u = 0 , the set of eigenvectors of T
corresponding to λ equals ker(T − Iλ), which is a subspace of the vector space
V .

The following statement, true in all dimensions, may make things more intu-
itive: “an operator has an eigenvalue if and only if there exists a nonzero vector
in its domain that gets sent bu the operator to a scalar multiple of itself.”

3.5 Theorem
Let T ∈ L(V ). Suppose that λ1, ..., λm are distinct eigenvalues of T and
v1, ..., vm are corresponding nonzero eigenvectors. Then {v1, ..., vm} is linearly
independent.

Proof
Suppose not. Let vk be the eigenvector that is a linear combinations of the

others with the smallest subscript. Then

vk = α1v1 + ...+ αk−1vk−1 [1]

where some αi 6= 0.

Tvk = T (α1v1 + ...+ αk−1vk−1)

⇒ λkvk = α1Tv1 + ...+ αk−1Tvk−1 = α1λ1v1 + ...+ αk−1λk−1vk−1 [2]

Multiplying [1] by λk and substracting from [2] gives

0 = α1(λ1 − λk)v1 + ...+ αk−1(λk − λk−1)vk−1
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where λ1, ..., λk−1 6= λk, and the vi’s are linearly independent which implies that
all the αi’s are 0. But some αi 6= 0. This is a contradiction because the αi’s
were the coefficient of linear combination in vi, 1 ≤ i ≤ k− 1 of the nonzero vk.
Then (v1, ..., vm) is linearly independent.

3.6 Theorem
Every operator on a finite-dimensional, nonzero, complex vector space has an
eigenvalue.

Proof
Take some complex vector space V of dimension n and pick any v ∈ V .

Consider the vector

(v, Tv, ..., Tnv).

As it conains n+1 parameters, it must be linearly dependent⇒ ∃ α0, ..., αn

with some αi 6= 0. Let m be the greatest integer such that am 6= 0.

0 = α0v + α1Tv + ...+ αmT
mv

= (α0I + α1T + ...+ αmT
m)v

= c(T − λ1I)...(T − λmI)v

⇒ T − λjI is not injetive for some j ⇒ T has an eigenvalue.

3.7 Lemma
For T ∈ L(V ). T has an eigenvalue if and only if T has a 1-dimensional invariant
subspace.

Proof
First suppose T has an eigenvalue. There exists λ ∈ F such that, for some

u ∈ V , we have Tu = λu. Then consider the 1-dimensional subspace spanu = U .
Take any w ∈ U . Then

Tw = T (αu) = αTu = αλu

where α ∈ F and thus αλ ∈ F ⇒ Tw ∈ U ⇒ U is invariant.

Now suppose T has a one dimensional invariant subspace. Let U be that
subspace. ⇒ for any u ∈ U , we have that Tu ∈ U ⇒ Tu = αu for some α ∈ F
⇒ α is en eigenvalue of T .

3.8 Definition: Projection Operator.
If V = U ⊕W , such that we can write any v ∈ V as v = u + w where u ∈ U
and w ∈ W , the projection operator PU,W v = u. Also, PU,W is an orthogonal
projection if W = U⊥, that is if W is the orthogonal complement of U .
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3.9 Theorem
Every operator on an odd-dimensional real vector space has an eigenvalue.

Proof by induction on dimV
Take a vector space V and any operator T . If dimV = 1, then we clearly

have an eigenvalue. Now if we have an odd dimV > 1, the operator has an
invariant subspace of dimension 1 or 2. By the lemma, if it has a subspace of
dimension one, then it has an eigenvalue, and we’re done. If not, then it must
have an invariant subspace of dimension 2, let us label it U . Because U is a
subspace, we know ∃ a subspace W such that

V = U ⊕W.

T may not be invariant on W , thus we compose with the projection PW,U to
get an operator on W . Define S ∈ L(V ) by

Sw = PW,U (Tw)

where w ∈ W . By our inductive hypothesis, S has an eingenvalue λ. We now
want to show that it is an eigenalue for T .

