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THEOREM
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Abstract. In this paper, we define the fundamental group of a topological

space and explore its structure, and we proceed to prove Van-Kampen’s Theo-
rem, a powerful result useful for calculating the fundamental groups of spaces

which decompose into spaces whose fundamental groups are already known.

With these tools, we show that the circle, 2-sphere, torus, and figure-8 space
are topologically distinct. We also use a result from covering space theory to

prove two important results outside of Topology, including the Fundamental

Theorem of Algebra.
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1. Basic Definitions: Homotopies, Loops, and the Fundamental Group

We begin with a few definitions:

Definition 1.1. Let X and Y be sets and f, g : X → Y be continuous. Then,
f and g are homotopic if there exists a continuous function F : X × [0, 1] → Y
such that F (x, 0) = f(x) and F (x, 1) = g(x) ∀x ∈ X. F is called a homotopy
between f and g, and we write f ' g. If f is homotopic to a constant map, then f
is nulhomotopic.

Definition 1.2. Suppose f, g : [0, 1]→ X are continuous. Then, we call f, g paths
in X, with initial point x0 and ending point x1. Suppose also that f(0) = g(0) = x0,
f(1) = g(1) = x1, and f ' g, where the homotopy F between f and g satisfies

(1.3) F (0, t) = x0 and F (1, t) = x1 ∀t ∈ [0, 1]

Then, f and g are path homotopic, and F is a path homotopy (or basepoint-
preserving homotopy) between f and g. We write f 'P g.

Date: August 21, 2009.

1
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The relations ' and 'P are equivalence relations, with the latter stronger than
the former. We write the path-homotopy equivalence class of a path f as [ f ]. Note
also that, for compactness of notation, we may write a homotopy as ft(s) = F (s, t).

Example 1.4. Let X be a convex set and f, g be paths in X such that f(0) =
g(0) = x0 and f(1) = g(1) = x1. Then, f 'P g by the ”straight-line” path
homotopy

(1.5) F (s, t) = (1− t) · f(s) + t · g(s),

and g ∈ [ f ].

We now define an operation on paths and their equivalence classes.

Definition 1.6. Let f, g be paths in X such that f(1) = g(0). We define the
product f ∗ g by:

(1.7) f ∗ g(s) =
{
f(2s) for t ∈

[
0, 1

2

]
g(2s− 1) for t ∈

[
1
2 , 1
]

Definition 1.8. Let f, g be paths in X such that f(1) = g(0). Then, we define the
product [ f ] ∗ [ g ] = [ f ∗ g ]. This product is associative. We define the constant
path at x0 as ex0(s) = x0 ∀s ∈ [0, 1]. Then, [ f ] ∗

[
ef(1)

]
=
[
ef(0)

]
∗ [ f ] = [ f ].

We also define the reverse of a path f from x0 to x1 as f(s) = f(1 − s). Then,
[ f ] ∗

[
f
]

= [ ex1 ] and
[
f
]
∗ [ f ] = [ ex0 ].

A basic theorem that will be used later in the paper is that [ f ] can be decom-
posed into the equivalence classes of the segments composing f . That is,

Theorem 1.9. Let f be a path in X, and let 0 = a0 < a1 < . . . < an = 1. Let
fi : I → X be paths such that fi(s) = f(ai−1 + s(ai − ai−1)). Then,

(1.10) [ f ] = [ f1 ] ∗ [ f2 ] ∗ · · · ∗ [ fn ]

We now define a fundamental notion of algebraic topology: the fundamental
group.

Definition 1.11. Let X be a space and x0 ∈ X. A loop in X is a path from x0

to x0, and we say that x0 is the basepoint of the loop. Then, the fundamen-
tal group of X relative to x0 is π1(X,x0) = {[ f ] | f is a loop based at x0} . The
fundamental group is also called the first homotopy group of X.

Theorem 1.12. π1(X,x0) is a group.

Proof. See (1.8). �

The fundamental group of a space is nearly independent of the choice of basepoint
x0:

Theorem 1.13. If X is path-connected, then ∀x0, x1 ∈ X, π1(X,x0) ≈ π1(X,x1).

Proof. Let α be a path in X from x0 to x1. α exists by hypothesis. Define α̂ :
π1(X,x0)→ π1(X,x1) by

(1.14) α̂ = [α ] ∗ [ f ] ∗ [α ] .

