
MINKOWSKI THEORY AND THE CLASS NUMBER

BROOKE ULLERY

Abstract. This paper gives a basic introduction to Minkowski Theory and

the class group, leading up to a proof that the class number (the order of

the class group) is finite. This paper is based on Jürgen Neukirch’s Algebraic
Number Theory, but provides more detailed proofs and explanations as well

as numerous examples. The goal of this paper is to present the concepts in

Neukirch’s book in such a way that they are more accessible to a student with
a background in basic abstract algebra.
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1. Integrality and Algebraic Integers

In field theory, we define an algebraic number as an element of a finite field
extension of Q. Equivalently, α ∈ C is an algebraic number if α is a root of
some nonzero polynomial q(x) ∈ Q[x]. When dealing with the rings contained in
algebraic extensions of Q, we use the notion of integrality, and in particular, that
of an algebraic integer. An algebraic number is an algebraic integer if it is a root
of a monic polynomial with integer coefficients.

We now define the more general notion of integrality:

Definition 1.1. Let R ⊆ S be a ring extension, where R and S are commutative
rings with 1. An element s ∈ S is integral over R if s is a root of a monic
polynomial a(x) ∈ R[x]. The ring S is integral over R if all elements s ∈ S are
integral over R.

From now on, we will assume that all rings mentioned are integral domains and
have a multiplicative identity 1.

We know that the algebraic closure of a field is simply the set of all elements
algebraic over the field. There is an analogous definition for the integral closure of
a ring extension, except that we define it with respect to a field containing the ring
under consideration:
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Definition 1.2. Let R ⊆ S be a ring extension. The integral closure of R in S,
denoted R̄ is the set of all elements of S that are integral over R. That is,

R̄ = {s ∈ S | s integral over R}.

The integral closure of a ring turns out to be a ring itself– a fact that is surpris-
ingly nontrivial to prove. To begin, we prove a lemma that relates integrality to
module theory.

Lemma 1.3. Let R be a subring of S, and let s ∈ S be integral over R. Then R[s]
is a finitely generated R-module.

Proof. Since s is integral over R, we can find a monic polynomial f(x) = xn +
an−1x

n−1 + . . .+ a0 ∈ R[x] such that f(s) = 0. Then we have

sn + an−1s
n−1 + · · ·+ a0 = 0

⇒ sn = −(an−1s
n−1 + · · ·+ a0).

Thus, sn (and therefore all higher powers of s) can be expressed as R-linear com-
binations of sn−1, . . . , s, 1. Thus, R[s] = R1 +Rs+ · · ·+Rsn−1, which means that
R[s] is a finitely generated R-module, as desired. �

In addition, note that the converse holds, but for the purposes of this paper, we
will not prove it. By translating the notion of integrality into module theory, we are
able to avoid discussing everything in terms of roots of monic polynomials, which
tends to simplify proofs involving integrality. In fact, using the above lemma, the
following proof becomes relatively simple.

Lemma 1.4. Let R̄ be the integral closure in a ring S of a ring R. Then R̄ is a
ring.

Proof. Since S is a ring, we need only show that R̄ is a subring of S, that is, that R̄
is closed under addition and multiplication. Let x and y be elements of R̄. Then,
by the previous lemma, R[x] and R[y] are finitely generated R-modules. Clearly,
y is integral over R[x], so (R[x])[y] = R[x, y] is a finitely generated R[x]-module.
Let p1(x, y), . . . , pm(x, y) be a generating set for R[x, y], and let q1(x), . . . , qm(x)
be a generating set for R[x]. Then R[x, y] is a finitely generated R-module with
generating set

n∑
j=1

(
qj(x)

m∑
i=1

pi(x)

)
.

xy, x±y ∈ R[x, y], so they are integral over R, which means that they are contained
in R̄, as desired. Thus, R̄ is a ring. �

Definition 1.5. Let S be a extension of a ring R. R is integrally closed in S if
it is its own integral closure in S, that is, if R̄ = R.

When we state that a ring is integrally closed without stating in which ring, we
mean that it is integrally closed in its field of fractions.

In order for an algebraic number to be an algebraic integer, it need only be a
root of some monic polynomial with integer coefficients, as explained above. This
can be a difficult condition to check, which brings us to the following lemma.

Lemma 1.6. An algebraic number α is an algebraic integer if and only if its min-
imal polynomial over Q has integer coefficients.
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Proof. Suppose first that the minimal polynomial for α over Q has integer coeffi-
cients. Then by definition (since the minimal polynomial is monic), α is an algebraic
integer.

Conversely, suppose that α is an algebraic integer, and let f(x) ∈ Z[x] be a monic
polynomial of minimum degree with α as a root. If f were reducible in Q[x], then,
by Gauss’ Lemma, f would be reducible in Z[x]. We would thus have two monic
polynomials g(x), h(x) ∈ Z[x] of smaller degree than f such that f(x) = g(x)h(x),
contradicting the fact that f is of minimum degree. Thus, f must be irreducible
in Q[x], so f(x) must be the minimal polynomial for α over Q. Thus, the minimal
polynomial has integer coefficients. �

Since the only elements of Q, with minimal polynomials having integer coeffi-
cients are the integers themselves, we immediately observe the following:

Corollary 1.7. Z is integrally closed. That is, the only algebraic integers in Q are
the integers themselves.

2. Rings of Integers and Dedekind Domains

When we mentioned the algebraic integers in Q in the previous section, we were
actually referring to the ring of integers of Q, or OQ. More generally, the ring of
integers OK of an algebraic field extension K/Q is the integral closure of Z in
K. That is, it is the set of all algebraic integers contained in K. Of course, the
example of OQ is rather uninteresting, but nontrivial extensions of Q have rings
of integers containing more than just Z. For instance, for K = Q[

√
2] we have√

2 ∈ OK . OK the ring of integers of K, but we know that it is in fact a ring,
since, as shown earlier, the integral closure of a ring is a ring itself. Moreover, we
can prove something stronger: OK is a Dedekind domain. We will explain and
prove all this presently, but we must first provide a few definitions and lemmas
that will prove very useful.