Let w ∈ W be a nonzero eigenvector corresponding to λ ⇒ (S − λI)w = 0.
Now we look for an eigenvector of T in U + span(w). So we consider any vector
u+ aw, u ∈ U, a ∈ R and w ∈W . Then

(T − λI)(u+ aw) = Tu− λu+ a(Tw − λw)

= Tu− λu+ a(PU,W (Tw) + PW,U (Tw)− λw)

= Tu− λu+ a(PU,W (Tw) + Sw − λw)

= Tu︸︷︷︸
∈U

− λu︸︷︷︸
∈U

+ aPU,W (Tw)︸ ︷︷ ︸
∈U

.

Thus Tu − λu + aPU,W (Tw) ∈ U . Consequently, we ware mapping from
the 3-dimensional domain U + span(w) to the 2-dimensional range U ⇒ (T −
λI)|U+span(w) is not injective⇒ ∃ v ∈ U+span(w) ⊂ V such that (T−λI) = 0.
That is, T indeed has an eigenvalue.

4 Inner-Product Spaces
We first describe orthonal projectors, as they have interesting properties and
many practical applications.
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4.1 Definition
Let U be a subspace of V . The orthogonal complement of U is

U⊥ = {v ∈ V | < v, u >= 0, ∀ u ∈ U}.

It is easy to show that, for any U , V = U ⊕ U⊥.

4.2 Definition
The orthogonal projection of V onto U , PU , is defined such that PUv = u where
v = u+ u′ for u ∈ U and u′ ∈ U⊥.

It is also quite straightforward to show that PU , an orthogonal projection of
V onto U , has the following properties:

• rangePU = U

• nullPU = U⊥

• v − PUv ∈ U⊥ for every v ∈ V

• P 2
U = PU

• ||PUv|| ≤ ||v||, ∀ v ∈ V .

However, showing that some of these properties suffice to define an orthogonal
projection are more tricky.

4.3 Theorem
If P ∈ L(V ) is idempotent, i.e. P 2 = P , and every vector in kerP is orthogonal
to every vector in rangeP , then P is an orthogonal projection.

Proof
Take any v ∈ V , then

v = Pv + (I − P )v

where, clearly, Pv ∈ rangeP and (I − P )v ∈ kerP because P ((I − P )v) =
Pv − PPv = Pv − Pv = 0.

Now take any v ∈ kerP ∩ rangeP .
v ∈ rangeP⇒ ∃ v′ s.t. Pv′ = v, and
v ∈ kerP ⇒ Pv = 0

⇒ PPv′ = 0

⇒ Pv′ = 0

⇒ v = 0
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⇒ kerP ∩ rangeP = {0}.
Observe how we didn’t need otrhogonality to prove that the direct sum of kerP

and rangeP is V . That is, an idempotent operator is necessarily a projection,
but not necessarily an orthogonal projection.

=⇒ V = kerP ⊕ rangeP . But kerP and rangeP are orthogonal =⇒ P is an
orthogonal projection onto P (V ).

We saw that if a matrix or a projector is idempotent and its column space
is orthogonal to its null space, then that matrix or projector is positive.

4.4 Theorem
Suppose P ∈ L(V ) is idempotent, i.e. P 2 = P . Then P is an orthogonal
projection if and only if P is self-adjoint.

Proof
First assume P is self-adjoint. P is idemtpotent⇒ P = PrangeP,kerP . Thus

we need to show that rangeP and kerP are orthogonal in order to show that P
is an orthogonal projection. We take v ∈ rangeP and w ∈ kerP . ⇒ ∃v′ s.t.
Pv′ = v. Then

< v,w >=< Tv′, w >=< v′, Tw >=< v′, T ∗w >=< v′, Tw >=< v′, 0 >= 0.

⇒ P is an orthogonal projection.

Now assume P is an orthogonal projection. Take v, z ∈ V and consider their
unique decomposition v = u + w and z = u′ + w′ where u, u′ ∈ rangeP and
w,w′ ∈ nullP . Then

< Tv, z >=< u, u′ + w′ >=< u, u′ > .

