
ELLIPTIC CURVES AND CRYPTOGRAPHY

MICHAEL CALDERBANK

Abstract. We begin with the basics of elliptic curves, assuming some knowl-

edge of group theory and number theory. We shall first build up some general

theorems of endomorphisms and torsion points, which will be necessary when
we provide Hasse’s Theorem about the order of a group of points on an elliptic

curve. This will allow us to provide an example of how elliptic curves can be

used in cryptography.
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1. What is an Elliptic Curve?

An elliptic curve E is the graph of an equation of the form:

y2 = x3 +Ax+B

where A and B are constants. This equation is called the Weierstrass equation
for an elliptic curve. We will need to specify which field A,B, x, and y belong to,
for now we will deal with R, since it is easy to visualize, but for our cryptographic
applications, it will make sense to deal with finite fields Fq, where q is a prime
power. When working over fields of characteristic 2 or 3, it is more useful to deal
with the generalized Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

With a little algebraic manipulation, an equation of this form can be reduced to a
Weirstrass equation if the characteristic of the field is not equal to 2 or 3. We want
to look at points on the elliptic curve, so if we have an elliptic curve E over a field
K, then for any field L such that L ⊇ K we can consider the set:

E(L) = {∞} ∪ {(x, y) ∈ L× L|y2 = x3 +Ax+B}
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Note that we have added the point at infinity to our curve. This concept can
be made rigorous using projective space, but it is easiest to regard it as the point
(∞,∞). For computational purposes, it will be a formal symbol satisfying certain
rules. At this point, we’ll define addition for points. Start with 2 points:

M1 = (x1, y1), M2 = (x1, y1)

on an elliptic curve E given by the equation y2 = x3 + Ax + B. We define a new
point M3 as follows: Draw the line D through M1 and M2. We’ll see below that
D intersects E in a third point P . Reflect P across the x-axis to obtain M3. We
define M1 + M2 = M3 When E is defined over the reals, then we have the figure
below:

For other fields, there is no intuitive picture, so we will need a formal set of rules
for addition. Using a bit of basic algebra, we can calculate the coordinates of the
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third point given the coordinates of the first two points. Note that if M1 = M2,
then we can use implicit differentiation to find the slope of the line. To summarize:

Definition 1.1. Let E be an elliptic curve defined by y2 = x3 + Ax + B. Let
P1 = (x1, y1) and P2 = (x2, y2) be points on E with P1, P2 6=∞. Define P1 +P2 =
P3 = (x3, y3) as follows:

(1) If x1 6= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m =
y2 − y1
x2 − x1

(2) If x1 = x2 but y1 6= y2, then P1 + P2 =∞
(3) If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x2

1 +A

2y1
(4) If P1 = P2 and y1 = 0, then P1 + P2 =∞

Also, define
P +∞ = P

for all points P on E.

With addition defined, it is only a small step to our first theorem:

Theorem 1.2. The addition of points on an elliptic curve E form an additive
abelian group with ∞ as the identity element.

Proof. From the formulas, commutativity is obvious, since the line passing through
the points is the same, and if we want to find the inverse of P , then if we reflect P
across the x-axis to get P ′, then P +P ′ =∞. The only tricky part is associativity,
and this is a messy calculation involving the formulas above, so we leave it as an
exercise.

�

We will want to study the order of specific points and the order of the group in
general, but first we have to make rigorous endomorphisms on an elliptic curve

2. Endomorphisms for Elliptic Curves

Definition 2.1. An endomorphism of E is a homomorphism α : E(K) −→ E(K)
that is given by rational functions. So α(P1 + P2) = α(P1) + α(P2), and there are
rational functions R1(x, y), R2(x, y) with coefficients in K such that

α(x, y) = (R1(x, y), R2(x, y))

for all (x, y) ∈ E(K). Naturally, α(∞) = ∞, and we will also assume that any
endomorphism is nontrivial, so there exists some (x, y) such that α(x, y) 6=∞.

Using the fact that y2 = x3 + Ax + B for all (x, y) ∈ E(K), we can show that
any endomorphism defined as above can be written as:

α(x, y) = (r1(x), r2(x)y)

with rational functions r1(x), r2(x).
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Definition 2.2. Let α be as above and write r1(x) = p(x)
q(x) . We define the degree

of α to be
deg(α) = Max{deg p(x),deg q(x)}

Also, we define α to be a separable endomorphism if the derivative r′1(x) is not
identically zero. This is equivalent to saying that at least one of p′(x) and q′(x) is
not identically zero.

