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Preface : In 1928, David Hilbert gave a challenge known as the Entscheidungsproblem, which is German for
Decision Problem. Hilbert’s problem asked for some purely mechanical procedure (devoid of all ingenuity)
such that when given the description of a formal language (usually first-order logic) and some well-formed
formula in that language, it would determine if that statement can be proven (is deducible). Briefly, a formal
system includes a set of symbols, a set of finite sequences of those symbols known as well-formed formulas
(usually a way to determine mechanically whether a finite sequence is well-formed), a set of well-formed
formulas known as axioms, and a finite set of relations called rules of inference (modus ponen is an example).
A proof of a well-formed formula is a finite sequence of statements such that each statement is an axiom or
a consequence of previous statements according to a rule of inference. Therefore, the Entscheidungsproblem
asks for a procedure that will determine whether a well-formed formula in a formal system has a proof. This
mechanical procedure is commonly known as an algorithm.

In order to attempt this challenge, logicians had to formalize the intuitive idea of an algorithm. Several
different approaches were developed. Alonzo Church created the λ-calculus. Kleene (based on works by Kurt
Gödel) created the general recursive function. Alonzo Church, using his λ-calculus, gave a negative answer to
the Entscheidungsproblem for the formula system of number theory. However, many logicians, prominently
Gödel, were not convinced that λ-calculus or the general recursive function described everything that could
be done algorithmically or computed. Alan Turing soon created what is known as the Turing Machine. Of
the previous models of computation, Turing’s was the most intuitive. The Turing Machine, more so than
the others, captured the theoretical concept of a being following directions and computing. The Turing
Machine imitated human computation or the intuitive idea of an algorithm, in that there existed a finite set
of directions. It idealized the notion of computation by allowing the device to run for an indefinite number
of steps and had an infinite amount of space or memory to store symbols. Because of its intuitive nature,
Gödel was convinced that this captured the intuitive idea of an algorithm. Furthermore, it has been proved
that the Turing Machine, λ-Calculus, General Recursive Function, and many other models are equivalent in
that they can, informally, imitate each other. The Church-Turing Thesis, which is more of a philosophical
statement than a mathematical statement, asserts this claim.

This paper will not consider the philosophical, intuitive notion of an algorithm. This paper shall define
an algorithm to be something that can be performed using the formal model of a Turing Machine. The
Church-Turing Thesis will never be explicitly used; however, the spirit of its assertion will frequently be
applied - mostly due to the author’s laziness. One can see the paper’s construction of a Universal Turing
Machine or any of the numerous examples to observe that simple procedures (such as adding) may have very
complicated and lengthy Turing Machine programs.

This paper will prove basic results and limitations of algorithms. The first section introduces the basic
concepts and terminologies used throughout the paper. Note N = {0, 1, 2, ...} will denote the set of natural
numbers. Section 2 introduces a weak (but simple) model of computation, known as the Finite Automaton,
which will yield many examples in the study of algorithms. Section 3 gives the definition of a Turing
Machine (and other equivalent models) and various associated notions. Section 4 illustrates the capabilities
and limitations of algorithms. Finally, Section 5 discusses computable functions.
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Section 1: Basics

Remarks : A set is a collection of objects known as elements.

Definition 1.1 : If A is a set and a is an element of A, then one denotes this a ∈ A. /∈ will mean not an
element of. If A and B are two sets, and every element of B is an element of A, then one says that B is a
subset of A, denoted B ⊂ A. If A and B are sets and A and B have the same elements, then one says that
A and B are identical, and one represents this symbolically as A = B. Similarly, 6= will represent non-set
equality. The set with no elements is ∅. The power set of A, denoted P(A) is the set of all subsets of A.
Note ∅ ⊂ A.

Theorem 1.2 : Let A and B be sets, A = B if and only if A ⊂ B and B ⊂ A.

Proof : Suppose A = B. By definition, A and B have the exact same elements. Therefore, A ⊂ B since
every element of A is an element of B. Similarly for B ⊂ A.

Suppose A ⊂ B and B ⊂ A. Suppose that A 6= B, then without loss of generality, suppose that there
exists a ∈ A such that a /∈ B. Immediately, one sees that every element of A (in particular a) is not an
element of B. This means one has not A ⊂ B, contradicting the hypothesis. �

Definition 1.3 : Suppose that A and B are sets. A ∪ B = {x | x ∈ A or x ∈ B} and is called the union
of the two sets. The intersection is A ∩ B = {x | x ∈ A and x ∈ B}. The set difference A\B = {x | x ∈
A and x /∈ B}. Let X be a set sometimes called the universe. Let A ⊂ X , one defines the complement of A
(in X) as Ac(X) = X\A. When the universe is clear from context, this paper shall simply write Ac.

Remarks : “or” in this paper will always be inclusive. That is, a or b holds when a holds, b holds, or both.

Definition 1.4 : Let A be a set and let a ∈ A and b ∈ A. An ordered pair with a first and b second, denoted
(a, b), is the set {{a}, {a, b}}. Similarly, one can define n-tuples for n ∈ N.

Theorem 1.5 : Let A be a set and a, b, c, d ∈ A. (a, b) = (c, d) if and only if a = c and b = d.