It is clear that α̂ is an isomorphism. �

Corollary 1.15. π1(X,x0) depends only on the path-connected component of X
that contains x0.
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From now on, we will work only with path-connected spaces, so that each space
has a unique fundamental group. An especially nice category of spaces is the
simply-connected spaces:

Definition 1.16. A path-connected space X is simply-connected if π1(X,x0) is
trivial, i.e. π1(X,x0) = {ex0}.

Examples 1.17. Any convex set is simply-connected. Rn is simply-connected.

Lemma 1.18. If X is simply-conneted, then any two paths in X are path-homotopic.

Proof. [ f ∗ g ] = [ ex0 ] =⇒ [ f ] = [ g ] . �

Now, we define a way for a continuous map h : X → Y to act on elements of
π1(X,x0).

Definition 1.19. Suppose h : X → Y is continuous and h(x0) = y0. (We write
this as h : (X,x0)→ (Y, y0).) Then, define h∗ : π1(X,x0)→ π1(Y, y0) by

(1.20) h∗([ f ]) = [h ◦ f ]

This is the homomorphism induced by h, relative to x0.

Lemma 1.21. h∗ : π1(X,x0)→ π1(Y, y0) is a homomorphism.

Proof. Let f, g ∈ π1(X,x0). Then,

h∗([ f ]) ∗ h∗([ g ]) = [h ◦ f ] ∗ [h ◦ g ] = [ (h ◦ f) ∗ (h ◦ g) ]
= [h ◦ (f ∗ g) ] = h∗([ f ∗ g ])

�

Notation 1.22. Suupose x0, x1 ∈ X and h(x1) = y1. To avoid confusion, we write
(hx0)∗ : π1(X,x0)→ π1(Y, y0) and (hx1)∗ : π1(X,x1)→ π1(Y, y1).

Theorem 1.23. Suppose h : (X,x0) → (Y, y0) and k : (Y, y0) → (Z, z0) are
continuous. Then, (k ◦ h)∗ = k∗ ◦ h∗. Also, suppose i : (X,x0) → (X,x0) is the
identity map. Then, i∗ is the identity map in π1(X,x0).

Theorem 1.24. If h : (X,x0) → (Y, y0) is a homeomorphism, then h∗ is an
isomorphism, and π1(X,x0) ≈ π1(Y, y0).

Proof. By hypothesis, h : (X,x0) → (Y, y0) and h−1 : (Y, y0) → (X,x0) are con-
tinuous; thus, h∗ and (h−1)∗ are homomorphisms. But h∗ ◦ (h−1)∗ = (h ◦ h−1)∗ =
i∗ =⇒ (h−1)∗ = h−1

∗ is a homomorphism, hence h∗ is an isomorphism. �

2. Results from π1(S1) ≈ Z: Fundamental Theorem of Algebra,
Brouwer’s Fixed Point Theorem

It is a well-known theorem that the fundamental group of the circle is isomorphic
to the additive group of the integers, i.e.

(2.1) π1(S1) ≈ Z
This is a result proved by covering space theory, the details of which this paper will
not cover for sake of brevity. We will, however, prove a few important results of
this theorem. We begin with the Fundamental Theorem of Algebra.

Theorem 2.2 (Fundamental Theorem of Algebra). Suppose p(x) = anx
n+an−1x

n−1+
. . .+ a0 ∈ C [x]. Then, ∃z ∈ C such that p(z) = 0.
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Proof. Without loss of generality, we may assume that an = 1. We proceed by
contradiction: if p has no roots in C, then ∀r ≥ 0, the function

fr(s) =
p(re2πis)/p(r)
|p(re2πis)/p(r)|

defines a loop in S1 ⊂ C since |fr(s)| = 1 ∀r ≥ 0,∀s ∈ [0, 1], and this loop begins
and ends at 1 ∈ C. As r varies, fr is a path-homotopy of loops since p is continuous.
But f0 is the trivial loop, so for all r ≥ 0, the class [ fr ] ∈ π1(S1, 0) is equal to
[ f0 ] ≈ 0 ∈ Z.

Fix a large value of r such that r > |an−1|+ |an−2|+ . . .+ |a0|. Then, for |z| = r,
we have

|zn| = rn = r ·rn−1 > (|an−1|+ |an−2|+ . . .+ |a0|) ·
∣∣zn−1

∣∣ ≥ ∣∣an−1z
n−1 + . . .+ a0

∣∣ .
From this inequality, we have that the polynomials

pt(z) = zn + t · (an−1z
n−1 + . . . a0)

have no roots in C. We replace p in the formulation of fr by the polynomials pt
and let t go from 1 to 0, and we obtain a homotopy from fr to the loop

fr,0(z) =
zn

|zn|
=⇒ fr,0(e2πiθ) = e2nπiθ,

which, when θ runs from 0 to 2π, is the loop in S1 which is equivalent to n ∈ Z,
i.e. it runs n times counter-clockwise around the origin.