Of particular importance to our study is the Frobenius map. Suppose E is
defined over the finite field Fq. Let

φq(x, y) = (xq, yq)

.

Lemma 2.3. Let E be defined over Fq. Then φq is an endomorphism of E of
degree q, and φq is not separable.

Proof. Since φq(x, y) = (xq, yq) is given by rational functions, it is clear that the
degree is q. Also, since q = 0 in Fq, the derivative of xq is indentically zero, so
φq is not separable. The main thing to be proven is that φq : E(Fq) → E(Fq)
is a homomorphism. Let (x1, y1), (x2, y2) ∈ E(Fq) with x1 6= x2. According to
Definition 1.1(1) The sum is (x3, y3) with

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m =
y2 − y1
x2 − x1

Raise everything to the qth power:

xq3 = m′2 − xq1 − x
q
2, yq3 = m′(xq1 − x

q
3)− yq1, where m′ =

yq2 − y
q
1

xq2 − x
q
1

So if x1 6= x2, then we see that

φq(x3, y3) = φq(x1, y1) + φq(x2, y2)

There is a bit more subtlety when we add a point to itself. According to Definition
1.1(1), we have 2(x1, y1) = (x3, y3), with

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x2

1 +A

2y1
When we raise everything to the qth power, we will need to use the fact that
2q = 2, 3q = 3, Aq = A, since 2, 3, A ∈ Fq. This is only true if the characteristic of
Fq is not 2 or 3, but if that were the case, then we would have a different addition
formula since we would need to use the generalized Weirstrass form. The calculation
for that form is essentially the same.

�

We will return to the Frobenius map, but now we need a few general results
about endomorphisms.

Proposition 2.4. Let α 6= 0 be a separable endomorphism of an elliptic curve E.
Then

deg α = #Ker(α)
If α 6= 0 is not separable, then

deg α > #Ker(α)
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Proof. Assume first that α is separable. Write α(x, y) = (r1(x), r2(x)y) with
r1(x) = p(x)/q(x), as above. Then r′1 6= 0, so p′q − pq′ is not the zero polyno-
mial. Let S be the set of x ∈ K such that (pq′−p′q)(x)q(x) = 0. Let (a, b) ∈ E(K)
be such that

(1) a 6= 0, b 6= 0, (a, b) 6=∞,
(2) deg(p(x)− aq(x)) = Max{deg(p),deg(q)} = deg(α)
(3) a /∈ r1(S), and
(4) (a, b) ∈ α(E(K))

Since pq′ − p′q is not the zero polynomial, S is a finite set, hence its image under
α is finite. The function r1(x) takes on infinitely many distinct values as x runs
through K. Since for each x there is a point (x, y) ∈ E(K), we see that α(E(K))
is an infinite set. Therefore, we know such an (a, b) exists.

We claim that there are exactly deg(α) points (x1, y1) ∈ E(K) such that α(x1, y1) =
(a, b). For such a point, we have

p(x1)
q(x1)

= a, y1r2(x1) = b.

Since (a, b) 6= ∞, we must have q(x1) 6= 0. Since b 6= 0 and y1r2(x1) = b, we must
have y1 = b/r2(x1). Therefore, x1 determines y1 in this case, so we only need to
count values of x1.

By assumption (2), p(x) − aq(x) = 0 has deg(α) roots, counting multiplicites.
We therefore must show that p − aq has no multiple roots. Suppose that x0 is a
multiple root. Then

p(x0)− aq(x0) = 0 and p′(x0)− aq′(x0) = 0.

Multiplying the equations p = aq and aq′ = p′ yields

ap(x0)q′(x0) = ap′(x0)q(x0).

Since a 6= 0, this implies that x0 is a root of pq′ − p′q, so x0 ∈ S. Therefore
a = r1(x0) ∈ r1(S), contrary to assumption. Hence it follows that p − aq has no
multiple roots, and therefore has deg(α) distinct roots.

Since there are exactly deg(α) points (x1, y1) with α(x1, y1) = (a, b), the kernel
of α has deg(α) elements.