Proof : Suppose (a, b) = (c, d). By definition {{a}, {a, b}} = {{c}, {c, d}}. If these two sets are the same,
they must have the same elements. One has that {a} = {c}, because {a} can not equal {c, d} since one
is a singleton and the other is a two element set. Thus a = c. Immediately, one has that {a, b} = {c, d}.
Suppose b 6= d, then because these sets are equal, b must equal something from the other set. One is left
with b = c. However, one has already shown that c = a, so by the transitivity of equality, b = a. So for the
set equality to hold, one must have that c = d. We have shown b = a, b = c, and b = d, so by transitivity
b = d, contradicting our assumption. �

Definition 1.6 : Let A and B be sets. The cartesian product of A and B denoted A × B = {(a, b) | a ∈
A and b ∈ B}. If A1, A2, ..., An, for n ∈ N, are sets, one could similarly define A1 × ... × An. If A = B, one
writes A2 = A × A. Similarly, An.

Definition 1.7 : For A a set and n ∈ N, a n-place relation R on A is a subset of An. Let A and B be sets
and B 6= ∅, a function f from A to B, denoted f : A → B is a 2-place relation such that if (a, b1), (a, b2) ∈ f ,
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then b1 = b2. From this point on, one will actually think of functions in the usual way. A is called the
domain. B is called the codomain. For C ⊂ A, f(C) = {b | b = f(c) for some c ∈ C}. f(A) is the range of
f . A function f is surjective if for all b ∈ B there exists a ∈ A such that f(a) = b - or rather f(A) = B. A
function f is injective if for a, a′ ∈ A and a 6= a′, then f(a) 6= f(a′). A function f is bijective, if it is both
surjective and injective.

Definition 1.8 : Let A and B be sets, if there exists a bijection from A to B, one says that A and B have
the same cardinality. The cardinality of A is denoted |A|. If A is a finite set with n elements, one says that
|A| = n. If A has the same cardinality as N, one says that |A| = ℵ0. Sets with cardinality ℵ0 are also said
to be countably infinite. Countable sets are sets that are finite or countably infinite.

Theorem 1.9 : Let A1, A2, ... be a sequence of countable sets, then
⋃

n∈N
Ai is countable.

Proof : If Ai is countable, then one can enumerate all the elements of Ai in a list: ai,1, ai,2, .... Then display
all the elements of the union in the following array:

a1,1 a1,2 a1,3 a1,4 a1,5 · · ·
a2,1 a2,2 a2,3 a2,4 a2,5 · · ·
a3,1 a3,2 a3,3 a3,4 a3,5 · · ·
a4,1 a4,2 a4,3 a4,4 a4,5 · · ·
a5,1 a5,2 a5,3 a5,4 a5,5 · · ·

...
...

...
...

...

One would enumerate the union by going along the diagonals. That is, the list would be a1,1, a2,1, a1,2,
a3,1, a2,2, a1,3, .... The bijection follows from this list. �

Theorem 1.10 : Let A1, A2, ..., An be a finite number of countable sets. Then A1×A2×...×An is countable.

Proof : For k = 1, this is obvious since A1 is already countable. Suppose this hold for A1 × ...×An−1. Note
that

A1 × ... × An =
⋃

a∈An

(A1 × ...An−1) × {a}

By the induction hypothesis, A1 × ... × An−1 is countable. Cartesian product this set with the singleton
is still countable. Since An is countable, one is merely considering the countable union of countable sets;
therefore, by Theorem 1.9, this set is countable. The theorem follows from induction. �

Theorem 1.11 : Let A and B be two finite sets. The set of all functions f : A → B is a finite set of
cardinality |B||A|.

Proof : f is determined by how it maps each element in the domain. For each a ∈ A, f(a) can be any element
of B. Therefore, there are |B| number of possibilities for f(a). Then there are |A| number of elements in
the domain which each has |B| number of element of B to which it can be mapped. Hence the total number
of functions is |B||A|. �

Theorem 1.12 : The set of all infinite sequences consisting of only two distinct elements is uncountable
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(not countable).

Proof : Other than how one names the elements, all sets of two elements are the same. Let the two distinct
element be 0 and 1. Suppose the set of all infinite sequences made of these two elements are countable. This
implies that they can be placed into bijective correspondence with N. That is to say, they can be listed.
Suppose one has listed all such infinite sequences in the following array

a1,1 a1,2 a1,3 a1,4 a1,5 · · ·
a2,1 a2,2 a2,3 a2,4 a2,5 · · ·
a3,1 a3,2 a3,3 a3,4 a3,5 · · ·
a4,1 a4,2 a4,3 a4,4 a4,5 · · ·
a5,1 a5,2 a5,3 a5,4 a5,5 · · ·

...
...

...
...

...