But fr,0 is homotopic to the trivial loop f0, so n = 0; thus, p(z) = a0, the
constant polynomial. �

We continue to another important result.

Theorem 2.3 (Brouwer’s Fixed Point Theorem). Every continuous map h : D2 →
D2 has a fixed point.

Proof. Suppose for sake of contradiction that h(x) 6= x ∀x ∈ D2. Then, define a
map f : D2 → S1 as follows: draw a ray beginning at h(x) and passing through x,
and let f(x) be the point of S1 which intersects the ray. Continuity of f is clear;
small movements of x produce small movements of h(x) and thus small movements
of the ray passing between them. Note also that ∀x ∈ S1, f(x) = x.

Now, let g be a loop in S1 with basepoint x0. Because D2 is convex and thus
simply-connected, there is a homotopy in D2 between g and the constant loop at
x0; call the homotopy gt (0 ≤ t ≤ 1). Then, f ◦ g is a homotopy from f to the
constant loop at x0 ∈ S1; but π1(S1, x0) is non-trivial, contradiction. �

We end this section with one means to calculate the fundamental group of a
space that is the product of spaces whose fundamental groups we already know:

Proposition 2.4. π1(X × Y ) ≈ π1(X) × π1(Y ) if X and Y are path-connected
spaces.

Proof. A map f : Z → X × Y is continuous iff the associated maps g : Z → X and
h : Z → Y defined by f(z) = (g(z), h(z)) are continuous. So, a loop f in X × Y ,
based at (x0, y0), is equivalent to a pair of loops g in X and h in Y , based at x0

and y0 respecitvely. Similarly, a homotopy ft of a loop in X × Y is equivalent to a
pair of homotopies gt and ht of the corresponding loops in X and Y , respectively.
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Thus, we have a bijection [ f ]
φ7−→ ([ g ] , [h ]). φ is clearly a group homomorphism,

hence it is an isomorphism, so that π1(X ×Y, (x0, y0)) ≈ π1(X,x0)×π1(Y, y0). �

Corollary 2.5. The fundamental group of the torus is isomorphic to Z× Z.

Proof. The torus is defined as S1 × S1. Apply the above lemma. �

3. Deformation Rectractions and Homotopy Equivalence

We consider a type of related spaces and the relation between their fundamental
groups. We begin with a lemma:

Lemma 3.1. Let h, k : (X,x0) → (Y, y0) be continuous maps. If h and k are
homotopic, and if the basepoint x0 remains fixed during the homotopy, then h∗ = k∗.

Proof. Let f be a loop in X based at x0. By assumption, ∃ a homotopy H : I×I →
Y between h and k such that H(x0, t) = y0 ∀t ∈ [0, 1]. Then, the composite

I × I f×id−→ X × I H−→ Y

is a homotopy between h◦f = h∗ and k◦f = k∗, and it is a path-homotopy because
H is basepoint-preserving by assumption, so that H({x0} × I) = y0. �

As a result, we have the following theorem:

Theorem 3.2. The inclusion map j : Sn ↪→ Rn+1\0 induces an isomorphism of
fundamental groups.

Proof. Let X = Rn+1\0 and b0 = (1, 0, . . . , 0) ∈ X. Let r : X → Sn be the map

r(x) =
x

‖x‖
Then, r ◦ j = 1Sn , so that r∗ ◦ j∗ = 1π1(Sn,b0).

Now, consider j ◦ r:
X

r−→ Sn
j
↪→ X

This map is homotopic to the identity map of X by the straight-line homotopy
H(x, t) = (1− t)x+ t · x

‖x‖ . Because the coefficient on x in H is between 1 and 1
‖x‖ ,

H(x, t) 6= 0 for all x, t. Note also that H(b0, t) = b0 since ‖b0‖ = 1.