Similarily

< v, Tz >=< u+ w, u′ >=< u, u′ >,

⇒< (T−T ∗)v, z >=< Tv, z > − < T ∗v, z >=< Tv, z > − < v, Tz >=< u, u′ > − < u, u′ >= 0.

⇒ T ∗ = T .

Anticipating the next proof, we take an instant to note that the uniqueness
of a projection PU,W follows from the unique decomposition v = u + w into
elements of the two subspace, U and W , the direct sum of which is V . That is,
for M and P , two projections onto U , for our arbitrary v we get Mv = u = Pv
⇒M = P.
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4.5 Definition
Let T ∈ L(V ). Then let C(M(T )) be the column space of the matrix represen-
tation of T . That is if M(T ) =

[
c1 . . . . . . cn

]
where c1, c2, ..., cn are the

colomns of M(T ), then C(M(T )) = span({c1, c2, ..., cn}).

4.6 Theorem
Let o1, ..., or be an orthonormal basis for C(X), and let O = [o1, ..., or]. Then

OO′ =
r∑

i=1

oio
′
i, where we use ’ to annotate the transpose of the matrix, is the

perpendicular projection operator onto C(X).
Proof
First we show that OO′ must be a perpendicular projection. (OO′)′ = OO′

⇒ OO′ is symmetric/self-adjoint; also consider OO′OO′. Then O′O is an r× r
matrix where the diagonal elements are inner products of equal orthonormal
vectors, i.e. o′ioi = 1, and the off-diagonal elements are inner products of unqueal
orthonormal vectors, i.e. o′ioj = 0 because i 6= j. Therefore O′O = Ir ⇒
OO′OO′ = OIrO

′ = OO′, which implies that OO′ is idempotent. Because OO′
is idempotent and symmetric⇒ OO′ is an orthogonal projection. Furthermore,
because perpendicular projections are unique, if we find that C(OO′) = C(X),
then we will know that OO′ is the unique perpendicular projection on C(X).
Nota Bene: in particualar, this implies that OO′ = X if X is a perpendicular
projection. First we want to show that C(OO′) ⊆ C(X). Because O is the basis
for C(X), is is sufficient to show that C(OO′) ⊆ C(O).

We know that OO′ =
r∑

i=1

oio
′
i. Let us write oi =


a1i

...

...
ani



⇒ oio
′
i =


a1i

...

...
ani

 [ a1i . . . . . . a1n

]
=


a1ia1i a1ia2i

... a1iani

a2ia1i a2ia2i

... a21ani

...
...

...
...

ania1i ania2i

... aniani



=

 a1i


a1i

...

...
ani

 a2i


a1i

...

...
ani

 . . . ani


a1i

...

...
ani


 =

[
a1ioi a2ioi . . . anioi

]

⇒ OO′ =
r∑

i=1

oio
′
i =

[
r∑

i=1

a1ioi

r∑
i=1

a2ioi . . .
r∑

i=1

anioi

]
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where each column is a linear combination of the columns of O = [o1, ..., or]
⇒ OO′ ∈ span(O) ⇒ C(OO′) ⊆ C(O) = C(X). Now we want to show that
C(X) ⊆ C(OO′).

Take v ∈ C(X) ⇒ v = Ob for some b ∈ Rn. O′O = Ir ⇒ v = OO′︸︷︷︸
n×n

Ob︸︷︷︸
n×1

, thus

v is a linear combination of the columns of OO′ ⇒ v ∈ C(OO′).
This also reads v = OO′v, which looks kind of silly but makes sense as we

pick v in C(X) and we’re showing that OO′ is the orthogonal projection onto
C(X), we should thus expect OO′ to map v to itself.
⇒ C(X) ⊆ C(OO′) =⇒ C(X) = C(OO′), which completes the proof that

OO′ is the unique orthogonal projection onto C(X).

4.7 Proposition
Let U be a subspace of V , then dimU⊥ = dimV − dimU .

Proof
Consider any subspace U , it has a unique orthogonal complement U⊥. These

suffice to define the orthogonal projection PU , for which rangePU = U and
kerPU = U⊥. Thus

dimV = dim rangePU + dim kerPU

⇔ dimV = dimU + dimU⊥

4.8 Definition
For any T ∈ L(V,W ), the adjoint of T is defined to be the linear map T ∗ ∈
L(W,V ) such that for any two v ∈ V, w ∈W , then < Tv,w >=< v, T ∗w >.