Now construct a new sequence b1, b2, ... such that if ai,i = 1, let bi = 0, and if ai,i = 0, let bi = 1. This is an
infinite sequence consisting of 0 and 1. Where does this sequence occur on the list? It can not be the first
sequence, since it differs from it by at least the first term. It can not be the ith sequence because it differs
from it by at least the ith term. Therefore this sequence does not occur on our list. However, the assumption
was that this list enumerated every possible sequence. Contradiction. �

Remark : One can also modify this proof to show that R is uncountable. We could represent each real
number by one of its decimal representation. Suppose it did lie in some list, then construct a new decimal,
real number by choosing an element from {1, 2, 3, 4, 5, 6, 7, 8} that is not the same as the entry in the diagonal
of the array. One excludes 0 and 9, because real numbers do not have unique decimal representation. For
instance, 2.99999... = 3.0000...

Theorem 1.13 : Let A be a set. A and P(A) do not have the same cardinality.

Proof : Suppose that A and P(A) have the same cardinality. Therefore, there exists a bijecion φ : A →
P(A). Note that for each a, φ(a) ∈ P(A) which means that φ(A) is a subset of A. Now define F =
{a | a ∈ A and a /∈ φ(A)}. Certainly F ⊂ A; therefore, F ∈ P(A). Because φ is a bijection (specifically
surjective), there exists f ∈ A such that φ(f) = F . Now consider whether f ∈ F . There are two possiblities.
f ∈ F = φ(f). If this is true then f /∈ F = φ(f) since by definition F is the set of all elements of A which
are not in its own image. Suppose f /∈ F . Then f ∈ F because by definition of F , it contains all elements
of A which are not in its own image. Contradiction since f is either in a set or not in that set. �

Definition 1.14 : An alphabet is a nonempty, finite set. The elements of an alphabet are called the symbols.
A string over an alphabet is a finite sequence of symbols from that alphabet. The length of a string is the
number of symbols occurring in that string. The empty string denoted ǫ is the string of length zero. A
language is a set of strings.

Definition 1.15 : A partial ordering of a set A is a 2-place relation ≤ on A with the following property:
(1) For all a ∈ A, a ≤ a. Reflexive (2) For all a, b ∈ A, if a ≤ b and b ≤ a, then a = b. Antisymmetry (3)
For all a, b, c ∈ A, if a ≤ b and b ≤ c, then a ≤ c. Transitivity. A total ordering of A is a partial ordering
such that every two elements of A are comparable, that is if a, b ∈ A, then a ≤ b or b ≤ a.

Definition 1.16 : Suppose an alphabet Λ has a total ordering. The lexicograpical ordering of the strings over
Λ is an ordering such that strings of shorter lengths precede longer ones, and two strings a1a2...an ≤ b1b2...bn

if and only if there is some i such that 1 ≤ i ≤ n such that ai < bi and for all j ≥ 1, j < i, aj = bj.
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Section 2: Finite Automata

Definition 2.1 : A Finite Automaton is a 5-tuple (Σ, Λ, δ, s0, F ), where Σ is a finite set of elements called
states, Λ is a finite set (called the alphabet), δ : Σ × Λ → Σ is the transition function, s0 ∈ Σ is the start
state, and F ⊂ Σ is the set of final (or accept) states.

Remarks : To interprete this definition, a finite automaton begins in the start state s0. It takes in some
string w = w1w2...wn over the alphabet Λ. It consults its transition function to see where it goes next.
That is, at the beginning, the finite automaton is at state s0 and is reading the first symbol w1 of the input
string w. If δ(s0, w1) = s, then the automaton goes into state s. Its next move would be determined by
δ(s, w2). At the end of the input string, if the finite automaton is in a final state, then one says that the
finite automaton accepts the string w.

Definition 2.2 : Let B = {Σ, Λ, δ, s0, F} be a finite automaton. B is said to accept input w = w1w2...wn

if there is a sequence of states r0, ..., rn such that r0 = s0, the accept state, δ(ri, wi+1) = ri+1, and rn ∈ F .

Definition 2.3 : Let A be a finite automaton. One says that A recognizes the language L if L =
{w | w is a string that L accepts.}. A language is called a regular language if some finite automaton recog-
nizes it. The language that the finite automaton A recognizes is denoted L(A)

Remarks : A illustrative way of viewing a finite automaton is using a state diagram. In this diagram, the
states are symbolized by circles over the respective state name. The start state is indicated by the circle with
an arrow pointing to it from no other state. The final states are indicated by the double circled symbols.
The transition function is represented by the arrows between states. Next to arrows, there are alphabet
symbols. Suppose on state s0, one sees an arrow labeled a pointing to state s3. This means that when the
finite automaton is on state s0 and reading the symbol a on the input string, the automaton moves to state
s3. The finite automaton accepts a particular string, if at the end of reading the input string, the automaton
is on a final state.

Theorem 2.4 : Let L be the following language over Λ = {0, 1}:

L = {w | w contains an even number of 0}

L is a regular language.

Proof : The finite automaton B that recognizes L is represented by the following state diagram.

e o

0

0

1

1

The start state is e. The first time that B reads 0, it moves to state o indicating it has read an odd
number of 0 thus far. The next time it read a 0, it goes back to e because it has seen an even number of 0.
On state o or e, reading a 1 merely causes B to remain on the current state, since the number of 0 read has
not changed. The set of the final states is the singleton {e}.