Figure 1. Retraction of a loop in R2\0 into S1 ⊂ R2\0.
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Thus, by (3.1), j∗ ◦r∗ = 1π1(X,b0), so that j∗ and its inverse are homomorphisms,
i.e j∗ : π1(Sn, b0) → π1(X, b0) is an isomorphism. Though we do not know the
fundamental group of Sn yet, we will soon. �

This relation of the fundamental groups of one space ( Sn ) embedded in an-
other space ( Rn+1\0 ) can be generalized to a type of subsets of a space, called
deformation retracts:

Definition 3.3. Let x be a space and A ⊂ X. A is a deformation retract of X

if 1X is homotopic to a continuous map ( X r−→ A
j
↪→ X ) such that every point of

A is fixed during the homotopy. That is, ∃ continuous H : X × I → X such that
H(x, 0) = x ∀x ∈ X, H(x, 1) ∈ A ∀x ∈ X, and H(a, t) = a ∀a ∈ A, ∀t ∈ [0, 1].

The homotopy H is called a deformation retraction of X onto A. The homo-
topy is between the identity map of X and the map j ◦ r, where r : X → A is the
retraction r(x) = H(x, 1), and j : A ↪→ X is inclusion.

We then have the following relationship between the fundamental groups of a
deformation retract of a space and that space:

Theorem 3.4. Let A be a deformation retract of X, and let x0 ∈ A. Then, the
inclusion map j : (A, x0) ↪→ (X,x0) induces an isomorphism of fundamental groups.

Proof. This is a direct generalization of the above proof. �

Example 3.5. Let B denote the z-axis in R3. Consider the space R3\B; it has the
punctured plane R2\ {0} as a deformation retract via the deformation retraction

H ((x, y, z), t) = (x, y, (1− t)z) ,
which is a ”flattening” of R3\B onto R2\ {0}. Thus, we have π1(R3\B) ≈ π1(R2\ {0}).

But we also have that S1 is a deformation retract of R2\ {0} by the deformation
retraction

G((x, y, 0), t) = (1− t) · (x, y, 0) + t · (x, y, 0)
‖(x, y, 0)‖

.

Thus, we conclude that π1(R3\B) ≈ π1(S1) ≈ Z.

There is an even more general way to show that two spaces have isomorphic
fundamental groups, however. Consider, for instance, a space X with deformation
retracts Y and Z such that neither is a deformation retract of the either. Yet Y and
Z still have isomorphic fundamental groups! We introduce the notion of homotopy
equivalence:

Definition 3.6. Let f : X → Y and g : Y → X be continuous maps such that
f ◦ g is homotopic to 1X and g ◦ f is homotopic to 1Y . Then, the maps f and g
are called homotopy equivalences, and each is said to be a homotopy inverse
of the other.

If f : X → Y and h : Y → Z are homotopy equivalences (of X with Y , and of Y
with Z, respectively), then it is clear that h ◦ f : X → Z is a homotopy equivalence
of X with Z. Thus, homotopy equivalence is, in fact, an equivalence relation. We
say that two spaces that homotopy equivalent have the same homotopy type.

Example 3.7. A deformation retract of a space has the same homotopy type as
that space. Two spaces which are deformation retracts of the space space have the
same homotopy type.
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We would like to show that spaces of the same homotopy type do, indeed, have
isomorphic fundamental groups. We begin with a lemma.

Lemma 3.8. Let h, k : X → Y be continuous maps with h(x0) = y0 and k(x0) = y1.
If h and k are homotopic, then ∃ a path α in Y from y0 to y1 such that k∗ = α̂◦h∗,
i.e. k∗([ f ]) = [α ] ∗ h∗([ f ]) ∗ [α ]. More specifically, if H : X × I → Y is the
homotopy between h and k, then α(t) = H(x0, t).

Proof. Let f : I → X be a loop in X based at x0. We must show that k∗ [ f ] =
[α ] ∗ h∗([ f ]) ∗ [α ], or [α ] ∗ [ k ◦ f ] = [h ◦ f ] ∗ [α ]. This is the equation we shall
verify.

Consider the loops in the space x × I given by f0(s) = (f(s), 0) and f1(s) =
(f(s), 1). Also, consider the path c(t) = (x0, t). Then,

H ◦ f0 = h ◦ f and H ◦ f1 = k ◦ f,
and we choose α = H ◦c. Also, let F : I×I → X×I be the map F (s, t) = (f(s), t).

Define the following paths in I × I, running along the edges:

β0(s) = (s, 0) and β1(s) = (s, 1),
γ0(t) = (0, t) and γ1(t) = (1, t).

