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Abstract. This paper will discuss the completeness and incompleteness the-

orems of Kurt Gödel. These theorems have a profound impact on the philo-
sophical perception of mathematics and call into question the readily apparent

strength of the system itself. This paper will discuss the theorems themselves,

their philosophical impact on the study of mathematics and some of the logical
background necessary to understand them.
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1. Introduction

The completeness and incompleteness theorems both describe characteristics of
true logical and mathematical statements. Completeness deals with specific for-
mulas and incompleteness deals with systems of formulas. Together they serve to
define how it is possible to ascribe the quality of truth to a mathematical or logical
statement.

This has the interesting effect of illuminating how mathematical proofs acquire
their strength, and also how it is possible for these proofs to lack unquestionable
support. While this may not weaken or dismantle the general acceptance of mathe-
matical “truths”, it does raise some rather interesting thoughts on the philosophical
underpinnings of the field of mathematics. These will be discussed after we look
at the theorems themselves and the logical groundwork necessary to understand
them.

2. Gödel’s Completeness Theorem

2.1. Introduction to Logic. Before beginning to discuss completeness and in-
completeness, it will be necessary to understand some basic concepts about logic.
In particular we need to know how a formal language is constructed, how it differs
from a natural language and how models of the language are constructed. Also we
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will need to be familiar with the concepts of truth and what it means for a formula
to be deducible.

We will start with the idea of a formal language. A formal language is comprised
of symbols arranged as follows:

A.) Logical Symbols
0.) parentheses: (, ).
1.) sentential connective symbols: → (if... then...), ¬ (not).
2.) variables (one for each positive integer n): v1, v2, . . . .
3.) equality symbol: = (possibly).
B.) Parameters
0.) Quantifier symbols: ∀
1.) Predicate symbols: For each positive integer n, some (potentially empty) set
of symbols called n-place predicate symbols.
2.) Constant symbols: Some (potentially empty) set of symbols.
3.) Function symbols: For each positive integer n, some set (potentially empty)
of symbols called n-place function symbols
The concept of a formal language was developed in order to avoid the ambigu-

ities that often arise when one tries to explain a concept in English. The idea of
the formal language is that each arrangement of the symbols has a single, unique
meaning that is not possible misinterpret. Before working with statements in a
logical context we translate them from English into the formal language to avoid
misinterpreting the meaning. For example, if we were to say that ”

Which particular language we are working with depends on which parameters
are employed as well as whether or not equality is included. The logical symbols are
constant in every language. For example, the language of set theory contains equal-
ity, one two-place predicate parameter, ∈, and no function symbols. Alternatively
the language of number theory contains equality, the two-place predicate parameter
<, the constant symbol 0, the one-place function symbol S (indicating the succes-
sion function) and the two-place function symbols + (addition), · (multiplication)
and E (indicating exponentiation).

In a language, the important statements are the terms of the language and
formulas, which are formally called well-formed formulas, or wffs. These are the
only relevant sentences logically speaking because these are precisely those sentences
which make sense in the language, that is, they conform to the rules of the language.
Clearly it is not useful to consider nonsensical statements in any endeavor much
less in a logical context.

If a wff φ is provable from a language, then we say that it is deducible from the
language and write Γ ` φ. This is the same way we would write that Γ tautologically
implies φ. This is because the idea of tautological implication means that the truth
value of the statement is not contingent on the truth values of the component parts,
and if a statement can be proved from the language itself then it can be proved
from any form of the language (this will be clearer after we discuss completeness).

We also will need to know what a structure for a language is and what it means
for that structure to satisfy that language. First, we will define a structure.

Definition 2.1. A structure (denoted by A) for a language is the set of values for
which the language is defined (called the universe of A and denoted by |A|) as well
as how the set of parameters and functions of the language are defined.
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The universe of A determines what is meant by the quantifier symbol ∀. That
is, when we see a formula such as ∀x : φ, what that really means is ∀x ∈ |A|: φ. If
a structure, A satisfies a language (that is, if a statement in the language is true,
or satisfiable, within the given structure) then we say that A is a model of the
language and write �A φ where φ is a wff of the language.