The formal description of B is B = {{e, o}, {0, 1}, δ, e, {e}}, where δ = {(e, 0, o), (e, 1, e), (o, 0, e), (o, 1, o)}.
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Remarks : In general, automata are abstract computation machines or models. Two automata are said to
be equivalent if they recognize the same language.

A finite automaton is said to be deterministic if given the current state of the machine and the next input
symbol, there is exactly one state to which to change. A finite automaton is nondeterministic if there are no
or several choices of next states given a current state and input symbol. The finite automaton seen above is
a deterministic finite automaton. All deterministic finite automaton are nondeterministic finite automaton.

The key differences between the two is that nondeterministic finite automata have zero or many arrows
leaving a given state for each symbol of the alphabet (on its state diagram). Moreover, the nondeterministic
finite automaton may have arrows labeled with the empty string ǫ. Again, from any given state, there may
be zero or many arrows labeled with ǫ.

Informally, when a nondeterministic finite automaton reaches a state and read an input symbol with
multiple ways of proceding, the automaton splits into multiple branches of computation and continues seper-
ately along each. If the automaton happens to be on a state with an arrow labeled ǫ leaving it, then before
reading the next symbol, it splits into another branch going along that ǫ arrow. If an automaton has no
arrows corresponding to its current state and input symbol, then that particular branch of the computation
stops. The nondeterministic finite automaton is said to accept a particular input, if at least one of the
computation branches accept. Otherwise, the nondeterministic finite automaton rejects.

Definition 2.5 : A Nondeterministic Finite Automaton is a 5-tuple (Σ, Λ, δ, s0, F ) where Σ is a finite set of el-
ements, known as states, Λ is a finite set (called the alphabet) of elements called symbols, δ : Σ×Λ′ → P(Σ),
where Λ′ = {Λ} ∪ {ǫ}, s0 ∈ Σ is the start state, and F ⊂ Σ is the set of final (or accepting) states.

Remarks : Note that the codomain of the transition function is now the power set of Σ. So the image is a
subset of Σ. This represent all possible next states given the current state and the input symbol.

Definition 2.6 : Let N = {Σ, Λ, δ, s0, F} be a nondeterminsitic finite automaton. N is said to accept input
w = w1w2w3...wn if one can write w = y1y2...ym where yi ∈ Λ′ (that is adding ǫ symbol between any wi ∈ Λ)
and a sequence of states r0, r1, ..., rm such that r0 = s0, ri+1 ∈ δ(ri, yi+1) (for 0 ≤ i ≤ m − 1), and rm ∈ F .

Theorem 2.7 : A nondeterministic finite automaton is equivalent to a deterministic finite automaton.

Proof : It is clear that all deterministic finite automaton are nondeterministic.
Let N = {Σ, Λ, δ, s0, F} be a nondeterministic finite automaton that recognizes some language L(N).

One seeks to create a deterministic finite automaton D = {Σ′, Λ′, δ′, s′0, F
′} which recognizes L(N).

To construct D, one lets Σ′ = P(Σ). The alphabet Λ′ = Λ. Define for all S ∈ Σ′, E(S) = {s | s ∈
Σ and s can be reached from a state in S by traveling along zero or more ǫ arrows}. The transition func-
tion is δ : Σ′ × Λ′ → Σ′ defined by

δ′(S, ω) =
⋃

s∈S

E(δ(s, ω))

for S ∈ Σ′ and ω ∈ Λ′. That is, the transition function is the union of all the sets E(δ(s, ω)) for each state s ∈
S. The start state s′0 = E({s0}). Finally, the set of final states F ′ = {S ∈ Σ′ | S has an accept state of N}.

D clearly accepts the same language as N . D starts with the set containing the start state of N and
all other states reachable from the start state by traveling only along ǫ arrows. Then the transition funtion
of D keeps track of all the possible branches of N by taking the union of E(δ(s, ω)) for all s ∈ S, the
current state of D and ω ∈ Λ. The transition function accounts also for any states reachable by ǫ arrows.
The accepting state contains any subset of Σ which has an accept state of N . So if any branch of N on a
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particular computation accepts, the state of D, which is really a set of states of N , would contain at least
one accepting state. Thus whatever, N accepts, D does as well. �

Theorem 2.8 : A language is regular if and only if some nondeterministic finite automaton recognizes it.

Proof : If a language is regular, it is recognized by a deterministic finite automaton by definition. Every
deterministic finite automaton is a nondeterministic finite automaton.

By Theorem 2.7, every nondeterministic finite automaton has an equivalent deterministic finite automa-
ton. If the nondeterministic finite automaton recognizes some language, then its equivalent deterministic
finite automaton recognizes that language; hence, the language is regular by definition. �

Theorem 2.9 : Let Λ = {0, 1}. Let L′ be the language over Λ defined by

L′ = {w | w contains an even number of 0 or an odd number of 1}

L′ is a regular language.

Proof : The state diagram of the nondeterministic finite automaton is as follows:

s0

e0 e1o0 o1

ǫ ǫ

0

0

1

1

1

1

0

0

The start state is s0. Before any computation, the two ǫ arrows indicate a break to two branches. The
left side keeps track of whether the automaton has read an even or an odd number of zeros. The right side
keeps track of whether the machine has read an even or odd number of ones. Note that the left side is
exactly the same as the diagram in Theorem 2.4 and the right is the analagous diagram for determining odd
number of ones. The set of accept states are e0 and o1, representing even number of 0 and odd number of
1, respectively.