Then, F ◦ β0 = f0 and F ◦ β1 = f1, while F ◦ γ0 = F ◦ γ1 = (x0, t) = c. Then,
the concatenations β0 ∗ γ1 and γ0 ∗ β1 are paths in I × I from (0, 0) to (1, 1); since
I × I is convex, there exists a path homotopy G : I2 × I → I2 between them.

Then, F ◦G is a path homotopy in X×I between f0∗c and c∗f1, and H ◦(F ◦G)
is a path homotopy in Y between H(f0 ∗ c) = (h ◦ f) ∗α and H(c ∗ f1) = α ∗ (k ◦ f),
as desired. �

Figure 2. The defined paths and homotopies of the above proof.
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Corollary 3.9. Let h, k : X → Y be homotopic continuous maps. If h∗ is injective,
surjective, or trivial, then so is k∗. Specifically, if h : X → X is nulhomotopic, then
h∗ is the identity map in π1(X,x0).

We now prove our desired relationship:

Theorem 3.10. Let f : X → Y be a homotopy equivalence, with f(x0) = y0. Then

f∗ : π1(X,x0)→ π1(Y, y0)

is an isomorphism.

Proof. Let g : Y → X be a homotopy inverse for f . Consider the maps

(X,x0)
f−→ (Y, y0)

g−→ (X,x1)
f−→ (Y, y1),

where x1 = g(y0) and y1 = f(y1). We have the corresponding homomorphisms:

π1(X,x0)
(fx0 )∗ //

α̂

��

π1(Y, y0)
g∗

xxqqqqqqqqqq

π1(X,x1)
(fx1 )∗ // π1(Y, y1)

Now, by hypothesis, the map g ◦ f : (X,x0) → (X,x1) is homotopic to the
identity map in X, so there exists a path α in X such that (g ◦f)∗ = α̂◦ (iX)∗ = α̂,
which is an isomorphism; thus, g∗ must be surjective.

Similarly, because f◦g is homotopic to the identity map in Y , (f◦g)∗ = (fx1)∗◦g∗
is an isomorphism, so that g∗ must also be injective. Thus, g∗ is an isomorphism.

Applying the first equation again,

(fx0)∗ = (g∗)−1 ◦ α̂,
so that (fx0)∗ = f∗ is also an isomorphism, as desired. �

Examples 3.11. Any convex subset of Rn is homotopy equivalent to a single point.
The cylinder (S1 × I) and solid torus (S1 ×D2) are homotopy equivalent to S1. If
C is a contractable space and X is any space, then X × C is homotopy equivalent
to X.

4. Preliminaries for Van Kampen’s Theorem: Free Products, First
Isomorphism Theorem

We provide the definitions and lemmas necessary to prove the main result in
this paper, the Van Kampen’s Theorem. We begin with the definintion of a free
product. This paper assumes knowledge of basic group theory, e.g. what a group
is.

Definition 4.1. Let {Gα} be a family of groups. Then, the free product on
{Gα} is the set of all ”words” g1g2 . . . gm of arbitrary finite length m ≥ 0, where
each gi and gi+1 belong to different groups Gαi and Gαi+1 , and each gi is not the
identity in the group Gαi . The set includes the ”empty word” ∅, which will be the
identity. The group operation is juxtaposition, i.e. (g1g2 . . . gm) ∗ (h1h2 . . . hn) =
g1 . . . gmh1 . . . hn, though this word might not be reduced, i.e. satisfy the con-
ditions above, namely that gm and h1 might be in the same group. In this case,
words can be reduced by writing the word gmh1 as the element k = gm · h1 ∈ Gα.
If the words juxtaposed are reduced words, then the word g1 . . . gm−1kh1 . . . hn will
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be reduced. If not, then we can continue canelling letters like this until a reduced
word is reached.

The free product on {Gα} is written as ∗α {Gα}. Verification that juxtapo-
sition defines a group operation on ∗α {Gα} is messy, especially with respect to
associativity; see [Hatcher 41-42].

Example 4.2. An example of a free product is Z ∗ Z, i.e. the free product on
two infinite cyclic groups. These take the form an1bn2an3 . . . anm for some m ≥ 0
and nk ∈ Z. One important aspect of the free product to note is that it is not an
Abelian group, e.g. a2b3a4 6= b3a6.

Lemma 4.3. Suppose {Gα} is a set of groups and H is a group, and suppose
hα : Gα → H are homomorphisms. Then, these homomorphisms extend uniquely
to a homomorphism h : ∗α {Gα} → H.