We begin by defining the discriminant, a concept upon which much of the re-
mainder of the paper will depend.

Definition 2.1. Let L/K be a separable field extension of degree n, and let
α1, . . . , αn be a K-basis. Then the discriminant of the basis is defined by

d(α1, . . . , αn) =

det


σ1α1 σ2α1 · · · σnα1

σ1α2 σ2α2

...
...

. . .
σ1αn · · · σnαn




2

,

where σ1, . . . , σn are the n K-embeddings of L.

When we are referring to the discriminant of a basis of OK , we simply call it
the discriminant of the algebraic number field K, and we denote it by dK .
Similarly, we denote the discriminant of the basis of an ideal a of OK by d(a). We
need not specify the basis in these cases because these rings admit integral bases (a
term that we will define shortly) and the discriminant is independent of the choice
of integral basis.

We must also now define two other important concepts, the trace and the norm,
but we will define them only in the context of finite separable extensions since those
will be the only extensions we will be dealing with from now on.
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Definition 2.2. Let L/K be a separable extension of degree n and let σ1, . . . , σn
be the n K-embeddings of L. Let x ∈ L. Then we have

(1) The trace of x is defined as

TrL/K(x) =
n∑
i=1

σix.

(2) The norm of x is defined as

NL/K(x) =
n∏
i=1

σix.

Our goal in this section, as described earlier, is to show that OK is a Dedekind
domain. In order to do this, we first return to module theory.

Definition 2.3. Let R be a ring, and let M be an R-module. M is a free R-
module on the subset C of M if for all x ∈M , such that x 6= 0, there exist unique
elements r1, . . . , rn ∈ R and unique c1, . . . , cn ∈ C, for some positive integer n, such
that x = r1c1 + r2c2 + . . .+ rnan. We call C a set of free generators for M . For
commutative R, the cardinality of C is called the rank of M .

In the special case where A is an integrally closed integral domain with K as
its field of fractions, and L/K is a finite, separable field extension with B as the
integral closure of A in L, then B is a free A-module if and only if (by the definition
above) B contains a set of free generators, D = {ω1, ω2, . . . , ωn}. However, in this
particular situation, we call D an integral basis of B over A. We notice that D
is automatically a K-basis of L, so that n is equal to the degree [L : K] of the field
extension. To more clearly illustrate the concept of an integral basis, we give the
classic example in number theory of the ring of integers in quadratic extensions of
Q, the first part of which is based on an example given in Dummit and Foote’s
Abstract Algebra:

Example 2.4. Let K be a quadratic extension of Q. Then K =
√
D for some

squarefree integer D. Let d be the discriminant of the quadratic number field K,
and let {1, ω} be an integral basis of OK over Z, so that OK = Z[ω]. We will first
show that

ω =

{
1+
√
D

2 , if D ≡ 1 (mod 4)√
D, if D ≡ 2 or 3 (mod 4).

It is clear that ω is integral over Z in both cases, satisfying

ω2 − ω + (1−D)/4 = 0

in the first case and
ω2 −D = 0

in the second. Thus, ω is indeed an algebraic integer, which means that Z[ω] ⊆ OK .
Now we show that OK ⊆ Z[ω]. Let α ∈ K, so that α = a+b

√
D, where a, b ∈ Q.

Let α be an algebraic integer. If b = 0, then α ∈ Q, so α ∈ Z ⊆ Z[ω]. Thus, we can
assume that b 6= 0. Then, the minimal polynomial for α is

m(x) =
[
x−

(
a− b

√
D
)] [

x−
(
a+ b

√
D
)]

= x2 − 2ax+ (a2 − b2D).
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By Lemma 1.6, we know that 2a and a2 − b2D are both integers, giving us

4(a2 − b2D) = (2a)2 − (2b)2D ∈ Z.

Since 2a is an integer, (2a)2 must be an integer, so (2b)2D = 4b2D is an integer
as well. Since D is an integer, it must be divisible by the denominator of (2b)2.
Since D is squarefree, this means that (2b)2 has a denominator equal to one. That
is, (2b)2 is an integer, so 2b is an integer as well. Thus, we can write a = x/2 and
b = y/2, where x, y ∈ Z. Now, suppose

a2 − b2D ≡ z (mod 4).

Then (x
2

)2

−
(y

2

)2

D ≡ z (mod 4)

⇒ x2 − y2D ≡ 4z (mod 4) ≡ 0 (mod 4)
⇒ x2 ≡ y2D (mod 4).

We recall from elementary number theory that an integer i is odd if and only if
i2 ≡ 1 (mod 4) and i is even if and only if i2 ≡ 0 (mod 4). We also know that D is
not divisible by 4. Thus we have two cases:

Case 1: D ≡ 1 (mod 4). Then x2 ≡ y2 ≡ 0 or 1 (mod 4), so x and y are either
both even or both odd. Suppose both are even. Then

α = a+ b
√
D =

x

2
+
y

2

√
D

=
x

2
+
y
√
D

2
+
y

2
− x

2

=
x− y

2
+ y

(
1 +
√
D

2

)
=

x− y
2

+ yω.

Since x and y are of the same parity, x−y is even, so (x−y)/2 ∈ Z. Thus, α ∈ Z[ω],
as desired.

Case 2: D ≡ 2 or 3 (mod 4). Then x2 ≡ 2y2 or 3y2 (mod 4). The only way
this holds is if x ≡ y ≡ 0 (mod 4), which implies that x and y are both even. Thus,
a, b ∈ Z, so α ∈ Z[ω], and we are done.

Now it is simple to show that

d =
{
D, if D ≡ 1 (mod 4)
4D, if D ≡ 2 or 3 (mod 4).