4.9 Proposition
For T ∈ L(V ) and U a subspace of V , U is invariant under T if and only if U⊥
is invariant under T ∗.

Proof
Pick any v ∈ U, w ∈ U⊥.

⇒< v,w >= 0

Suppose T is invariant

⇒< Tv,w >= 0

⇒< v, T ∗w >= 0

⇒ T ∗ is invariant.
The proof in the other direction is perfectly analogous.
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4.10 Proposition
Let T ∈ L(V,W ). Then

dim kerT ∗ = dim kerT + dimW − dimV

and

dim rangeT ∗ = dim rangeT ∗.

Proof
First observe that w ∈ kerT

⇔< Tw, v >= 0, ∀ v ∈ V

⇔< w, T ∗v >= 0, ∀ v ∈ V

⇔ w ∈ (rangeT ∗)⊥.
=⇒ kerT = (rangeT ∗)⊥. Similarily, kerT ∗ = (rangeT )⊥.
Then the proof becomes almost trivial because

dimV = dim rangeT ∗ + dim(rangeT ∗)⊥ = dim rangeT ∗ + dim kerT ∗

and

dimW = dim rangeT + dim kerT

⇒ dim kerT ∗ = dim kerT + dimW − dimV

as we wanted. Morevoer, by rank-nullity

dimV − dim kerT = dimW − dim kerT ∗

⇔ dim rangeT = dim rangeT ∗.

Interestingly, it directly follows from this result that the dimension of the
column space and the row space of a matrix must be the same.

5 Inner-Product Spaces Continued

5.1 Definition
An operator T ∈ L(V ) is self adjoint if T = T ∗.
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5.2 Proposition
Every eigenvalue of a self-adjoint operator is real.

Proof
Suppose T is a self-adjoint operator on V . Let λ be an eigenvalue of T , and

take v a correspondong eigenvector. Then

λ||v||2 = λ < v, v >=< Tv, v >=< v, Tv >

because T = T ∗. Thus

λ||v||2 =< v, λv >= λ̄ < v, v >

⇒ λ = λ̄ ⇒ λ ∈ R for all eigenvalues of T .

5.3 Definition
An operator T is normal if TT ∗ = T ∗T . A normal operator is self-ajoint if
T = T ∗.

5.4 Proposition
If T ∈ L(V ) is normal, then

rangeT = rangeT ∗

Proof
First we show that kerT = kerT ∗T .
Take u ∈ kerT ∗T ⇒ T ∗Tu = 0⇒ Tu ∈ kerT ∗ ⇒ Tu ∈ (rangeT )⊥ ⇒ Tu ∈

rangeT∩(rangeT )⊥⇒ Tu = 0⇒ u ∈ kerT =⇒ kerT ⊆ kerT ∗T . And of course,
if u ∈ kerT , then Tu = 0 ⇒ T ∗Tu = 0 and u ∈ kerT ∗T ⇒ kerT ∗T ⊆ kerT
⇒ kerT ∗T = kerT . With this in hand, we can easily see that kerT = kerT ∗

because we now know that kerTT ∗ = kerT ∗. But TT ∗ = T ∗T implies that
kerT ∗ = kerT ∗T = kerT .

Furthermore

kerT ∗ = kerT

⇒ (kerT ∗)⊥ = (kerT )⊥

⇒ rangeT = rangeT ∗.
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5.5 Proposition
If T ∈ L(V ) is normal, then

kerT k = kerT

and
rangeT k = rangeT

for every positive integer k.
Proof
First we show that kerT 2 = kerT . Take u ∈ kerT 2. Then TTu = 0⇒ Tu ∈

kerT
⇒ Tu ∈ (rangeT ∗)⊥ by previous proposition and because T is normal ⇒

Tu ∈ (rangeT )⊥ ⇒ Tu ∈ rangeT ∩ (rangeT )⊥ ⇒ Tu = 0 ⇒ u ∈ kerT ⇒
kerT ⊆ kerT 2. And again, it is trivial that kerT 2 ⊆ kerT , which in turns
implies that kerT = kerT 2. The inductive step is identical as long as T k is also
normal, which is obvious.