Proof. By assumption, h must map one-letter words whose letter comes from Gα
to that element’s image in H under hα. Then, we must uniquely have

(4.4) h(g1g2 . . . gm) = hα1(g1)hα2(g2) . . . hαm(gm),

which is well-defined, since the different groups Gα are considered disjoint. �

We also require the following group theoretic result:

Lemma 4.5 (First Isomorphism Theorem). If f : G → H is a homomorphism,
then it induces an isomorphism G/ker(f) ≈ im(f). Specifically, if f is surjective,
then G/ker(f) ≈ H.

Proof. Let K denote the kernel of f .
(1): K is a normal subgroup of G.
Let g ∈ G and k ∈ K. Then,

f(g−1kg) = f(g)−1f(k)f(g)
= f(g)−1f(g)
= 1 =⇒ g−1kg ∈ K =⇒ K / G,

so that the group G/K is well-defined.

Let β : G/K → im(f) be the function gK
β7−→ f(g). We wish to show that β is

an isomorphism.
(2): β is well-defined.
Let g1, g2 ∈ G such that g1K = g2K. Then,

K = (g−1
1 g2)K =⇒ g−1

1 g2 ∈ K =⇒ f(g−1
1 g2) = 1

=⇒ f(g1)−1f(g2) = 1 =⇒ f(g1) = f(g2),

so β is well-defined.
(3): β is a homomorphism.
Let g1K, g2K ∈ G/K. Then,

β(g1K · g2K) = f(g1 · g2)
= f(g1)f(g2)
= β(g1K)β(g2K).

(4): β is an isomorphism.
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First, the kernel of β in G/K is exactly the one coset K because β is well-defined
and K consists exactly of all elements of G that map to the identity in im(f). Then,
let g1K, g2K ∈ G/K such that β(g1K) = β(g2K). Then,

f(g1) = f(g2) =⇒ f(g−1
2 )f(g1) = f(g2)−1f(g1) = 1

=⇒ g−1
2 g1 ∈ K =⇒ g1K = g2K,

so β is injective.
Let h ∈ im(f) and g its pre-image under f . Then, β(gK) = f(g) = h, so that β

is surjective, and thus β is an isomorphism, as desired. �

5. Van Kampen’s Theorem

We now prove a theorem powerful for finding the fundamental group of a space
composed of simpler spaces whose fundamental groups we know. For instance,
what is the fundamental group of the ”figure-8” space, composed of two copies
of S1 with one point in common? Or, what is the fundamental group of Sn,
the n-sphere, composed of two copies of n-discs, Dn, whose boundaries are glued
together? We now prove that, given broad hypothesis, this fundamental group is
nearly isomorphic to the free product on the fundamental groups of the spaces that
compose the larger space.

Theorem 5.1. Let X be a space that is the union of path-connected open sets
Aα, each containing the same basepoint x0. If each intersection Aα ∩ Aβ is path-
conected, then the homomorphism Φ : ∗απ1(Aα) → π1(X) that is the extension of
the homomorphisms jα : π1(Aα) → π1(X) induced by the inclusions Aα → X, is
surjective.

If, in addition, each intersection Aα ∩ Aβ ∩ Aγ is path-connected, then the ker-
nel of Φ is the normal subgroup N generated by all of the elements of the form
iαβ(w)iβα(w)−1 for w ∈ π1(Aα ∩ Aβ), where iαβ : π1(Aα ∩ Aβ) → π1(Aα) is in-
duced by Aα ∩Aβ ↪→ Aα. Thus, Φ induces an isomorphism π1(X) ≈ ∗απ1(Aα)/N .

π1(Aα)

jα

�� %%
π1(Aα ∩Aβ ∩Aγ) //

iαβ
77nnnnnnnnnnnn

iβα ''PPPPPPPPPPPP

iγ

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

π1(X) ∗απ1(Aα)/NΦ′ksks ∗απ1(Aα)
(f 7→fN)oo

Φ

jjjj gedba_]\ZYWV

π1(Aβ)

jβ

OO ;;

π1(Aγ)

==

-

jγ

^^

Proof. (1): Φ is surjective.
Given a loop f : I → X based at x0, there is a partition 0 = s0 < s1 < s2 <

· · · < sm = 1 of [0, 1] such that each interval [si, si+1] is mapped to a single Aα.
This is because each s ∈ [0, 1] has a neighborhood that is mapped completely to
one Aαs in X; we may even take these neighborhoods to be closed. Compactness
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of I implies that there exists a finite covering by these neighborhoods, and their
boundaries determine our partition.