First, suppose D ≡ 1 (mod 4). Then, using our formula for the discriminant, we
have

d =

(
det

(
1 1+

√
D

2

1 1−
√
D

2

))2

=

[(
1 +
√
D

2

)
−

(
1−
√
D

2

)]2

=
(
−
√
D
)2

= D.
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Now suppose D ≡ 2 or 3 (mod 4). Then

d =
(
det

(
1
√
D

1 −
√
D

))2

=
(
−
√
D −

√
D
)2

=
(
−2
√
D
)2

= 4D,

as desired.

Now we consider again an arbitrary ring of integers of a finite extension, OK .
It is clear that OK is a Z-module. However, it turns out that OK is actually a
free Z-module of rank [K : Q]. The crucial step in showing this is to prove that
OK is finitely generated over Z–the result then being immediate from the structure
theorem for finitely generated abelian groups. We will omit the proof of this, but it
can be found on pages 12-13 of Neukirch. However, using this fact, we are able to
prove the statement we set out to prove at the beginning of the section, that OK
is a Dedekind domain.

Definition 2.5. A Dedekind domain is a noetherian, integrally closed integral
domain in which every nonzero prime ideal is maximal.

We recall from module theory that an R-module is noetherian if every sub-
module is finitely generated, and, similarly, a ring R is called noetherian if it is a
noetherian R-module. We recognize that there are numerous equivalent definitions
of noetherian, but the ones mentioned are the most useful to us.

Theorem 2.6. If K/Q is a finite extension of rank n, then OK is a Dedekind
domain.

Proof. First we will show that OK is noetherian. As stated previously, OK is a
free Z-module of rank n. Thus, an ideal I of OK is a Z-submodule of rank at most
n. We can thus find a set of Z-generators {a1, . . . , am} for I, where m ≤ n. Since
Z ⊆ OK , our set of generators for I, {a1, . . . , am}, is also a set of OK-generators.
Thus, every ideal of OK is finitely generated as a OK-submodule, which implies
that OK is a noetherian ring.

We know that OK is integrally closed since it is the integral closure of Z in K.
Now all that remains to be shown is that every nonzero prime ideal p 6= 0 of

OK is maximal. We first need to show that p ∩ Z is prime in Z. Suppose p ∩ Z
is trivial, and let α ∈ p. Then, since α is integral over Z, we can find a monic
polynomial f ∈ Z[x] of minimum degree, such that f(x) = xs+ cs−1x

s−1 + . . .+ c0,
and f(α) = 0. Then we have

αs + cs−1α
s−1 + . . .+ c0 = 0

⇒ αs + cs−1α
s−1 + . . .+ c1α = −c0.

In the above equation, the summands on the left-hand side are all multiples of α, so
they are in p. Also, ideals are closed under addition, so the sum, and thus −c0, is in
p as well. By the minimality of the degree of f , c0 must be nonzero, so p contains
a nonzero integer, which contradicts our assumption that p ∩ Z is trivial. Since Z
is a PID, we thus know that p ∩ Z is a principal ideal in Z. That is, p ∩ Z = (β),
for some β ∈ Z. β must be prime in Z, because if β = xy, such that x, y ∈ Z are
non-units, then, since p is prime, x or y must be in p and thus in p ∩ Z. However,
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(xy) is a proper subset of both (x) and (y). Thus, p ∩ Z is a nonzero prime ideal
(p) in Z, and since Z is a PID, (p) must be maximal in Z.

Now we consider the quotient ring OK/p in order to show that OK/p is a field
and thus that p is maximal in OK . Let β ∈ OK and let

g(x) = xn + bn−1x
n−1 + · · ·+ b0 ∈ Z[x]

such that g(β) = 0. Then, clearly, g(β̄) = 0̄, where the bar notation denotes the
passage into the quotient ring OK/p. Now, let g′ denote the image of g in (Z/pZ)[x].
We will write the elements of (Z/pZ), for now, using coset notation. We have

g′(β̄) = (1 + pZ)β̄n + (bn−1 + pZ)β̄n−1 + · · ·+ (b0 + pZ)
= g(β̄) + pZ(β̄n + β̄n−1 + · · ·+ 1)
= 0̄ + pZ(β̄n + β̄n−1 + · · ·+ 1),

which is in p, and is thus equal to 0̄. Therefore, OK/p is integral over (Z/pZ). Since
p is a prime ideal of OK , we know that OK/p is an integral domain, so in order to
show that OK/p is a field, we only need to show that every nonzero element is a
unit. Again we consider β̄, an arbitrary element of OK/p. We know that

g′(β̄) = β̄n + b̄n−1β̄
n−1 + · · ·+ b̄0 = 0̄

⇒ −β̄(β̄n−1 + b̄n−1β̄
n−2 + · · ·+ b̄1) = b̄0.

Since pZ is maximal in Z, (Z/pZ) is a field. Thus b̄0 has a multiplicative inverse,
so we can write

−β̄(β̄n−1 + b̄n−1β̄
n−2 + · · ·+ b̄1)b̄−1

0 = b̄0b̄
−1
0

= 1.

Thus, β̄ is a unit, and since β̄ was an arbitrary element of OK/p, we know that
OK/p is a field. Therefore, p is maximal, making OK a Dedekind domain. �

3. Ideals of Dedekind Domains

Although the ring of integers OK of an extension of Q can be thought of as a
generalization of the integers, one very large difference is that OK is not necessarily
a unique factorization domain. However, in the next few sections we will introduce
a method to check “how badly” a given Dedekind domain fails to have unique
factorizations. For now, consider the example of OQ(

√
−5).

Example 3.1. Let K = Q
(√
−5
)
. We recall from Example 2.4 that −5 ≡ 3 (mod

4) so that OK = Z
[√
−5
]
. Now, we see that 6 can be factored into irreducibles in

two ways (up to associates):

6 = 2 · 3 =
(
1 +
√
−5
) (

1−
√
−5
)
.