Now we show that rangeT k = rangeT . First we show that rangeT 2 =
rangeT . Indeed,

(rangeT 2)⊥ = ker(TT )∗ = ker(T ∗)2 = kerT ∗ = (rangeT )⊥

which obviously implies rangeT 2 = rangeT . Again, the inductive step follows
gracefully, this time using kerT k = kerT instead of rangeT 2 = rangeT .

6 The Complex Spectral Theorem

6.1 Definition
Let T ∈ L(V,W ), and v ∈ V , let M(T, (w1, ..., wm), (v1, ..., vn)) be the matrix
mapping the vector of coefficients of the linear combination v with respect to
the basis (v1, ..., vn) to the vector of the coefficients of the linear combination of
Tv with respect to the basis (w1, ..., wm).

6.2 Definition
The conjugate transpose of an m × n matrix is the n ×m matrix obtained by
interchanging the rows and columns and then taking the complex conjugate of
each entry.

6.3 Lemma
Suppose T ∈ L(V,W ). If (e1, ..., en) is an orthonormal basis of V and (f1, ..., fm)
is an orthonormal basis of W , then

M(T, (f1, ..., fm), (e1, ..., en))
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is the conjugate transpose of

M(T ∗, (e1, ..., en), (f1, ..., fm)).

Proof
Suppose T ∈ L(V,W ). Assume (e1, ..., en) is an orthonormal basis of V and

(f1, ..., fm) is an orthonormal basis of W . We know the kth column of M(T )
is obtained by placing the jth coefficient of the linear combination of Tek in
itsjth row cell. Furthermore, because (f1, ..., fm) is an orthonormal basis, we
can write

Tek =< Tek, f1 > f1 + ...+ < Tek, fm > fm.

Thus

M(T ) =


< Te1, f1 > . . . . . . < Te1, fm >

...
. . .

...
...

. . .
...

< Ten, f1 > . . . . . . < Ten, fm >

 .
Similarly, we find that the parameters of the kth column of M(T ∗) from the

linear decomposition

Tek =< T ∗fk, e1 > e1+...+ < T ∗fk, em > em =< fk, T e1 > e1+...+ < fk, T em > em

= < fk, T e1 >e1 + ...+< fk, T em >em.

Thus

M(T ∗) =


< Te1, f1 > . . . . . . < Ten, f1 >

...
. . .

...
...

. . .
...

< Te1, fm > . . . . . . < Ten, fm >

 .
Obviously, M(T ∗) is the conjugate transpose of M(T ).

6.4 Lemma
Suppose V is a complex vector space and T ∈ L(V ). Then T has an upper-
triangular matrix with respect to some basis of V.

Proof by induction on dimV
Base case: if dimV = 1, than M(T ) is diagonal with respect to any basis.
Induction: V is a complex vector space, therefore T has an eigenvalue λ. We

can then define

U = range(T − λI).
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Observe that T−λI is not injective [think of any eigenvector of T correspond-
ing to λ]. Consequently, dimV > dimU . Furthermore, T is clearly invariant on
U ⇒ T |U is an operator on U . By inductive hypothesis, this implies that T |U
has an upper triangular matrix for some basis (u1, ..., un), which is equivalent
to saying that (T |U )uj ∈ span(u1, ..., uj).

Now extend (u1, ..., un) to (u1, ..., un, v1, ..., vm) to make it a basis of V . Then

Tvk = Tvk − λvk + λvk

= (T − λI)vk︸ ︷︷ ︸
∈span(u1,...,un)

+ λvk ∈ span(u1, ..., un, v1, ..., vk).

Therefore T is upper triangular with respect to theM(T, (u1, ..., un, v1, ..., vm)).
Observe that by applying the Gram-Schmidt orthogonalization to this process,

we can make the basis orthogonal and the corresponding matrix will also be
upper-triangular.