If α is not separable, then the steps of the above proof hold, except that p′− aq′
is always the zero polynomial, so p(x) − aq(x) = 0 always has multiple roots and
therefore has fewer than deg(α) solutions. �

Theorem 2.5. Let E be an elliptic curve over a field K. Let α 6= 0 be an endo-
morphism of E. Then α : E(K)→ E(K) is surjective

Proof. Let (a, b) ∈ E(K). Since α(∞) = ∞, we may assume that (a, b) 6= ∞. Let
r1(x) = p(x)/q(x) as above. If p(x) − aq(x) is not a constant polynomial, then it
has a root x0. Since p and q have no common roots, q(x0) 6= 0. Choose y0 ∈ K to
be either square root of x3

0 +Ax0 +B. Then α(x0, y0) is defined and equals (a, b′)
for some b′. Since b′2 = a3 + Aa + B = b2, we have b = ±b. If b′ = b, we’re done.
If b′ = −b, then α(x0,−y0) = (a,−b′) = (a, b).

We now need to consider the case when p−aq is constant. Since E(K) is infinite
and the kernel of α is finite, only finitely many points of E(K) can map to a point
with a given x-coordinate. Therefore, either p(x) or q(x) is not constant. If p and
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q are two nonconstant polynomials, then there is at most one constant a such that
p−aq is constant (if a′ is another such number, then (a′−a)q = (p−aq)− (p−a′q)
is constant and (a′ − a)p = a′(p − aq) − a(p − a′q) is constant, which implies
that p and q are constant). Therefore, there are at most two points, (a, b) and
(a,−b) for some b, that are not in the image of α. Let (a1, b1) be any other
point. Then α(P1) = (a1, b1) for some P1. We can choose (a1, b1) such that
(a1, b1) + (a, b) 6= (a,±b), so there exists P2 with α(P2) = (a1, b1) + (a, b). Then
α(P2 − P1) = (a, b), and α(P1 − P2) = (a,−b). Therefore, α is surjective. �

Now, we introduce a few lemmas but we omit the proofs, since they involve
lengthy but straightforward calculations using the addition formulas:

Lemma 2.6. Let E be the elliptic curve y2 = x3 + Ax+ B. Fix a point (u, v) on
E. Write

(x, y) + (u, v) = (f(x, y), g(x, y)),
where f(x, y) and g(x, y) are rational functions of x, y (the coefficients depend on
(u, v)). Then

d
dxf(x, y)
g(x, y)

=
1
y

Lemma 2.7. Let α1, α2, α3 be nonzero endomorphisms of an elliptic curve E with
α1 + α2 = α3. Write

αj(x, y) = (Rαj (x), ySαj (x)).
Suppose there are constants cα1 , cα2 such that

R′α1
(x)

Sα1(x)
= cα1 ,

R′α2
(x)

Sα2(x)
= cα2

then
R′α3

(x)
Sα3(x)

= cα1 + cα2

We can now get back to separable endomorphisms.

Proposition 2.8. Let E be an elliptic curve defined over a field K, and let n be a
nonzero integer. Suppose that multiplication by n on E is given by

n(x, y) = (Rn(x), ySn(x))

for all (x, y) ∈ E(K), where Rn and Sn are rational functions. Then

R′n(x)
Sn(x)

= n.

Therefore, multiplication by n is separable if and only if n is not a multiple of the
characteristic p of the field.

Proof. Since R−n = Rn and S−n = −Sn, we have R′−n/S−n = −R′n/Sn. Therefore,
the result for positive n implies the result for negative n.

Note that the first part of the proposition is trivially true for n = 1. If it is true
for n, then Lemma 2.7 implies that it is true for n + 1, which is the sum of n and
1. Therefore, R′

n(x)
S(x) = n for all n.

We have R′n(x) 6= 0 if and only if n = R′n(x)/Sn(x) 6= 0, which is equivalent to p
not dividing n. Since the definition of separability is that R′n 6= 0, this proves the
second part of the proposition. �
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Finally, we get to the main proposition that ties in the Frobenius map and
separable endomorphisms. It will be crucial in our quest to find the order of our
group of points.

Proposition 2.9. Let E be an elliptic curve defined over Fq, where q is a power
of the prime p. Let r and s be integers, not both 0. The endomorphism rφq + s is
separable if and only if p/| s.

Proof. Write the multiplication by r endomorphism as

r(x, y) = (Rr(x), ySr(x)).

Then
(Rrφq

(x), ySrφq
(x) = (rφq)(x, y) = (Rqr(x), yqSqr (x)) =(

Rqr(x), y(x3 +Ax+B)(q−1)/2Sqr (x)
)
.

Therefore,
crφq = R′rφq

/Srφq = qRq−1
r R′r/Srφq

= 0.

Also, cs = R′s/Ss = s by Proposition 2.8. By Lemma 2.7,

R′rφq+s/Srφq+s = crφq+s = crφq
+ cs = 0 + s = s.