The formal description of this nondeterministic finite automaton is
{{s0, e0, e1, o0, o1}, {0, 1}, δ, s0, {e0, o0}}, where δ = {{s0, ǫ, {e0, e1}}, {s0, 0, ∅}, {s0, 1, ∅}, {e0, ǫ, ∅},
{e0, 0, {o0}}, {e0, 1, {e0}}, {e1, ǫ, ∅}, {e1, 0, {e1}}, {e1, 1, {o1}}, {o0, ǫ, ∅}, {o0, 0, {e0}}, {o0, 1, {o0}}, {o1, ǫ, ∅},
{o1, 0, {o1}}, {o1, 1, {e1}}}. �

Theorem 2.10 : Let Λ be an nonempty alphabet. Let a ∈ Λ, then {a} is a regular language.

Proof : Consider the nondeterministic finite automaton :
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s0 ha

The formal description of this finite automaton is {{s0, h}, Λ, δ, s0, {h}}, where

δ(x) =







{h} if x = (s0, a)
∅ if x = (s0, β) where β ∈ Λ and β 6= a
∅ if x = (h, γ) for all γ ∈ Λ

�

Definition 2.11 : Let A and B be languages. The union operation is a binary (taking two arguments)
operation on the set of languages, denoted by A ∪ B, defined as follows: A ∪ B = {w | w ∈ A or w ∈ B}.

Remarks : Suppose A = {⋆, ◦} and B = {cat, dog}, then A ∪ B = {⋆, ◦, cat, dog}.

Definition 2.12 : Let A and B be languages. The catenation operation is a binary operation on the set of
languages, denoted by A ◦B (sometimes written just AB), defined as follows: A ◦B = {vw | v ∈ A and w ∈
B}.

Remarks : Suppose that A = {good, bad} and B = {cat, dog} are languages over the alphabet Λ =
{a, b, c, ...z}, then A ◦ B = {goodcat, gooddog, badcat, baddog}.

Definition 2.13 : Let A be a language. The Kleene Star (or just Star) operation is a unary (taking one
argument) operation on the set of languages, denoted by ∗, defined as follows: A∗ = {w1w2...wk | k ≥
0 and each wi ∈ A}.

Remarks : Note that for any set A, ǫ ∈ A∗. Suppose that A = {stupid, philosophy, is} is a language over
Λ = {a, b, c, ..., z}, then
A∗ = {ǫ, philosophy, is, stupid, philosophyphilsophy, philosophyis, philosophystupid, isis, isphilosophy,
isstupid, stupidstupid, stupidphilosophy, stupidis, philosophyphilsophyphilsophy,
philosophyphilosphyis, philosophyphilosophystupid, philosophyisphilosophy, philosophyisis,
philosophyisstupid, ...}.

Theorem 2.14 : Regular languages are closed under the union operation.

Proof : Let A and B be regular languages. This means that A and B are recognized by deterministic finite
automata D1 = {Σ1, Λ1, δ1, s1, F1} and D2 = {Σ2, Λ2, δ2, s2, F2}, respectively. The nondeterministic finite
automaton N = {Σ, Λ, δ, s0, F} which recognizes the union language will have a new start state, called s0,
which branches out by ǫ arrows to the two old start states. The nondeterministic finite automaton runs D1

and D2 on parallel branches. Clearly, N will accept an input w if and only if w is accept by D1 or D2.
Formally, Σ = {s0} ∪ Σ1 ∪ Σ2. Λ = Λ1 ∪ Λ2. The start state of N is the new start state s0. The set of
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accept states is F = F1 ∪ F2. The transition function δ is

δ(s, a) =







δ1(s, a) if s ∈ Σ1 and a ∈ Λ1

δ2(s, a) if s ∈ Σ1 and a ∈ Λ2

{s1, s2} if s = s0 and a = ǫ
∅ if s = s0 and a 6= ǫ
∅ if s ∈ Σ1 and a ∈ Λ2\Λ1

∅ if s ∈ Σ2 and a ∈ Λ1\λ2

∅ if s ∈ Σ1 ∪ Σ1 and a = ǫ

�

Theorem 2.15 : Regular languages are closed under the concatenation operation.

Proof : Suppose that A and B are regular languages, recognized by two deterministic finite automaton
D1 = {Σ1, Λ1, δ1, s1, F1} and D2 = {Σ2, Λ2, δ2, s2, F2}, respectively. The nondeterministic finite automaton
which recognizes the languages A ◦ B has the same start state as D1. On an input, it runs D1 first. Then
from all the accepts states of D1 there are ǫ arrows going to the start state of D2. Then N runs the input
(or the remainder of that input on a seperate branch) on D2. The construction of N is as follows:

Σ = Σ1∪Σ2. Λ = Λ1∪Λ2. The start state s0 = s1 of D1. The accept state F = F2 of D2. The transition
function δ is defined as follows:

δ(s, a) =







δ1(s, a) if s ∈ Σ1, s /∈ F1, and a ∈ Λ1

δ1(s, a) if s ∈ F1, and a ∈ Λ1

δ1(s, a) ∪ {s2} if s ∈ F1, and a = ǫ
δ2(s, a) if s ∈ Σ2, a ∈ Λ2

∅ if s ∈ Σ1 and a ∈ Λ2\Λ1

∅ if s ∈ Σ2 and a ∈ Λ1\Λ2

∅ if s ∈ (Σ1 ∪ Σ2)\(F1) and a = ǫ

�

Theorem 2.16 : Regular languages are closed under the star operation.