Thus, OK is not a unique factorization domain.

The absence of unique factorization of elements of OK leads us to consider
multiplication of ideals. We define the addition and multiplication of ideals a and
b as follows:

a + b = {a+ b | a ∈ a and b ∈ b}
and

ab =

{
n∑
i=1

aibi | ai ∈ a, bi ∈ b and n ∈ Z+

}
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We say that a divides b, or a|b, if b ⊆ a.
While OK does not necessarily have unique factorization into irreducible ele-

ments, we will find that every ideal of OK admits a unique factorization into prime
ideals. In fact, this statement holds for any Dedekind domain O in general. We
will prove this statement shortly, but first we must state some prerequisite lemmas.

Lemma 3.2. Let O be a Dedekind domain. If a is a nonzero ideal of O, then there
exist nonzero prime ideals p1, p2, . . . , pn such that a|p1p2 . . . pn, that is,

p1p2 · · · pr ⊆ a.

Proof. Let M be the set of ideals that do not satisfy this condition. Suppose M
is nonempty. M is a partially ordered set with respect to inclusion, and since O
is noetherian, every ascending chain of ideals is eventually stationary. Thus, by
Zorn’s lemma, M admits a maximal element b. b cannot be prime, so there exist
two elements b1, b2 ∈ O) such that b1b2 ∈ b but b1, b2 /∈ b. Let b1 = (b1) + b and
b2 = (b2) + b. 0 is obviously an element of both (b1) and (b2), so b ⊆ b1 and b2,
but b1, b2 /∈ b, so b ( b1 and b ( b2. Let c ∈ b1b2. Then

c =
n∑
i=1

(wib1 + xi)(yib2 + zi)

=
n∑
i=1

(wiyib1b2 + ziwibi + xiyib2 + xizi)

for some n ∈ Z+ where wi, yi ∈ O and xi, zi ∈ b. b1b2 ∈ b, so wiyib1b2 ∈ b, and
xi, zi ∈ b, so ziwibi, xiyib2, xizi ∈ b, since b is an ideal. Thus, c ∈ b so b1b2 ⊆ b.
Since b is maximal, both b1 and b2 contain a product of prime ideals. The product
of those products is contained in b1b2, which is contained in b, a contradiction.
Therefore, M must be empty, which means our assertion holds. �

In the next lemma, we define the inverse of an ideal.

Lemma 3.3. Let p be a prime ideal of a Dedekind domain O. Let K be the field
of fractions of O. We define

p−1 = {x ∈ K | xp ⊆ O}.
Then for every ideal a 6= 0 of O, we have

ap−1 :=

{∑
i

aixi | ai ∈ a, xi ∈ p−1

}
6= a.

Proof. Let a ∈ p, a 6= 0, and p1p2 · · · pr ⊆ (a) ⊆ p, where p1, p2, . . . , pr are prime
ideals and r is as small as possible. Suppose none of the pi were contained in p.
Then for all i there would exist ai ∈ pi \ p such that a1 · · · ar ∈ p. But p is prime, a
contradiction. Thus, one of the pi, say p1, is contained in p. Since p1 is maximal,
we know that p1 = p. Since r is as small as possible, we know that p1 · · · pr * (a).
Thus, there exists b ∈ p2 · · · pr such that b /∈ (a) = aO. Thus, a−1b /∈ O. However,
bp = bp1 ⊆ (a), so bp ⊆ aO, which implies that a−1bp ⊆ O. Thus, by the definition
of p−1, we have a−1b ∈ p−1. Thus, p−1 6= O.

Now, let a 6= 0 be an ideal of O and α1, . . . , αn a system of generators of a.
Assume ap−1 = a. Then for every x ∈ p−1, we have

xαi =
∑
j

aijαj ,
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where aij ∈ O. Define A as the matrix xI − (aij). Then, by a theorem on page 6
of Neukirch (we omit the proof since it involves mostly basic linear algebra manip-
ulations), we have that det(A)α1 = det(A)α2 = · · · = det(A)αn = 0. Thus, since
not all ai can be zero, we know that det(A) = 0. det(A) (replacing the x with X
is a monic polynomial in O[X]. Thus, x is integral over O. Since O is a Dedekind
domain, it is by definition integrally closed, so x ∈ O. Therefore, p−1 ⊆ O. We
also know that O ⊆ p−1. Thus, p−1 = O, a contradiction. �

Now we are able to prove the unique factorization of Dedekind domain ideals.

Theorem 3.4. Let O be a Dedekind domain, and let a 6= 0 be a proper ideal of O.
Then a admits a factorization

a = p1p2 · · · pr
into nonzero prime ideals p1, p2, . . . , pr of O which is unique up to the order of the
factors.

Proof. First we prove that such a factorization exists. Let M be the set of all
nonzero proper ideals that do not admit such a factorization. Suppose M is
nonempty. Then, just as in Lemma 3.2, there exists a maximal (with respect
to inclusion) element a in M. a is contained in a maximal ideal p. Since O ⊆ p−1,
we have

a = aO ⊆ ap−1 ⊆ pp−1 ⊆ O.
By Lemma 3.3, we have a ( ap−1 and p ( pp−1. Thus, since p is a maximal ideal,
pp−1 = O. Since O is commutative, we know that p is prime, so a 6= p. Thus,
ap−1 6= O. Since a is maximal in M and a ( ap−1, ap−1 must admit a factorization
into prime ideals:

ap = p1 · · · pr.
But then we have

a = ap−1p = p1 · · · prp,
which is a factorization into prime ideals, a contradiction. Thus, every nonzero
proper ideal of O can be factored into nonzero prime ideals.