Therefore, R′rφq+s 6= 0 if and only if p/| s. �

3. Torsion Points

Torsion points are those points whose orders are finite. When we study finite
fields, every point will be a torsion point, but first we need some general theory.

Definition 3.1. Let E be an elliptic curve defined over a field K. Let n be a
positive integer. We say that P is a torsion point of order n if P is in the set

E[n] = {P ∈ E(K)|nP =∞}

As an example, if the characteristic of K is not 2, then E can be put in the form
y2 = cubic, so it is easy to determine E[2]. Let

y2 = (x− e1)(x− e2)(x− e3),

with e1, e2, e3 ∈ K. A point P satisfies 2P = ∞ if and only if the tangent line at
P is vertical. This means that y = 0, so

E[2] = {∞, (e1, 0), (e2, 0), (e3, 0)}.

As an abstract group, this is isomorphic to Z2 ⊕ Z2.
The situation is a bit more complicated in general, and we will need a proposition

before we can prove the general theorem.

Proposition 3.2. Let E be an elliptic curve. The endomorphism of E given by
multiplication by n has degree n2.

Unfortunately, the proof of this proposition requires a lengthy discussion of di-
vision polynomials, a subject for perhaps another paper. We now state the general
theorem:
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Theorem 3.3. Let E be an elliptic curve over a field K and let n be a positive
integer. If the characteristic of K does not divide n, or is 0, then

E[n] ' Zn ⊕ Zn
If the characteristic of K is p > 0 and p|n, write n = prn′ with p/| n′. Then

E[n] ' Zn′ ⊕ Zn′ or Zn ⊕ Zn′

Proof. When the characteristic p of the field does not divide n, then by Proposition
2.8, we know that multiplication by n is separable. From Propositions 3.2 and 2.4,
E[n], the kernel of multiplication by n, has order n2. Assuming the structure
theorem for finite abelian groups, we have that E[n] is isomorphic to

Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk
,

for some integers n1, n2, · · · , nk with ni|ni+1 for all i. Let l be a prime dividing
n1. Then l|ni for all i. This means that E[l] ⊆ E[n] has order lk. Since we know
that E[l] has order l2, we must have that k = 2. Multiplication by n annihilates
E[n] ' Zn1 ⊕Zn2 , so we must have n2|n. Since n2 = #E[n] = n1n2, it follows that
n1 = n2 = n. Therefore,

E[n] ' Zn ⊕ Zn
when the characteristic p of the field does not divide n.

In the case where p|n, we first determine the p-power torsion on E. By Propo-
sition 2.8, multiplication by p is not separable. By Proposition 2.4, the kernel
E[p] of multiplication by p has order strictly less than the degree of this endomor-
phism, which is p2 by Proposition 3.2. Since every element of E[p] has order 1
or p, the order of E[p] is a power of p, hence must be 1 or p. If E[p] is trivial,
then E[pk] must be trivial for all k. Now suppose E[p] has order p. We claim that
E[pk] ' Zpk for all k. It is easy to see that E[pk] is cyclic, but we need to show
that the order is pk, instead of something smaller (it’s not clear yet why we can’t
have E[pk] = E[p] ' Zp for all k). Suppose there exists an element P of order pj .
By Theorem 2.5, multiplication by p is surjective, so there exists a point Q with
pQ = P . Since

pjQ = pj−1P 6=∞ but pj+1Q = pjP =∞,
Q has order pj+1. By induction, there are points of order pk for all k. Therefore,
E[pk] is cyclic of order pk.

Now, we assemble all the ingredients. Write n = prn′ with r ≥ 0 and p/| n′.
Then

E[n] ' E[n′]⊕ E[pr].
We have E[n′] ' Zn′ ⊕ Zn′ , since p/| n′. We have just showed that E[pr] ' 0 or
Zpr . Recall that Zn′ ⊕ Zpr ' Zn′pr ' Zn. Hence we obtain

E[n] ' Zn′ ⊕ Zn′ or Zn ⊕ Zn′ .

�

Definition 3.4. Let E be an elliptic curve over a field K and let n be an integer
not divisible by the characteristic of K. Then E[n] ' Zn ⊕ Zn. Let

µn = {x ∈ K|xn = 1}
be the group of nth roots of unity in K. Since the characteristic of K does not divide
n, the equation xn = 1 has no multiple roots, hence has n roots in K. Therefore
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µn is a cyclic group of order n. Any generator ζ of µn is called a primitive nth
root of unity. In other words, ζk = 1 if and only if n divides k.