The structure for a language dictates what elements are used to define the com-
ponents of the language. The function and predicate symbols of the language take
on meanings according to the domain of the structure, and the constant symbols of
the language correspond to constants within the set of elements of the structure.

To illustrate a familiar example, we will take the basic axioms of an algebraic
field. These are:

1) ∃0 such that ∀a: 0 + a = a
2) ∀a, b, c: a+ (b+ c) = (a+ b) + c
3) ∀a,∃(−a) such that a+ (−a) = 0
4)∀a, b: a+ b = b+ a
5) ∃1 such that ∀a: 1 · a = a
6) ∀a, b, c: a · (b · c) = (a · b) · c
7) For any a not equal to 0, there exists some b with a · b = 1
8) ∀a, b: a · b = b · a
9) ∀a, b, c: a · (b+ c) = (a · b) + (a · c).
These axioms describe a language containing equality, the function symbols ·

and + (defined as addition and multiplication), the constant 0 along with the other
components mentioned above.

There are several common structures for this language. Those are the real num-
bers (R), complex numbers (C), natural numbers (N), rational numbers (Q) and
integers (Z). It is easy to see which structures of this language are models and
which are not. The axioms hold for R and C but not for Q,N, or Z.

In addition to these basic logical ideas, we will need several more specific theo-
rems in order to prove completeness. These are:

Theorem 2.2. Rule T: If Γ ` θ, . . .Γ ` φn, and {φ1, . . . φn} tautologically implies
β, then Γ ` β.

And:

Theorem 2.3. Corollary to Generalization of Constants Theorem: As-
sume that Γ ` φx

c , where c is a constant that does not occur in Γ or in φ. Then
Γ ` ∀x : φ, and there is a deduction of ∀x : φ from Γ where c does not occur.

2.2. The Theorem. Now we have enough to discuss the completeness theorem.
The completeness theorem essentially asserts that true statements are the result
of deductions (there is another theorem, the soundness theorem, that asserts the
converse that all deductions lead to true statements). The statement of the theorem
is that if φ satisfies a language, Γ, then φ is deducible from Γ.

Theorem 2.4. (a) If Γ |= φ then Γ ` φ
(b) Any consistent set of formulas is satisfiable

The proof of the theorem is given in six different steps. The general idea is that
we take a consistent set of formulas, Γ, and extend it to a set ∆ of formulas such
that
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(i) Γ ⊆ ∆
(ii) ∆ is consistent and maximal (i.e. for any formula α either α ∈ ∆ or ¬α ∈ ∆)

(iii) For any formula φ and variable x, there is a constant c such that

(¬∀xφ −→ ¬φx
c ) ∈ ∆

Once we have this language, we create a structure A in which members of Γ can be
satisfied.

The proof works as follows, we take a consistent set of formulas and create
an infinite consistent set of formulas from it. Then we create a structure for the
expanded language and show that it satisfies both this and the original language.
This shows that if a formula is provable in a language, then it will satisfy the
language in any structure, which is precisely what the theorem states.

Proof. Step 1: Expand the language by adding a countably infinite set of con-
stants. The important thing to note about this expansion is that Γ remains consis-
tent in the expanded language.

Step 2: For each wff, φ, in the new language, and each variable, x, we want to
add another wff:

¬∀xφ −→ ¬φx
c

where c is one of the new constant symbols. We can do this in such a way that
Γ ∪Θ (where Θ is the set of all added wffs) will still be consistent. We do this by
adopting a fixed enumeration of the pairs 〈φ, x〉 where φ is a wff of the expanded
language and x is a variable :

〈φ1, x1〉, 〈φ2, x2〉 . . .
Let Φ1 be the wff

¬∀x1φ1 −→ ¬φ1
x1
c1

where c1 is the first of the new constant symbols not occurring in φ1. We define
this wff for the pair 〈φ2, x2〉 etc. so that we generally define Φn as

¬∀xnφn −→ ¬φn
xn
cn

where cn is the first constant not occurring in φn.
Let Θ be the set {θ1, θ2, . . . }, we claim that Γ ∪ Θ is consistent. If not, then,

because deductions are finite, for some m ≥ 0, Γ∪{θ1, . . . θm, θm+1} is inconsistent.
Take the least m, then Γ ∪ {θ1, . . . θm} ` ¬θm+1.