Now we show that the factorization is unique. Let

a = p1p2 · · · pr = q1q2 · · · qs
be two prime ideal factorizations of a. For a prime ideal p, we know that p|bc implies
that p|b or p|c. Thus, since p1|a, we know that p1|qi for some i ∈ {1, 2, . . . , s}.
Without loss of generality, assume i = 1. Then q1 ⊆ p1. However, since q1 is
prime, it is also maximal, so q1 = p1. Thus,

p−1
1 p1p2 · · · pr = p−1

1 q1q2 · · · qs
⇒ p2 · · · pr = q2 · · · qs

We can continue like this, and eventually we see that r = s. Thus, after a reordering,
we have pi = qi for all i ∈ {1, 2, . . . , s}. Thus, every nonzero proper ideal of O can
be factored uniquely (up to ordering) into prime ideals, as desired. �

In the same way that non-field rings can be extended to a field that contains
their inverses, namely the field of fractions, we can also find the inverses of ideals
of a Dedekind domain by extending into the field of fractions, as shown earlier in
this section. This brings us to the notion of a fractional ideal.
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Definition 3.5. Let O be a Dedekind domain, and let K be its field of fractions.
A fractional ideal of K is a nonzero finitely generated O-submodule of K.

Since every fractional ideal of O lies in the field of fractions of O, we can give an
equivalent definition relating fractional ideals to ideals inside O, where multiplica-
tion of fractional ideals is defined in the same way as multiplication of ideals. We
state this definition as a lemma.

Lemma 3.6. Let a 6= 0 be an O-submodule of K. a is a fractional ideal of K if
and only if there exists a nonzero element c of O such that ca ⊆ O is an ideal of
O.

Proof. Suppose a is a fractional ideal. Then, there is a finite set of generators that
generates a. Since a is in the field of fractions of O, we can write these generators
of fractions of elements of O. That is, we can write

a =
a1

b1
O + · · ·+ an

bn
O

where a1, . . . , an and b1, . . . , bn ∈ O. Let c = b1b2 · · · bn. Clearly c(ai/bi) ∈ O for
i ∈ {1, . . . , n}. Thus, ca ⊆ O. Also, since ba is a finitely generated O-submodule of
O, it must be an ideal of O.

Now we prove that the converse holds. Assume there is a nonzero element c of
O such that ca ⊆ O is an ideal of O. Since O is noetherian, ca must be a finitely
generated O-submodule of K. we know that c−1 is in the field of fractions K, so if
we multiply every element of the generating set of ca by c−1, and look at the module
generated by the new set, we are again left with a finitely generated O-submodule
of K, and thus a fractional ideal, as desired. �

Now that we have a notion of multiplication and of inverses, a question that
naturally arises is whether or not the set of fractional ideals is a group. It is simple
to check that it is in fact a group, called the ideal group, as we will show in the
following lemma.

Lemma 3.7. Let O be a Dedekind domain, and let K be its field of fractions. The
set of fractional ideals of K forms an abelian group, the ideal group of K, denoted
JK . The identity element is O = (1) and the inverse of a is

a−1 = {x ∈ K | xa ⊆ O}.

Proof. Associativity and commutativity follow from the fact that K is a field. Also,
a(1) = a for all a ∈ JK . JK is nonempty, because it contains O. Thus, all that
remains to be shown is that every fractional ideal multiplied by its “inverse” is
indeed O. We first consider a prime ideal p. By Lemma 3.3, p ( pp−1. Since p is
a prime ideal of a Dedekind domain it must be a maximal ideal, which means that
pp−1 = O. Now, let a be an arbitrary nonzero ideal of O. Then, by Theorem 3.4, we
can write a as a product of prime ideals, so a = p1 · · · pn. Then, b = pnpn−1 · · · p1

is an inverse for a. Since ba = O, we know that b ⊆ a−1. Now let x ∈ a−1. Then
we have xa ⊆ O which means that x = xO = xab ⊆ b. Thus, a−1 = b. Now let a
be an arbitrary fractional ideal. Then we can find c ∈ O such that ca is an ideal of
O. The inverse of ca is c−1a−1, so aa−1 = O. Thus, JK is an abelian group. �

The ideal group can be used to help us understand the structure of the orig-
inal Dedekind domain itself. In fact, it will help us answer the question raised
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previously about determining “to what extent” a Dedekind domain fails to have
unique factorization of elements. One convenient property of Dedekind domains
that makes this task a lot easier, is that a Dedekind domain is a UFD if and only
if it is a principal ideal domain (PID). It tends to be much easier to check that a
ring is a PID, so we will take advantage of this property. This leads us to define
the concept of a fractional principal ideal:

Definition 3.8. Let O be a Dedekind domain with field of fractions K. Then a
fractional ideal a is a fractional principal ideal if it is a cyclic O-submodule of
K. If a generates a, then we write a = (a). We denote the set of fractional principal
ideals of K by PK .

Conveniently, PK turns out to be a subgroup of JK . The quotient group ClK =
JK/PK is called the class group of K, and the order of the group, denoted hK is
called the class number of K. It is clear that as the proportion of principal ideals
of O increases, hK increases, and hK = 1 if and only if O is a PID. Thus, the size
of the class group can be thought of as a measure of the extent to which O fails to
be a PID, or, equivalently, a UFD. If the class group were ever infinite, however,
it would be difficult to compare two Dedekind domains. However, we find that the
class number is always finite for rings of integers in number fields. In the following
sections we explain concepts from linear algebra and geometry which will help us
prove this and will enable us to compute the class numbers of a few fields.

4. Lattices and Minkowski Theory

We begin this section by introducing some concepts from linear algebra that at
first may seem unrelated to the topic at hand, but our strategy is to apply linear
algebra, in particular the notion of a lattice, to ideals of Dedekind domains, in order
to give a sense of the size of an ideal. Doing this will enable us to bound the “size”
of an ideal in order to eventually show that the class number must be finite. We
begin with the definition of a lattice and describe some of its properties.