Proof : Suppose A is a regular language recognized by the deterministic finite automaton
D = {Σ′, Λ′, δ′, s′0, F

′}. One wishes to construct a nondeterministic finite automaton N = {Σ, Λ, δ, s0, F}
which will recognize A∗. First, note that ǫ is in A∗. To account for the empty string, one adds a new state
s0 which will also be a final state. There is an ǫ arrow from this new start state to the old start state of D.
Then one lets D run the input string; however, one make ǫ arrows from each of the accept state of D back to
the original start state. This allows N to accept strings that are multiple strings of A following each other.

The formal construction of N is as follows. Σ = {s0} ∪ Σ′. Λ = Λ′. The new state s0 is the start state
of N . The set of final states are F = {s0} ∪ F ′. The transition function δ is defined as follows:

δ(s, a) =







δ′(s, a) if s ∈ Σ′ and a 6= ǫ
δ′(s, a) ∪ {s′0} if s ∈ F ′ and a = ǫ
{s′0} if s = s0 and a = ǫ
∅ if s = s0 and a 6= ǫ
∅ if s ∈ Σ′\F ′ and a = ǫ

�

Theorem 2.17 : Let Λ be some nonempty alphabet. Then Λ∗ = {w | w is a string over the alphabet Λ} is
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a regular language.

Proof : By Theorem 2.10, the set {a}, where a ∈ Λ is a regular language. The set {a | a ∈ Λ} = Λ is regular
language because it is equal to

⋃

a∈Λ

{a}

which is a union of regular language and regular by Theorem 2.14. Λ∗ is then regular because it is the star
of a regular set. �

Definition 2.18 : Given a language A over a alphabet Λ, the complement of A, denoted Ac, is Ac(Λ∗), that
is the complement of A in Λ∗.

Theorem 2.19 : Regular languages are closed under complementation.

Proof : Let A be a regular langauge recognized by D = {Σ, Λ, δ, s0, F} deterministic finite automaton. The
deterministic finite automaton B that recognizes Ac is the automaton that has as its accept states all the
non-accept states of D.

Formally B = {Σ, Λ, δ, s0, Σ\F}. �

Theorem 2.20 : If A, B, and X are sets such that A ⊂ X and B ⊂ X , then A ∩ B = (Ac ∪ Bc)c.

Proof : If x ∈ A ∩ B, then x ∈ A and x ∈ B. Therefore, x /∈ Ac and x /∈ Bc. This means x /∈ Ac ∪ Bc.
Therefore, x ∈ (Ac ∪ Bc)c. This proves A ∩ B ⊂ (Ac ∪ Bc)c.

If x ∈ (Ac∪Bc)c, then x /∈ Ac∪Bc. So x /∈ Ac and x /∈ Bc. So x ∈ A and x ∈ B, which means x ∈ A∩B.
(Ac ∪ Bc)c ⊂ A ∩ B. �

Theorem 2.21 : Regular languages are closed under intersection.

Proof : Suppose that A and B and regular language. Because regular langauges are closed under union and
complementation, by Theorem 2.20, regular languages are closed under intersection. �

Definition 2.22 : Let A and B be sets, the symmmetric difference of A and B, denoted A∆B, is (A∩Bc)∪
(Ac ∩ B).

Theorem 2.23 : Regular languages are closed under symmetric differences (where complement of languages
is defined above).

Proof : Regular languages are closed under complementation so Bc and Ac are regular. Regular languages
are closed under intersection by Theorem 2.21. Therefore (A∩Bc) and (Ac∩B) are regular. Because regular
languages are closed under union, (A ∩ Bc) ∪ (Ac ∩ B) is regular. �

Theorem 2.24 : (Pumping Lemma) If A is a regular language, then there is a number p (called the pumping
length) such that if w ∈ A and w has length greater than or equal to p, then w can be divided into three
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substrings (x, y, and z) in the form w = xyz, satisfying the following condition
(1) For i ≥ 0, xyiz ∈ A
(2) |y| > 0
(3) |xy| ≤ p

Proof : Let D = {Σ, Λ, δ, s0, F} be a deterministic finite automaton that recognizes A. Let p be |Σ|, that is
the number of state of D. Let w = w1w2...wn be a string of A with length n ≥ p. Let r1, ..., rn+1 be the
accepting sequence of states such that r1 = s0, ri+1 = δ(ri, wi) for 0 ≤ i ≤ n, and rn+1 ∈ F . Because this
sequence of states has length n + 1 ≥ p + 1 and D has only p states, one or more of the states must repeat
(by the pigeonhole principle). Let the first repeated state occur at ra and rb, 0 ≤ a < b ≤ n + 1. In fact, the
repeat must occur before the (p + 1)th state, so b ≤ p + 1. Now define x = w1...wa−1, y = wa...wb−1, and
z = wb...wn.