Denote the Aα containing f([si−1,si ]) by Ai, and let fi = f |[si−1,s]. Then, f =
f1 ∗ f2 ∗ · · · ∗ fm, with each path being considered a path in the corresponding Ai.

Since Ai ∩ Ai+1 is path-connected, ∃ a path gi from x0 to f(si) ∈ Ai ∩ Ai+1.
Consider the loop

(f1 ∗ g1) ∗ (g1 ∗ f2 ∗ g2) ∗ · · · ∗ (gm−2 ∗ fm ∗ gm−1) ∗ (gm−1 ∗ fm) 'P f.
This loop is a composition of loops, each lying entirely in a single Ai. Thus, [ f ]

is in the image of Φ, as it is the product of equivalence classes of loops, which is
the image under Φ of a word in ∗απ1(Aα). Thus, Φ is surjective.

(2): The kernel of Φ is N .
Define a factorization of [ f ] ∈ π1(X) as a formal product [ f1 ] · [ fk ], where
(1) Each fi is a loop in some Ai with basepoint x0, and
(2) f is homotopic to f1 ∗ f2 ∗ · · · fk in X.

Thus, a factorization is a word in ∗απ1(Aα), possibly unreudced, that is mapped
to [ f ] by Φ. Because Φ is surjective, every [ f ] has a factorization.

We consider two factorizations equivalent if they are related via two operations
or their inverses:

(1) Combine adjacent terms [ fi ] [ fi+1 ] into a single term [ fi ∗ fi+1 ] if [ fi ]
and [ fi+1 ] are elements of π1(Aα), or

(2) Regard the term [ fi ] ∈ π1(Aα) as lying in π1(Aβ) instead, if fi is a loop in
Aα ∩Aβ .

The first ”move” does not change the element in ∗απ1(Aα), and hte second does
not change the image of this element in the quotient group Q = ∗απ1(Aα)/N by
the definition of N . So, equivalent factorizations give the same element in Q.

If we can show that any two factorizations are equivalent, then this will mean
that the map Q→ π1(X) induced by Φ, i.e.

([ f1 ] [ f2 ] . . . [ fk ])N 7→ Φ([ f1 ] [ f2 ] . . . [ fk ]) ,

is injective, so that ker(Φ) = N , as we desire. So:
Let [ f1 ] . . . [ fk ] and [ f ′1 ] . . . [ f ′l ] be two factorizations of [ f ]. Let F : I×I → X

be the homotopy between f1∗· · ·∗fk and f ′1∗· · ·∗f ′l . Let 0 = s0 < s1 < . . . < sm = 1
and 0 = t0 < . . . < tn = 1 be the partitions of [0, 1] such that each rectangle
Ri,j = [si−1, si] × [tj−1, tj ] is mapped onto a single Aα, which we will label Ai,j .
These partitions may be obtained by covering I × I with finitely many rectangles
[a, b]× [c, d], each mapping to a single Aα (which exist since I× I is compact), then
partitioning I × I by the union of all vertical and horizontal lines containing edges
of these rectangles.

Figure 3. The desired partition of I × I.
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We may assume the s-partition is a refinement of the partitions giving the prod-
ucts f1 ∗ · · · ∗ fk and f ′1 ∗ · · · ∗ f ′l . (If it is not, take the common refinement of the
three partitions.)

Since F maps a neighborhood of Ri,j to Ai,j , we may perturb the vertical sides
of the rectnagles so that each point of I×I lies in at most three distinct rectangles.
We may also assume that there are at least three rows of rectangles, so that we need
not perturb the top and bottom rows, as in Figure 4. Let us relable the rectangles
R1, R2, . . . , Rmn, as in Figure 5.

Figure 4. Perturbation of the partitions of I × I.

Figure 5. Relabelling of the partitions, and an example path.

If γ is a path in I × I from the left edge to the right edge, then the restriction
F |γ is a loop at the basepoint x0, since F ({0} × I) = F ({1} × I) = x0. Let γr be
the path separating the first r rectangles from the rest. Thus, γ0 is the bottom edge
of I × I, and γmn is the top edge. We pass from γr to γr+1 by ”pushing” across
Rr+1, i.e. applying a homotopy in I× I from γr to γr+1, which exists because I× I
is simply-connected.