Definitions 4.1. Let V be an n-dimensional R-vector space. A lattice in V is a
subgroup of V of the form

Γ = Zv1 + · · ·+ Zvm
where v1, . . . , vm are linearly independent vectors in V . {v1, . . . , vm} is called a
basis for the lattice, and the set

Φ = {x1v1 + · · ·+ xmvm | xi ∈ R, and 0 ≤ xi < 1}

is called a fundamental mesh of the lattice. The lattice is called complete if
m = n.

Since we are working in Euclidean space, we now have available the notion of
volume. Using the same V as in the previous definition, the cube spanned by an
orthonormal basis has volume 1. More generally, a parallelepiped spanned by n
linearly independent vectors v1, . . . , vn, that is, Φ, has volume vol(Φ) = |detA|,
where A is the base change matrix going from the orthonormal basis to v1, . . . , vn.
For short, we write vol(Γ) =vol(Φ). Using just these few definitions we are now able
to prove Minkowski’s lattice point theorem, the most important theorem having to
do with lattices.
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Theorem 4.2 (Minkowski’s Lattice Point Theorem). Let Γ be a complete lattice
in the euclidean vector space V , and let X be a centrally symmetric, convex subset
of V . Suppose that

vol(X) > 2nvol(Γ).
Then X contains at least one nonzero lattice point γ ∈ Γ.

Proof. Let γ1, γ2 ∈ Γ, and let

Y =
(

1
2
X + γ1

)
∩
(

1
2
X + γ2

)
6= ∅.

Suppose Y is nonempty. Let y ∈ Y . Then we have

y =
1
2
x1 + γ1 =

1
2
x2 + γ2,

for some x1, x2 ∈ X. Then

γ1 − γ2 =
1
2

(x2 − x1).

This is the center of the line segment joining x2 and −x1. Thus, it is an element
of X. It is also the difference of two elements in Γ, a group, and it is thus also in
Γ. Thus, it is an element of Γ ∩X. Therefore, it suffices to show that there exist
γ1 and γ2 so that Y is nonempty.

Consider the collection of sets{
1
2
X + γ | γ ∈ Γ

}
.

Suppose these sets are pairwise disjoint. Then the same would be true of their
intersections Φ ∩ ( 1

2X + γ) with the fundamental mesh Φ of Γ. Thus, we have

vol(Φ) ≥
∑
γ∈Γ

vol
(

Φ ∩
(

1
2
X + γ

))
.

Translation of the set Φ ∩
(

1
2X + γ

)
by −γ gives the set (Φ − γ ∩ 1

2X of equal
volume. The sets Φ − γ, γ ∈ Γ cover the entire space V (this is a consequence of
the completeness of Γ and is proven on pages 25 and 26 of Neukirch), so they also
cover 1

2X. Thus, we obtain

vol(Φ) ≥
∑
γ∈Γ

vol
(

(Φ− γ) ∩ 1
2
X

)
= vol

(
1
2
X

)
=

1
2n

vol(X),

which contradicts the hypothesis. �

Now we are ready to apply the theory of lattices to the study of algebraic number
fields K/Q of degree n. We will first think of the field as an n-dimensional vector
space, and then show that OK actually forms a lattice in the vector space. First
we consider a mapping j of K into a Q-space. Let

j : K → KC =
n∏
i=1

C

be a function such that
j(x) = (τ1x, τ2x, . . . , τnx)

where τ1, τ2, . . . , τn are the n complex embeddings of K into C.
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Although KC is a C-vector space, giving us the notion of distance, it is rather
difficult to visualize geometrically. Admittedly, it would be much “nicer” if we
could map K into a euclidean space without losing any information from the com-
plex embeddings. In order to do this, we must notice three things: First, the real
embeddings already map K into R, so we can, at the moment, ignore those em-
beddings. Second, the complex embeddings can be thought of as embeddings into
R2 by splitting the embedding into its real and imaginary parts. Lastly, the com-
plex embeddings come in pairs of complex conjugates. Thus, given only half of the
complex embeddings, that is, one from each pair of complex conjugates, we lose no
information. This leads us to the description of the Minkowski space:

Every embedding of K into C is either real or complex. Let ρ1, . . . , ρr be the
real embeddings. As just mentioned, the complex embeddings come in pairs. Let
σ1, σ̄1, . . . , σs, σ̄s be the complex embeddings. From each pair of complex embed-
dings, we choose one fixed embedding. Then we let ρ vary over the real embed-
dings, and we let σ vary over the chosen complex embeddings. Then we define the
Minkowski space KR as

KR = {(zτ ) ∈ KC | zρ ∈ R, zσ̄ = z̄σ}

where τ varies over the n embeddings. In order to think of the Minkowski space
geometrically, we point out that there is an isomorphism between KR and

∏
τ R,

as described above, given by the rule (zτ ) 7→ (xτ ), where

(4.3) xρ = zρ, xσ = Re(zσ), and xσ̄ = Im(zσ).

In order to illustrate this concept, we present a simple example.

Example 4.4. Let K = Q
[

3
√

2
]
. K/Q is a degree 3 extension. Thus, there are

three canonical embeddings of K into C, which we will denote τ1, τ2, and τ3. The
maps are uniquely defined by their action on 3

√
2, so we write

τ1

(
3
√

2
)

= 3
√

2,

τ2

(
3
√

2
)

= 3
√

2

(
−1

2
+
√

3
2
i

)
,

τ3

(
3
√

2
)

= 3
√

2

(
−1

2
−
√

3
2
i

)
.

We see that τ1 is a real embedding and that τ2 = τ̄3. Thus, using the above
isomorphism, the three new embeddings into R3 are

σ1

(
3
√

2
)

= 3
√

2,

σ2

(
3
√

2
)

= −
3
√

2
2
,

σ3

(
3
√

2
)

=
3
√

2
√

3
2

.