As we defined Θ earlier, θm+1 is

¬∀xφ −→ ¬φx
c

for some x, φ and c. So by Rule T we get

Γ ∪ {θ1, . . . θm} ` ¬∀xφ
Γ ∪ {θ1, . . . θm} ` φx

c .

Since c does not appear on the left-hand side of either of these we can apply the
corollary to the generalization of constants theorem to the second and get

Γ ∪ {θ1, . . . θm} ` ∀x : φ.

This contradicts the consistency of Γ for m = 0.
Step 3: We now use Zorn’s Lemma to extend the consistent set Γ ∪ Θ to a

maximal consistent set ∆ (i.e. for any wff φ, either φ ∈ ∆ or (¬φ) ∈ ∆). Let Λ
be the set of logical axioms for the extended language. Since Γ ∪ Θ is consistent,
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there is no formula β such that Γ ∪Θ ∪ Λ tautologically implies both β and (¬β).
Consequently, there is a truth assignment v for the set of all prime formulas that
satisfy Γ ∪ Θ ∪ Λ. Let ∆ = {φ|v̄(φ) = T}, then clearly for any φ either φ ∈ ∆ or
(¬φ) ∈ ∆, but not both. Also, we have

∆ ` φ⇒ ∆ tautologically implies φ (since Λ ⊆ ∆)
⇒ v̄φ = T (since v satisfies ∆)
⇒ φ ∈ ∆.
Consequently ∆ is consistent because both φ and ¬φ cannot be in ∆.
Step 4: Now we create from ∆ a structure A for the new language, with equality

replaced by a two place predicate symbol E.

(a)|A| = the set of all terms of the new language

(b) Define the binary relation EAby: 〈u, t〉 ∈ EAiff (u = t) belongs to ∆ (i.e. v(u = t) = T )

(c) For each n-place predicate parameter P , define the n-ary relation PA by: 〈t1, . . . tn〉 ∈ PAiff Pt1, . . . tn ∈ ∆

(d) For each n-place function symbolf , let fA be the function defined by: fA(t1, . . . tn) = ft1, . . . tn

For the constant c, take cA = c. Define s : V −→ |A| as the identity s(x) = x on
V . It follows that for any term t of the language, s̄(t) = t. For any wff φ, let φ∗

be the result of replacing equality with E. Then |=A φ∗[s] iff φ ∈ ∆. This can be
checked by induction on the number of places at which a connective or a quantifier
occur.

Step 5: If the original language did not include equality, then we are done.
We simply restrict the structure A to the original language to get a structure that
satisfies every member of Γ.

Assume that equality was in the language, then A will no longer work because
we could have the formula c = d (where c and d are distinct constants). In this case
we need a structure B in which cB = dB. We obtain B as the quotient structure
A/E of A modulo EA.
EA is the equivalence relation on |A|. For each t ∈ |A|, let [t] be its equivalence

class. EA is a congruence relation for A. That is:
(i) EA is an equivalence relation on |A|,
(ii) PA is compatible with EA for each predicate symbol P :

〈t1, . . . tn〉 ∈ PA, and tiE
At′i1 ≤ i ≤ n =⇒ 〈t′1, . . . t′n〉 ∈ PA,

(iii) fA is compatible with EA for each f :

tiE
At′i for 1 ≤ i ≤ n =⇒ fA(t1, . . . tn)EAfA(t′1, . . . t

′
n).

Form the quotient structure A/E defined as:
(a) |A/E| is the set of all equivalence classes of members of |A|
(b) For each n-place predicate symbol P, 〈[t1], . . . [tn]〉 ∈ PA/E iff 〈t1, . . . tn〉 ∈
PA

(c) For each n-place function symbol f, fA/E([t1], . . . [tn]) = [fA(t1, . . . tn)].
Let h : |A| −→ |A/E| be the map h(t) = [t]. Then h is a homomorphism of A

onto A/E and EA/E is the equality relation on |A/E|. For any φ:

φ ∈ ∆ ⇐⇒ |=A φ∗[s]

⇐⇒ |=A/E φ∗[h ◦ s]
⇐⇒ |=A/E φ[h ◦ s].