Now, we are ready to discuss the Weil pairing on the n-torsion on an elliptic
curve, which will also be necessary to determine #E(Fq).

Theorem 3.5. Let E be an elliptic curve defined over a field K and let n be a
positive integer. Assume that the characteristic of K does not divide n. Then there
is a pairing

en : E[n]× E[n]→ µn,

called the Weil pairing, that satisfies the following properties:
(1) en is bilinear in each variable. This means that

en(S1 + S2, T ) = en(S1, T )en(S2, T )

and
en(S, T1 + T2) = en(S, T1)en(S, T2)

for all S, S1, S2, T, T1, T2 ∈ E[n].
(2) en is nondegenerate in each variable. This means that if en(S, T ) = 1 for

all T ∈ E[n] then S = ∞ and also that if en(S, T ) = 1 for all S ∈ E[n]
then T =∞.

(3) en(T, T ) = 1 for all T ∈ E[n].
(4) en(T, S) = en(S, T )−1 for all S, T ∈ E[n].
(5) en(σS, σT ) = σ(en(S, T )) for all endomorphisms σ of K such that σ is the

identity map on the coefficients of E (if E is in Weirstrass form, this means
that σ(A) = A and σ(B) = B).

(6) en(α(S), α(T )) = en(S, T )deg(α) for all separable endomorphism α of E. If
the coefficients of E lie in a finite field Fq, then the statement also holds
when α is the Frobenius endomorphism φq.

The proof that this pairing exists and is well-defined is beyond the scope of
this paper, but if we accept that such a pairing exists, then many of the (messy)
problems dealing with the degree of an endomorphism can be simplified.

Corollary 3.6. Let {T1, T2} be a basis of E[n]. Then en(T1, T2) is a primitive nth
root of unity.

Proof. Suppose en(T1, T2) = ζ with ζd = 1. Then en(T1, dT2) = 1. Also, en(T2, dT2) =
en(T2, T2)d = 1 (by (1) and (3)). Let S ∈ E[n]. Then S = aT1 + bT2 for some
integers a, b. Therefore,

en(S, dT2) = en(T1, dT2)aen(T2, dT2)b = 1.

Since this holds for all S, (2) implies that dT2 = ∞. Since dT2 = ∞ if and only if
n|d, it follows that ζ is a primitive nth root of unity. �

So, if α is an endomorphism of E, then we obtain a matrix αn =
(
a b
c d

)
with

entries in Zn, describing the action of α on a basis {T1, T2} of E[n].

Proposition 3.7. Let α be an endomorphism of an elliptic curve E defined over
a field K. Let n be a positive integer not divisible by the characteristic of K. Then
deg(αn) ≡ deg(α)( mod n).



10 MICHAEL CALDERBANK

Proof. By Corollary 3.6, ζ = en(T1, T2) is a primitive nth root of unity. By part
(6) of Theorem 3.5, we have

ζdeg(α) = en(α(T1), α(T2)) = en(aT1 + cT2, bT1 + dT2)

= en(T1, T1)aben(T1, T2)aden(T2, T1)cben(T2, T2)cd = ζad−bc,

by the properties of the Weil pairing. Since ζ is a primitive nth root of unity,
deg(α) ≡ ad− bc( mod n). �

This proposition allows us to reduce quesitions about the degree of endomor-
phisms to calculations with matrices, which is much easier.

Let α and β be endomorphisms of E and let a, b be integers. The endomorphism
αa+ bβ is defined by

(aα+ bβ)(P ) = aα(P ) + bβ(P ).

Here aα(P ) means multiplication of E of α(P ) by the integer a. The result is then
added on E to bβ(P ). This process can all be described by rational functions, since
this is true for each of the individual steps. Therefore aα+ bβ is an endomorphism.
Now, we can put our most recent proposition to good use.

Proposition 3.8.

deg(aα+ bβ) = a2deg α+ b2deg β + ab(deg(α+ β)− deg α− deg β).

Proof. Let n be any integer not divisible by the characteristic of K. Represent α
and β by matrices αn and βn (with respect to some basis of E[n]). Then aαn+ bβn
gives the action of aα+ bβ on E[n]. Using the basic properties of the determinant
of a matrix, we get

det(aαn + bβn) = a2det αn + b2det βn + ab(det(αn + βn)− det αn − det βn)

for any matrices αn and βn. Therefore

deg(aα+ bβ) ≡ a2deg α+ b2deg β + ab(deg(α+ β)− deg α− deg β)( mod n).