Now that we are able to think of K as an n-dimensional euclidean space, we can
interpret the ring of integers of K and its ideals as lattices in the Minkowski space
KR, using the following lemma.
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Lemma 4.5. Let K be a finite extension of Q, and let a be a nonzero ideal of OK .
Let j be the map from K into the Minkowski space KR. Then Γ = ja is a complete
lattice in KR, and its fundamental mesh has volume

vol(Γ) =
√
|dK |(OK : a).

Proof. Let α1, . . . , αn be a Z-basis of a. Then Γ = Zjα1 + · · · + Zjαn. Let
τ1, τ2, . . . , τn be the embeddings of K into C. We define the matrix

A =


τ1α1 τ2α1 · · · τnα1

τ1α2 τ2α2

...
...

. . .
τ1αn · · · τnαn

 .

By the theory of finitely generated Z-modules (which we will not prove), if b ⊆ b′

are two nonzero finitely generated OK-submodules of K, then (b′ : b) is finite and

d(b) = (b′ : b)2d(b′).

Thus, we have

d(a) = d(α1, . . . , αn) = (det A)2 = (OK : a)2d(OK) = (OK : a)2dK .

We also know that

(〈jαi, jαk〉) =

(
n∑
l=1

τlαiτ̄lαk

)
= AĀt.

Now we have

vol(Γ) = |det(〈jαi, jαk〉)|1/2 = |det A| =
√
|dK |(OK : a),

as desired. �

We now give an example of determining the lattice of OK for a field K.

Example 4.6. LetK = Q
[

3
√

2
]
, as in Example 3.4. A Z-basis forOK is 1, 3

√
2,
(

3
√

2
)2

.
Let j be the canonical map from K into R3. Then, using the embeddings we found
in Example 3.4, we have

j(1) = (1, 1, 1),

j
(

3
√

2
)

=

(
3
√

2,−
3
√

2
2
,

3
√

2
√

3
2

)
,

j

((
3
√

2
)2
)

=

((
3
√

2
)2

,

(
3
√

2
)2

4
,

3
(

3
√

2
)2

4

)
as the three basis vectors for the lattice.

In order to apply lattices of ideals to the class number, we need to first prove a
theorem that is the direct result of the Minkowski Lattice Point Theorem, which
will help us in finding a “bound” for ideals, as mentioned before.

Theorem 4.7. Let K/Q be a finite extension, and let a 6= 0 be an ideal of OK .
Let cτ > 0, for τ ∈ Hom(K,C), be a real number such that cτ = cτ̄ and∏

τ

cτ > A(OK : a),



MINKOWSKI THEORY AND THE CLASS NUMBER 15

where A = (2/π)s
√
|dK |. Then there exists a nonzero a ∈ a such that

|τa| < cτ for all τ ∈ Hom(K,C).

Proof. Let
X = {(zτ ) ∈ KR

∣∣|zτ | < cτ}.
This set is centrally symmetric, since |zτ | = | − zτ |, and it is convex since if
|zτ |, |wτ | < cτ , then∣∣∣∣12(zτ + wτ )

∣∣∣∣ =
1
2
|zτ + wτ | ≤

1
2
|zτ |+

1
2
|wτ | ≤ max{|zτ |, |wτ |} < cτ .

We compute the volume using map 4.3, which we will denote f . It comes out to be
2s times the Lebesgue-volume of the image

f(X) =

{
(xτ ) ∈

∏
τ

R

∣∣∣∣∣ |xρ| < cρ, x
2
σ + x2

σ̄ < c2σ

}
.

This gives

vol(X) = 2svolLebesgue (f(X)) = 2s
∏
ρ

(2cρ)
∏
σ

(πc2σ) = 2r+sπs
∏
τ

cτ .

Now, by Lemma 4.5, we have

vol(X) > 2r+sπs
(

2
π

)s√
|dK |(OK : a) = 2nvol(Γ).

Thus, by Minkowski’s Lattice Point Theorem, there exists a lattice point ja ∈
X, a 6= 0, a ∈ a. That is, |τa| < cτ , as desired. �

5. The Class Number

Now that we have the basic tools from Minkowski Theory, we are able to apply
them to the class group, which was mentioned briefly in section 3. Before we do
so, we must define the concept of the absolute norm of an ideal.

Definition 5.1. Let K/Q be a finite extension, and let a 6= 0 be an ideal of OK .
The absolute norm of a is given by

N(a) = (OK : a).

It seems reasonable that multiplicativity of the absolute norm would hold, but
the proof is actually not entirely trivial. We thus state it as a lemma.

Lemma 5.2. Let K/Q be a finite extension, and let a 6= 0 be an ideal of OK . If
a = pv11 · · · pvr

r is the prime factorization of a, then

N(a) = N(p1)v1 · · ·N(pr)vr .

Proof. By the Chinese Remainder Theorem, we have

OK/a = OK/p1
v1 ⊕ · · · ⊕ OK/pr

vr .

Since
|OK/a| = |OK/p1

v1 | · · · |OK/pr
vr |,

we only need to consider the case where a = pv, where p is a prime ideal of OK .
Consider the chain

p ⊇ p2 ⊇ · · · ⊇ pv.
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We know that pi 6= pi+1, because otherwise we would not have unique prime factor-
ization. Now consider the quotient ring pi/pi+1. Let a ∈ pi\pi+1 and b = (a)+pi+1.
Then pi+1 ( b ⊆ pi. Thus, since pi+1 is maximal in pi, we know that pi = b. Thus,
a mod pi+1 is a basis for the OK/p-vector space pi/pi+1. Therefore, we have

pi/pi+1 ∼= OK/p.
This means that

N(pv) = (OK : pv) = (OK : p)(p : p2) · · · (pv−1 : pv) = N(p)v,

as desired. �

Now before we get to the actual proof of the finiteness of the class number, we
give one more prerequisite lemma.