So A/E satisfies every member of ∆ (and hence Γ) with h ◦ s.
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Step 6: Then simply restrict A/E to the original language and this satisfies
Γ with h ◦ s. This shows that every wff that satisfies the language satisfies the
language for any possible structure of the language.

�

2.3. Implications of Completeness. This completeness theorem is really a state-
ment about the relationship between languages and structures. The theorem itself
states that if a set of formulas is consistent, then it is satisfiable. What this es-
sentially means is that if a formula satisfies every structure for the language then
there is a formal proof for the formula.

This theorem implies that the only way a language can be incomplete is if there
is a model of the language in which a particular statement is true, and another in
which the statement is false. For example, we can see that the language (which
was described earlier) comprised of the symbols 0,1,+, -, and ·, then the statement
that ∃aa · a = 2 is true in the if we take the structure to be C or R, but not if
we choose Q. So it is clear that t he formula a ∗ a = 2 is not true in every model
of the language and the thus the language is incomplete. What the completeness
theorem asserts is that this is the only way that a theory (set of formulas) can be
incomplete and that every formula that satisfies every structure is provable in the
language.

This makes intuitive sense. It is natural to assume that a statement that is
really true, and provable within a language would also be true in any possible set
of elements chosen to further define that language.

3. Gödel’s First Incompleteness Theorem

When we consider the first incompleteness theorem along with the completeness
theorem, we get a very interesting logical result. The theorem is stated as follows

Theorem 3.1. Any consistent set of formulas cannot be complete, in particular,
for every consistent set of formulas there is a statement that is neither provable nor
disprovable.

This means that every set of formulas that does not contain a contradiction is
incomplete, that is there is a formula, X such that neither X nor ¬X are provable
from the theory.

The proof of this is contingent on the idea of Gödel numbering. Arithmetization
of metamathematics statements about a language when written mathematically
become true statements within the language itself. Metamathematics is the col-
lection of statements not of mathematics, but about mathematics. What Gödel
showed is that true statements about mathematics, when arithmetized become true
mathematical statements within the language.

The proof consists of translating the statement “This sentence is false” into a
mathematical statement within any language (Gödel uses that of the Principia
Mathematica) and then showing that this is demonstrable (provable) if, and only
if, the opposite is also provable. This would make the language inconsistent thus
proving the theorem.

3.1. Completeness and Incompleteness. When we consider incompleteness and
completeness together, something interesting becomes clear. For any consistent
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mathematical language, there is some formula (in fact an infinite number of them)
that are true in one structure, but the opposite is true in a different structure.

The implication of this is fairly surprising. In linguistic and analytic philosophy,
it is easy to criticize any argument by adopting the view that whatever the proposi-
tion is that is being proved, it is only proved within a particular set of philosophical
axioms. It is easy for us to question statements that are proved using axioms de-
rived from the English language for one (or more) of several reasons, most likely
that we are so familiar with the structure of the language, and that the axioms
devised for philosophical purposes generally are not so simple to understand and
are not familiar to us. On the other hand, it is not quite so typical that one would
question the fundamental statements of mathematics solely on the grounds that
they are proved using a particular set of axioms.

This, however, is precisely what Gödel shows with the completeness and incom-
pleteness theorems. The implication of these two theorems is that the truths found
through mathematics are, in fact, not infallible. They rest on the assumption that
the axioms we choose are true. We choose to question these mathematical axioms
far less frequently than those of philosophy, and as such it is far more surprising
when the idea that math is not infallible is put forward.

It is exactly this that makes the completeness and incompleteness theorems so
interesting. They challenge the general perception of mathematics as a field of
absolutes. By showing that the very same statements can at once be proved true
and false if the axioms are changed, Gödel made it more possible to question the
axioms upon which all of accepted mathematics is based.
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