Since this holds for infinitely many n, it must be an equality. �

4. Elliptic Curves over Finite Fields

We’ll start of this section with an example of small characteristic:

Example 4.1. Let E be given by y2 + xy = x3 + 1 defined over F2. Checking all
the points isn’t too hard, and we get:

E(F2) = {∞, (0, 1), (1, 0), (1, 1)}.

This is a cyclic group of order 4, and we can verify using the addition formulas that
the points (1, 0), (1, 1) have order 4 and the point (0, 1) has order 2.

Let’s look at E(F4). We can write it as F4 = {0, 1, ω, ω2}, with the relation
ω2 + ω + 1 = 0. Checking through all the possibilities for x, we get

E(F4) = {∞, (0, 1), (1, 0), (1, 1), (ω, 0), (ω, ω), (ω2, 0), (ω2, ω2)}

Since we are in characteristic 2, there is at most one point of order 2 (see Theorem
3.3). In fact, (0, 1) has order 2. Hence, we must have that E(F4) is cyclic of order
8. Also, any one of the four points containing ω or ω2 is a generator, since they



ELLIPTIC CURVES AND CRYPTOGRAPHY 11

do not lie in the order 4 subgroup E(F2). Let φ2(x, y) = (x2, y2) be the Frobenius
map. We see that φ2 permutes the elements of E(F4), and

E(F2) = {(x, y) ∈ E(F4)|φ2(x, y) = (x, y)}.
We will generalize this later.

We will prove two main restrictions on the groups E(Fq). We can tackle one right
now using what we know about torsion, but the other will require a few lemmas.

Theorem 4.2. Let E be an elliptic curve over the finite field Fq. Then

E(Fq) ' Zn or Zn1 ⊕ Zn2

for some integer n ≥ 1, or for some integers n1, n2 ≥ 1 with n1 dividing n2.

Proof. From group theory, we know that a finite abelian group is isomorphic to a
direct sum of cyclic groups

Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zni
,

with ni|ni+1 for i ≥ 1. Since, for each i, the group Zn1 has n1 elements of order
dividing n1, we find that E(Fq) has nr1 elements of order dividing n1. By Theorem
3.3, there are at most n2

1 such points (even if we allow coordinates in Fq). Therefore
r ≤ 2. �

Lemma 4.3. Let E be defined over Fq, and let (x, y) ∈ E(Fq).
(1) φq(x, y) ∈ E(Fq)
(2) (x, y) ∈ E(Fq) if and only if φq(x, y) = (x, y)

Proof. This is a straightforward calculation using the Weirstrass equation, along
with two basic facts from number theory: (a + b)q = aq + bq when q is a power of
the characteristic of the field, and also aq = a for all a ∈ Fq. �

Proposition 4.4. Let E be defined over Fq and let n ≥ 1.
(1) Ker(φnq − 1) = E(Fqn).
(2) φnq − 1 is a separable endomorphism, so #E(Fqn) = deg(φqn − 1).

Proof. Since φnq is the Frobenius map for the field Fqn , part (1) is just a restatement
of Lemma 4.3. The fact that φnq − 1 is separable was proved in Proposition 2.9.
Therefore (2) follows from Proposition 2.4. �

Lemma 4.5. Let

a = q + 1−#E(Fq) = q + 1− deg(φq − 1).

Let r, s be integers with gcd(s, q) = 1. Then deg(rφq − s) = r2q + s2 − rsa.

Proof. Proposition 3.8 implies that

deg(rφq − s) = r2deg(φq) + s2deg(−1) + rs(deg(φq − 1)− deg(φq)− deg(−1)).

Since deg(φq) = q and deg(−1) = 1, the result follows. �

Hasse’s Theorem places a bound on #E(Fq).

Theorem 4.6. Let E be an elliptic curve over the finite field Fq. Then the order
of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√
q
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Proof. Using the same terminology as Lemma 4.5, since we know deg(rφq− s) ≥ 0,
the lemma implies that

q
(r
s

)2

− a
(r
s

)
+ 1 ≥ 0

for all r, s with gcd(s, q) = 1. The set of rational numbers r/s such that gcd(s, q) = 1
is dense in R, so therefore

qx2 − ax+ 1 ≥ 0
for all real numbers x. Therefore the discriminant of the polynomial is negative or
0, which means that a2 − 4q ≤ 0, hence |a| ≤ 2

√
q.

�

This proof is short, but there are several major ingredients coming from previous
results. One is that we can identify E(Fq) as the kernel of φq − 1. Another is that
φq − 1 is separable, so the order of the kernel is the degree of φq − 1. A third
major ingredient is the Weil pairing, especially part (6) of Theorem 3.5, and its
consequence, Propositon 3.8.