Let us call the corners of the rectangles vertices. For each vertex v such that
F (v) 6= x0, let gv be a path from x0 to F (v). We can choose gv to lie in the inter-
section of the two or three Ai,j ’s corresponding to the Rr’s containing v because,
by asumption, Aα ∩Aβ ∩Aγ is path-connected and contains x0.

If we insert into F |γr the appropriate paths gv ·gv at successive vertices, as we did
for the proof that Φ is surjective, we obtain a factorization of [F |γr ] by regarding the
loop corresponding to a horizontal or vertical segment between adjacent vertices
as lying in the Ai,j corresponding to either of the Rr’s containing the segment.
Different choices of Rr’s here change the factorization of [F |γr ] to an equivalent
factorization via the second ”move”. Also, the factorizations associated with paths
γr and γr+1 are equivalent because pushing γr across Rr+1 to γr+1 homotopes F |γr
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to F |γr+1 by a homotopy within the Ai,j corresponding to Rr+1, and we can choose
this Ai,j for all segments of γr and γr+1 in Rr+1.

We can arrange that the factorization associated to γ0 is equivalent to our first
factorization [ f1 ] ∗ · · · ∗ [ fk ] by choosing the path gv (from x0 to F (v)) for each
vertex v along the lower edge of I×I to lie not only in the two Ai,j ’s corresponding
to the Rr and Rr+1 containing v, but also to lie in the Aα that is the image space of
the fi whose domain includes v. In case v is the common endpoint of two domains
of consecutive fi’s, we have F (v) = x0 (since x0 ∈ Aα ∀α), so no path gv needs to
be chosen. In a similar manner, we can assume that the factorization associated
with γmn is equivalent to [ f ′1 ] ∗ · · · [ ∗f ′l ].

Since all of the factorizations associated with the γr’s are equivalent, the factor-
izations [ f1 ] ∗ · · · ∗ [ fk ] and [ f ′1 ] ∗ · · · [ ∗f ′l ] are equivalent. Thus, kerΦ = N , as
desired. It follows from (4.5) that since Φ is surjective, Φ induces an isomorphism
∗απ1(Aα)/N → π1(X), and thus, ∗απ1(Aα) ≈ π1(X). �

Corollary 5.2. Assume the hypotheses of the Van-Kampen’s Theorem. If ∩αAα
is simply-connected, then

∗απ1(Aα) ≈ π1(X).

Corollary 5.3. Assume the hypotheses of the Van-Kampen’s Theorem for X =
A1 ∪A2. If A2 is simply-connected, then

(5.4) π1(A1)/N ′ ≈ π1(X),

where N ′ is the least normal subgroup of π1(A1) containing the image of the homo-
morphism i1,2 : π1(A1 ∩A2)→ π1(A1).

We now have the power to calculate the fundamental groups of a number of
spaces and show that they are topologically distinct.

Corollary 5.5. π1(Sn) is trivial for n ≥ 2.

Proof. Sn = Dn∪Dn, with the intersection of the Dn’s being their boundary Sn−1,
which is path-connected. The Dn’s are convex and thus simply-connected, i.e. have
trivial fundamental groups.

Thus, N is trivial, since its generators are trivial. By the Van Kampen’s Theo-
rem, π1(Sn) is trivial. �

Corollary 5.6. The figure-8 space, which is S1∨S1, has fundamental group π1(S1∨
S1) ≈ Z ∗ Z.

Proof. S1 ∨ S1 is decomposable as the union of
(
S1 ∨

(
S1\p

))
∪
((
S1\q

)
∨ S1

)
,

where p and q are in different copies of S1. The intersection is contractable, so it
is simply-connected. Thus, by (5.2),

π1(S1 ∨ S1) ≈ π1(S1) ∗ π1(S1) ≈ Z ∗ Z.

More generally, the n-fold wedge sum of S1 has fundamental group isomorphic
to Z ∗ · · · ∗ Z︸ ︷︷ ︸

n

. �

Corollary 5.7. The circle, 2-sphere, torus, and n-fold wedge sums of circles are
topologically distinct.
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The Van-Kampen’s Theorem may be applied to numerous other spaces which
are decomposable into the spaces Aα required by the hypotheses of the theorem.
There are more ways to show that two spaces are topologically distinct, however;
for instance, Rn and Rm are both simply-connected, but for m 6= n, they are
topologically distinct. For this, more homotopy theory is required and is beyond
the scope of this paper. Yet, the fundamental group, as we have seen, is a very
powerful tool in algebraic topology.
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