6.5 Theorem: The Complex Spectral Theorem
Suppose that V is a complex inner product space and T ∈ L(V ). Then V has
an orthonormal basis consisting of eigenvectors if and only if T is normal.

Proof
First suppose that V has an orthonormal basis consisting of eigenvectors of

T . Then for each element of the eigenvectorish orthonormal basis (v1, ..., vn),
we have Tvi = λivi where λi is the eigenvalue corresponding to the eigenvector
vi.

Then obviously, M(T, (v1, ..., vn)) =


λ1 0

λ2

. . .
0 λn

, which is a diag-

onal matrix. Thus M(T ∗, (v1, ..., vn)) is also a diagonal matrix. Matrix multi-
plication with diagonal matrices is obviously commutative, which implies that
TT ∗ = T ∗T and thus T is normal.

Now suppose that T is normal. Because V is complex, we have an orthonor-
mal basis (e1, ..., en) such that M(T, e1, ..., en)) is an upper triangular matrix.
Hence

M(T ) =


a11 . . . . . . a1n

. . .
...

. . .
...

0 ann


for some aij ∈ C, 1 ≤ i, j ≤ n, i ≥ j. Therefore

Te1 = a11e1
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and thus

||Te1||2 = |a11|2.

And

||T ∗e1||2 = |a1n|2 + ...+ |ann|2.

However, because T is normal we have that

||Te1||2 =< Te1, T e1 >=< e1, T
∗Te1 >=< e1, TT

∗e1 >=< T ∗e1, T
∗e1 >= ||T ∗e1||2

so

|a11|2 = |a1n|2 + ...+ |ann|2

and thus

|a2n|2, ..., |ann|2 = 0

and thus

a2n, ..., ann = 0.

Similarily, we have that for all 1 ≤ j ≤ n, aij , ..., ain = 0, n ≥ j. And thus

M(T ) =


a11 0

. . .
. . .

0 ann


is a diagonal matrix.

7 The Real Spectral Theorem

7.1 Theorem: The Real Spectral Theorem
Suppose that V is a real inner-product space and T ∈ L(V ). Then V has an
orthonormal basis consisting of eigenvectors of T if and only if T is self-adjoint.

Proof
First, suppose that V has an orthonormal basis B consisting of eigenvectors

of T , then
M(T,B) = M(T ∗, B)

because V is a real vector space. In other words

T = T ∗,
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that is T is self-adjoint. Now suppose T is self-adjoint. We shall induct on
dimV to show that V has an orthonormal basis consisting of eigenvectors of T .
If dimV = 1, then T is a scaler, so our claim holds. Now, let n = dimV and
choose some v ∈ V such that v 6= 0. Then is must be that the (n+ 1)-vector

(v, Tv, ..., Tnv)

is linearly independent.
Therefore, there exists a0, a1, ..., an, not all zero, such that

0 = a0 + a1Tv + ...+ anT
nv

= (a0 + a1T + ...+ anT
n)v

= c(T 2 + α1T + β1I)...(T 2 + αMT + βMI)(T − λ1I)...(T − λmI)v

by polynomial decomposition, with c, αi, βi ∈ R, 1 ≤ i ≤M, m,n ∈ R, m+
n ≥ 1, where it can be shown that (T 2 +αjT + βjI) is injective for 1 ≤ j ≤M .
This implies that

(T − λ1I)...(T − λmI)v = 0

and consequently

(T − λjI) is not injective for some j,

from which it follows that T has an eigenvalue.
Obsevation: for T − λjI not injective, and (T − λ1I)...(T − λmI)v = 0 we

have that for some combination of δ1, ..., δk−1, δk+1, ..., δmwhere some are 0 and
the others are 1, then δ1(T − λ1I)...δk−1(T − λk−1I)δk+1(T − λk+1I)...δm(T −
λmI) is an eigenvector of T corresponding to the eigenvalue λk.

Now let λ be an eigenvalue for T . There exists a correspondint eigenvector
w. Take u = w

||w|| ⇒ ||u|| = 1. Also, take

U = {αu | α ∈ R}

and

U⊥ = {v | v ∈ V, < v, u >= 0}.