Now that we have a bound on the order of the group, we can use a bit of group
theory to determine #E(Fq). The order of P is the smallest positive integer k such
that kP =∞. A corollary of Lagrange’s theorem requires that the order of a point
divides the order of the group E(Fq). Also, for any integer n, we have nP = ∞ if
and only if the order of P divides n. Since #E(Fq) lies in an interval of length 4

√
q,

if we can find a point of order greater than 4
√
q, there can be only one multiple of

this order in the correct interval, and it must be #E(Fq). But how do we find the
order of a point?

Baby Step, Giant Step: The Order of the Group
Let #E(Fq) = N . We might not know N yet, but we know that q + 1 − 2

√
q ≤

N ≤ q + 1 + 2
√
q. We could try all values of N in this range and see which ones

satisfy NP =∞. This takes around 4
√
q steps. However, we can speed this up to

around 4q1/4 steps with the following algorithm:
(1) Compute Q = (q + 1)P .

(2) Choose an integer m with m > q1/4. Compute and store the points jP for
j = 0, 1, 2, . . . ,m.

(3) Compute the points

Q+ k(2mP ) for k = −m,−(m− 1), . . . ,m

until there is a match Q+k(2mP ) = ±jP with a point (or its negative) on
the stored list.

(4) Conclude that (q + 1 + 2mk ∓ j)P =∞. Let M = q + 1 + 2mk ∓ j.

(5) Factor M . Let p1, . . . , pr be the distinct prime factors of M .

(6) Compute (M/pi)P for i = 1, . . . , r. If (M/pi)P =∞ for some i, replace M
with M/pi and go back to step (5). If (M/pi)P 6= ∞ for all i then M is
the order of the point M .
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(7) If we are looking for #E(Fq), then repeat steps (1)-(6) with randomly cho-
sen points in E(Fq) until the greatest common multiple of the orders divides
only one integer N with q+1−2

√
q ≤ N ≤ q+1+2

√
q. Then N = #E(Fq).

There are two points that need to be addressed here. Why is there always a
match in step (3)? Why does step (6) yield the order of P?

Lemma 4.7. Let a be an integer with |a| ≤ 2m2. There exist integers a0 and a1

with −m < a0 ≤ m and −m ≤ a1 ≤ m such that

a = a0 + 2ma1

Proof. Let a0 ≡ a( mod 2m), with −m < a0 ≤ m and a1 = (a− a0)/2m. Then

|a1| ≤ (2m2 +m)/2m < m+ 1.

�

Let a = a0 + 2ma1 be as in the lemma and let k = −a1. Then

Q+ k(2mP ) = (q + 1− 2ma1)P = (q + 1− a+ a0)P = NP + a0P = a0P = ±jP,

where j = |a0|. Therefore, there is a match.

Lemma 4.8. Let G be an additive group (with identity element 0) and let g ∈ G.
Suppose Mg = 0 for some positive integer M . Let p1, . . . , pr be the distinct primes
dividing M . If (M/pi)g 6= 0 for all i, then M is the order of g.

Proof. Let k be the order of g. Then k|M . Suppose k 6= M . Let pi be a prime
dividing M/k. Then pik|M , so k|(M/pi). Therefore, (M/pi)g = 0, contrary to
assumption. Therefore, k = M . �

Remark 4.9. Why is the method called “Baby Step, Giant Step”? The baby steps
are from a point jP to (j + 1)P . The giant steps are from a point k(2mP ) to
(k + 1)(2mP ), since we take the “bigger” step 2mP .

5. Discrete Logarithm Problem

Let p be a prime and let a, b be integers that are nonzero mod p. Suppose we
know that there exists an integer k such that ak ≡ b( mod p) The classical discrete
logarithm problem is to find k. We can generalize this problem so that we are
solving it not just for the group F×p , but for E(Fq). Namely, given two points P,Q
on E, we are trying to find an integer k with kP = Q.

One way to attack the discrete log problem is with brute force, but that is very
impractical when k can be an integer of several hundred digits. Below, we have
another algorithm that worked from small steps to big steps:

Baby Step, Giant Step: Discrete Logarithm Problem

This works well for moderately sized N , because it requires about
√
N storage,

where N is the order of the group.
(1) Fix an integer m ≥

√
N and compute mP .

(2) Make and store a list of iP for 0 ≤ i < m.
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(3) Compute the points Q− jmP for j = 0, 1, . . . ,m− 1 until one matches an
element from the stored list.