Lemma 5.3. In every ideal a 6= 0 of OK there exists a nonzero a ∈ a such that∣∣NK/Q(a)
∣∣ ≤ ( 2

π

)s√
|dK |N(a).

Proof. Given ε > 0, we can choose positive real numbers cτ , for τ ∈ Hom(K,C),
such that cτ = cτ̄ and ∏

τ

cτ =
(

2
π

)s√
|dK |N(a) + ε.

Then by Theorem 4.7, we find an element a ∈ a, a 6= 0, satisfying |τa| < cτ . Thus∣∣NK/Q(a)
∣∣ =

∏
τ

|τa| <
(

2
π

)s√
|dK |N(a) + ε.

Since |NK/Q(a)| is a positive integer, there exists an a ∈ a, a 6= 0, such that∣∣NK/Q(a)
∣∣ ≤ ( 2

π

)s√
|dK |N(a).

�

Now we reach the theorem that we have been building up to since the beginning
of the paper.

Theorem 5.4. Let K/Q be a finite extension. The class number hK = (JK : PK)
is finite.

Proof. Let p 6= 0 be a prime ideal of OK . By the proof of Theorem 2.6, we know
that p∩Z = pZ for some prime p ∈ Z. Thus, O/p is a finite field extension of Z/pZ.
Suppose the extension has degree f ≥ 1. Then

N(p) = pf .

Given a prime p, there are only a finite number of prime ideals such that p∩Z = pZ
since this would mean that p|(p). Thus, there are only finitely many prime ideals
of bounded absolute norm. Let a be an arbitrary ideal of OK . By Theorem 3.4, we
can write a uniquely (up to the order of the factors) as a product of prime ideals,
so that

a = pv11 · · · pvr
r

where all vi > 0 and by Lemma 5.2, we have

N(a) = N(p1)v1 · · ·N(pr)vr .
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Thus, there are only a finite number of ideals of OK with a bounded absolute norm
N(a) ≤M .

Therefore, it will suffice to show that each ideal class, or element, [a] of ClK
contains an ideal a1 of OK such that

N(a1) ≤M =
(

2
π

)s√
|dK |.

In order to show this, we choose an arbitrary representative a of the class and a
nonzero element γ ∈ OK such that b = γa−1 ⊆ OK . By Lemma 5.3, we can find a
nonzero element α ∈ b, such that∣∣NK/Q(α)

∣∣N(b)−1 = N
(
(α)b−1

)
= N

(
αb−1

)
≤M.

Thus, the ideal αb−1 has the desired property. �

As described in Section 3, when OK is a PID (or, equivalently, a UFD), the class
number is 1. Thus, we will give an example of the computation of the class number
of a field whose ring of integers is not a PID.

Example 5.5. Let K = Q[
√
−5]. From Example 2.4, since −5 ≡ 3 (mod 4), we

know that OK = Z[
√
−5], and dK = −20. Thus, from the proof of Theorem 5.4,

we know that each ideal class contains an ideal a, such that

N(a) ≤
(

2
π

)√
20 ≈ 2.85.

Thus, we must find all ideals with absolute norm 2.
Suppose a is an ideal such that N(a) = 2. Let

a = pv11 · · · pvr
r

where all vi > 0, and each pi is prime. Then

N(a) = N(p1)v1 · · ·N(pr)vr .

Since pi is prime, we know that N(pi) is an integer greater than one. Thus, r = 1
and vi = 1, which means that a is prime. Thus, a ∩ Z = 2Z, so (2) ⊆ a.

Consider the ideal b = (
√
−5 + 1, 2). Clearly (2) ⊆ b. We will show that b is

not principal, and thus that it is not in the same ideal class as (2). Suppose b is
principal, so that b = (b), for some b ∈ Z[

√
−5]. Then

NK/Q(b)|NK/Q(2) = 4

and
NK/Q(b)|NK/Q(

√
−5 + 1) = (1 +

√
−5)(1−

√
−5) = 6

. Thus, NK/Q(b) = 2. So if b = x+ y
√
−5, then

NK/Q(b) = x2 + 5y2 = 2.

There are no integer solutions for x and y, so b must not be principal. In particular,
it is not equal to (1). We know b|(2), so N(b)|2. Since N(b) 6= 1 it must be 2.

Now let c be a nonprincipal prime ideal of norm 2, so that (2) ⊆ c. We will show
that c = b. We can find two elements of c \ (2), a+ b

√
−5 and c+ d

√
−5, such that

(a+ b
√
−5) + (c+ d

√
−5) = 2

⇒ (a+ c) + (b+ d)
√
−5 = 2,

so c = 2− a and d = −b.
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Now suppose a is odd and b is even or a is even and b is odd. Then by subtracting
even multiples of

√
−5 and 1, respectively, from a + b

√
−5, we obtain

√
−5 ∈ c,

which means that −5 ∈ c, or 1 ∈ c, a contradiction either way. Thus a and b
are of the same parity. Suppose they are both even. Then a + b

√
−5 ∈ (2), a

contradiction. Thus, a and b are odd. Subtracting even multiples of
√
−5 and 1,

respectively, from a + b
√
−5, we obtain

√
−5 + 1 ∈ c. Thus, b ⊆ c. Since c 6= (1)

and since b is maximal, we have c ∈ b. Thus, c = b.
Therefore, there is only one nonprincipal ideal of norm 2, so there are precisely

2 ideal classes. Thus hK = 2, so ClK = Z2.

6. Conclusion

Although the example we gave of finding the class group at the end of the previ-
ous section was not trivial, it was relatively simple compared to finding class groups
of much higher order. In fact, the calculation of nontrivial class groups of algebraic
number fields of larger discriminant is impractical to do by hand. Moreover, there
is no known pattern yet in the ideal class groups of algebraic number fields– nei-
ther in size nor in structure. Neukirch states that it is believed that they behave
completely unpredictably.
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