To see that xyiz ∈ A, note that the substring x takes B from state r1 to state ra. y takes B from state
ra to state rb. Since ra = rb, one can say that y takes B from state ra back to ra. yi for i ≥ 0 will just take
the B back to ra many times. Finally z takes B from ra = rb to rn+1 an accept state. Therefore, xyiz ∈ A.
Condition (2) is satisfied because a 6= b so there is a string of at least one symbol that takes B from state ra

to rb. Finally, note that b ≤ p + 1 and xy = w1...wb−1, so |xy| ≤ p. �

Theorem 2.25 : Let Λ = {0} be the single symbol alphabet. Let K = {0n2

| n ≥ 0}. K is not a regular
language.

Proof : K is the set of all strings made by a perfect square number of zeros. Now for any p, consider
0p2

∈ K, consider all division of 0p2

= xyz such that |xy| ≤ p and |y| > 0. This implies that 0 < |y| ≤ p.
|xy2z| ≤ p2 + p < p2 + 2p + 1 = (p + 1)2. However, since |y| > 0, p2 = |xyz| < |xy2z| < (p + 1)2. This shows
that |xy2z| is strictly between two perfect squares, i.e. it is not a perfect square. Therefore, xy2z /∈ K. By
the contrapositive of the Pumping Lemma, K can not be a regular language. �

Theorem 2.26 : Let Λ = {0, 1} be an alphabet. The langauge J = {w | w has an equal number of 0 and 1}
is not a regular langauge.

Proof : Let p be any number. Consider the string 0p1p. Consider all division of 0p1p = xyz such that |y| > 0
and |xy| ≤ p. Because |xy| ≤ p, one knows that y is a substring consisting of only zeros. Because |y| > 0, it
contains at least one 0. Consider xy2z. It has at least one more zero than xyz so xy2z has unequal number
of 0 and 1. xy2z /∈ J ; therefore, by the contrapositive of the Pumping Lemma, it is not a regular language.
�
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Section 3: Turing Machines

Definition 3.1 : A Turing Machine is a 7-tuple (Σ, Λ, Γ, δ, s0, s⋆, s×) where Σ is a finite set of objects called
states, Λ is a finite set (called the Alphabet) of objects such that ⊔ /∈ Λ (the blank symbol), Γ is a finite set
(called the Tape Alphabet) such that ⊔ ∈ Γ and Λ ⊂ Γ, δ : Σ × Γ → Σ × Γ × {L,R} called the transition
function, s0 ∈ Σ is the start state, s⋆ ∈ Σ is the accept state, and s× ∈ Σ is the reject state.

Remarks : To interpret the formal definition of a Turing machine, one imagines a control with a head or
pointer on an infinite tape, in one direction. On the control, one could indicate the current state of the Turing
machine. Initially, the Turing machine is on the start state, s0. The input w = w1w2w3...wn is a string of
elements from the alphabet Λ. First, w is placed at the left most end of the infinite tape. Since a string is
finite, ⊔ blank symbols fill in the remaining entries. Note that since ⊔ /∈ Λ, the first blank symbol indicates
the end of the string. At the beginning of the computation, the Turing machine head is on the first symbol
of the string. The Turing machine is on the start state s0 and has its head on the first symbol w1. One can
represent this as the ordered pair (s0, w1). Using the transition function, one finds that δ(s0, w1) = (s, α, D),
where s ∈ Σ, α ∈ Γ, and D ∈ {L,R}. To interpret this, one would change the state to s, replace w1 by α,
and move D which is either Left or Right. The next action would be similarly determined by the transition
function’s value at δ(s, w), where w is whatever symbol the Turing machine head is currently on. Note that
if the head is already at the left most end of the infinite tape, and if the transition function indicates a left
movement, the Turing machine would simply change states and write on the tape according to the function
but would remain in the same place. The Turing machine will stop if it ever enters the accept s⋆ or reject
s× state. The Turing machine would return the output “Accept” or “Reject”. If a Turing machine enters
either of these two states the Turing machine is said to halt on the particular input. The remaining case is
that the Turing machine will never enter the accept or reject state and would continue forever. In this case,
the Turing machine is said to Loop on the particular input.