(4) If iP = Q− jmP , we have Q = kP with k ≡ i+ jm( mod N).

Why does this work? Since m2 > N , we may assume the answer k satisfies
0 ≤ k < m2. Write k = k0 + mk1 with k0 = k( mod m) and 0 ≤ k0 < m and let
k1 = (k − k0)/m. Then 0 ≤ k1 < m. When i = k0 and j = k1, we have

Q− k1mP = kP − k1mP = k0P,

so there is a match. The baby step comes from adding P to (i − 1)P . The point
Q− jmP is computed by adding −mP (a giant step) to Q− (j− 1)mP . Note that
we did not need to know the exact order N of G. Therefore, for elliptic curves over
Fq, we can use this method with m2 ≥ q + 1 + 2

√
q, by Theorem 4.6.

There are faster attacks for the discrete logarithm problem, but all of them
require extra assumptions about q or the group structure of E(Fq). The discrete
logarithm problem curve for elliptic curves E, where #E(Fq) = q can be solved
using quicker methods that go beyond the scope of this paper. Finally, we explore
one cryptographic system based on the fact that solving the discrete logarithm
problem is hard.

ElGamal Public Key Encryption

Alice wants to send a message to Bob. First, Bob establishes his public key as
follows. He chooses an elliptic curve E over Fq such that the discrete log problem
is hard for E(Fq). He also chooses a point P on E (usually, it is arranged that the
order of P is a large prime). He chooses a secret integer s and computes B = sP .
The elliptic curve E, the finite field Fq, and the points P and B are Bob’s public
key. Bob’s private key is the integer s.

To send a message to Bob, Alice does the following:

(1) Download Bob’s public key.

(2) Expresses her message as a point M ∈ E(Fq) (this procedure will be ex-
plained below)

(3) Chooses a secret random integer k and computes M1 = kP .

(4) Computes M2 = M + kB.

(5) Sends M1,M2 to Bob.

How do we represent a message as a point on an Elliptic curve? A method was
proposed by Koblitz. Suppose E is an elliptic curve given by y2 = x3 + Ax + B
over Fp (The case of an arbitrary finite field Fq is similar. Let M be the message,
expressed as a number 0 ≤ M < p/100. Let xj = 100M + j for 0 ≤ j < 100. For
j = 0, 1, 2, . . . , 99, compute sj = x3

j + Axj + B. If s(p−1)/2
j ≡ 1( mod p), then sj is

a square mod p, in which case we do not need to try any more values of j. When
p ≡ 3( mod 4), a square root of sj is then given by yj ≡ s

(p+1)/4
j ( mod p), when

p ≡ 1( mod 4), it takes a bit more algebraic number theory to compute a square
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root, but it can be done. We obtain a point (xj , yj) on E. To recover M from
(xj , yj), simply compute bxj/100c. Since sj is essentially a random element of F×p ,
which is cyclic of even order, the probability is approximately 1/2 that sj is not
a square. So the probability of not being able to find a point m after trying 100
values is around 2−100.

Bob decrypts by calculating

M = M2 − sM1.

The decryption works because

M2 − sM1 = (M + kB)− s(kP ) = M + k(sP )− skP = M.

Eve knows Bob’s public information and the points M1 and M2. If she can
calculate discrete logs, she can use P and B to find s, which she can then use to
decrypt the message as M2 − sM1. Also, she could use P and M1 to find k. Then
she can calculate M = M2 − kB. If she cannot calculate discrete logs, there does
not appear to be a way to find M .

It is important for Alice to use a different random k each times she sends a
message to Bob. Suppose Alice uses the same k for both M and M ′. Eve recognizes
this because then M1 = M ′1. She then computes M ′2 −M2 = M ′ −M . Suppose
M is made public after the need for secrecy is gone. Then Eve finds out M , so she
calculates M ′ = M −M2 + M ′2. Therefore, knowledge of one plaintext M allows
Eve to deduce another plaintext M ′ in this case.

6. Conclusion

Naturally, there are a few more cryptosystems that use elliptic curves, and there
are several other specific curves that we were not able to discuss. However, we began
our study of elliptic curves from scratch, and with a bit of groundwork involving
endomorphisms and torsion, we were able to discover the structure of a group of
points of an elliptic curve over a finite field. These results allowed us to create
a public-key cryptosystem. Like RSA, the ElGamal cryptosystem security hinges
on a problem that is computationally hard in general cases, namely the discrete
logarithm problem.
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