Furthermore, observe that, for any v ∈ U⊥

< Tv, u >=< v, T ∗u >=< v, Tu >=< v, λu >= λ < v, u >= 0,

therefore U⊥ is invariant under T .
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We can thus define S = T |U⊥ , which is also self-adjoint. Then by our
inductive hypothesis, there exists an orthonormal basis of U⊥ consisting of
eigenvectors of S, call it BS . Thus BS∪{u} is an orthogonal basis of V consisting
of eigenvalues of T . Of course, with respect to that basis, M(T ) is a diagonal
matrix.

8 Positive Operators

8.1 Definition
An operator T ∈ L(V ) is positive if T is self-adjoint and

< Tv, v >≥ v,

∀ v ∈ V .

We first observe that the set of orthogonal operators is a subset of the set
of positive operators.

8.1.1 Proposition

Every orthogonal projection is positive.
Proof
Consider the T , an orthogonal projection on U . Take any v ∈ V and consider

its unique decomposition v = u+ w where u ∈ U and w ∈ U⊥. Then

< Tv, v >=< u, u+ w >=< u, u > + < u,w >= ||u||2 ≥ 0.

Depending on what kind of problem we are looking at, it becomes interesting
to look at alternative definitions of a positive operator. Indeed, ans as we will
show, it is perfectly correct to define a postivie operator as an operator T being
self-adjoint and having nonnegative eigenvalues; as having a positive square
root; as having a self-adjoint square root; or as an operator T for which there
exists an operator S ∈ L(V ) such that S∗S = T .

Indeed, if T is positive, then consider anyeigenvalue λ of T -the existence of
which is guaranteed by the self-adjointedness-, and a corresponding eigenvector
v:

0 ≤< Tv, v >=< λv, v >= λ||v||2

⇒ λ ≥ 0.

Furthermore, because T is self-adjoint by definition, we find that being pos-
itive is implies being self-adjoint with nonnegative eigenvalues.

Now, from there we find that, by the real spectral theorem, there exists an
orthonormal basis of V of eigenvectors of T , label it (v1, ..., vn). Then for each
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element of the basis, we find that, because the eigenvalues are nonegative, we
van write

Tvi = λivi =
√
λi

√
λivi

where λi is the eigenvalue corresponding to the eigenvector vi. And we thus
fully define an operator S acting on each basis element in the following way:
Svi =

√
λivi, 1 ≤ i ≤ n. Thus

SSv = SS
∑

αivi =
∑

αi

√
λi

√
λivi =

∑
αiTvi = T

∑
αivi = Tv

for any v =
∑
αivi ∈ V .

Furthermore

< Sv, v >=< S
∑

i

αivi,
∑

j

αjvj >=<
∑

i

αi

√
λivi,

∑
j

αjvj >=
∑

j

<
∑

i

αi

√
λivi, αjvj >

=<
∑

i

αi

√
λivi, αivi >

because the basis is orthonormal

=
√
λi ·

∑
|αi|2 ≥ 0.

where the last inequality holds because
√
λi is the square root of a nonegative

real.
Furthermore,

< Sv, v >=
∑

i

< αi

√
λivi, αivi >=

∑
i

< αivi,
√
λiαivi >

because
√
λi ∈ R

=<
∑

i

αivi,
∑

i

√
λiαivi >=< v, Sv >

⇒ S = S∗

or, in words, S is self-adjoint.
That is, S is positive.
We thus saw that being positive is implies having a positive square

root. By definition of bieng positive, an operator is self-adjoint. Thus being
positive implies having a self-adjoint square root.Moreover, that square
root, S, being self-adjoint, we see that being positive imples the existence
of an operator S such that T = S∗S. Thus if that last condition in turn
implies positiveness, then all the aforementioned conditions imply each other
and are hence equivalent. And indeed
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< Tv, v >=< S∗Sv, v >=< v, (S∗S)∗v >=< v, S∗Sv >=< v, Tv >

⇒ T is self adjoint, and

< Tv, v >=< S∗Sv, v >=< Sv, Sv >= ||Sv||2 ≥ 0

⇒ T is positive.
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