Remarks : At any particular step, one can indicate the condition or status of the Turing machine by three
pieces of information: the string α before the head, the current state s, and the string β which the head
is on and follows the head. These three pieces of information determine the configuration, which can be
represented as α s β. Note that if the Turing machine happens to be at the left most end of the infinite
tape, the configuration would be written sβ. As an example, suppose the tape alphabet of a Turing ma-
chine T is Γ = {0, 1,⊔,×, ◦}. α the string preceding the head is 011 ⊔ 11110◦, the current states is s,
and β = 00 × ◦ × × ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ .... Then the configuration of the Turing machine at this moment is
011 ⊔ 11110 ◦ s 00 × ◦ × × ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ .... One says that a configuration C1 yields a configuration C2 if
the Turing machine T can go from C1 to C2 is just one step. To more precisely define a Turing machine’s
computation, let a, b, c ∈ Γ, the tape alphabet. Let the front string α = α′ · a, where α′ is some string. This
notation means that α is the string obtained by adding the symbol a to the end of another string α′. Let
β = b · β′, where β′ is some string. This notation, similarly, represents the string obtained by adding the
symbol b in front of the string β′. Suppose the current configuration of T is C1 = α s β = α′ ·a s b·β. Suppose
the δ(s, b) = (s′, c, L), then C1 yields C2 = α′ s′ ac · β′. Had the transition function been δ(s, b) = (s′, c, R),
the next configuration would have been α′ · ac s′ β′. Again, one makes the convention that if the Turing
machine is at the left most end of the infinite tape, the head stays put even if the transition function indicates
left.

Definition 3.2 : Let T = {Σ, Λ, Γ, s0, s⋆, s×}. Let w be the input string. The start configuration of the
Turing machine is s0 w. T is said to be in an accept configuration if the state of the configuration is s⋆. T is
in a reject configuration if the state of the Turing machine is in s×. Both of these configurations are known
as halting configurations.

Definition 3.3 : Let T = {Σ, Λ, Γ, s0, s⋆, s×} and w be an input string. T accepts w if and only if there is
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a sequence of configurations C1, ..., Cn such that C1 is the start configuration of T on this input, each Ck

yields Ck+1, and Cn is an accept configuration. One can similarly define what it means for T to reject w by
changing Cn to a reject configuration. T loops on w if T neither accepts nor rejects w.

Remarks : A Turing machine can be described using a Formal Description, an Implementation Description,
or a High-level Description. The formal description is the 7-tuple with the set of states, alphabets, transition
function, etc. all properly and fully given. The implementation description uses a natural language (English)
to describe how the Turing machine moves its head and how it writes on the tape. The High Level Descrip-
tion uses a natural language to simply describe the Turing machine. Sometimes, this paper will use High
Level descriptions. To justify this, note that with the increasing complexity of problems, more states and
symbols (in the tape alphabet) will be needed (to create a Turing machine whose function is conceptually
easy to see). The domain of the transition function is an ordered pair, therefore, to define the transition
function formally, one would need to define the image of all |Σ| |Γ| number of ordered pairs in the domain.
However, one feels that the High-Level description of a Turing machine actually corresponds to an existent
Turing machine, in that High-level description will describe a purely mechanical procedure to solve some
problem. That is, if a human being, devoid of all ingenuity, could follow certain directions in the description
to infallibly solve a problem, then a Turing machine can be constructed to mimic this procedure; albeit, one
must tediously and meticulously write such a Turing machine.

Definition 3.4 : Let T be a Turing machine. The set of all strings that T accepts is called the language
recognized by T , denoted L(T ). A language is Turing-Recognizable if there exists a Turing machine that
recognized it.

Remarks : Often for practical purposes, it can be extremely difficult to determine whether a Turing machine
loops on an input or takes a very long time to halt. To remedy this problem, one can design a Turing
machine in such a way that it is known to halt on all inputs.

Definition 3.5 : A Decider is a Turing machine that halts on all inputs. If a decider recognizes some lan-
guage, then one says that it decides the language. A language is decidable if some Turing machine decides
it.

Remarks : Like for finite automata, a concise way of visually representing a Turing machine is with a state
diagram. A Turing machine diagram is very similar to finite automata’s diagram. The state state s0 is
denoted by an arrow that points in from no other states. Between states there are arrows labeled in the
form a → b, D, where a, b ∈ Γ and D ∈ {L, R}. Suppose between state s13 and s4 there is the arrow labeled
a → b, R. This indicates that when the machine is one state s13 and read the input symbol a, it writes b in
the spot of a and then moves right. The Turing machine accepts a particular input if it ends at an accept
state. This paper makes the convention, for simplicity, that if on a given state, one does not see an arrow
corresponding to a particular input symbol, the Turing machine goes to the reject state. Therefore, in a
Turing machine state diagram, the reject state is tacitly assumed; however, sometimes for emphasis some
arrows leading to reject states are added.

Theorem 3.6 : Let Λ = {0, 1, :} be an alphabet. Let A be a language over Λ defined by A = {0i : 0j :
0k | i + j = k and i, j, k > 0}, then A is a Turing recognizable language and a decidable langauge.

Proof : One shall construct a Turing machine that decides the language A. The construction proceeds as
follows: First, one checks that there is at least one 0 to begin with. One writes over this with a blank symbol
⊔ to denote the beginning. Then one skips all subsequent zero, and looks for the : symbol. This Turing
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machine wants to combine 0i : 0j : 0k into 0i+j : 0k, so it writes over the : with a 0 and moves right. It
checks that there is at least one 0 following the symbol and skips over all subsequent 0. When it reaches
the second : symbol, it moves left and changes that 0 into a : (to account for the extra zero 0 created by
the first replacement of : by a 0) and then moves right. It encounters the original :, so it writes it over by
a zero. Checks that there is at least one zero following to the right. Skips over all subsequent zeros. When
it reaches the blank symbol ⊔ it has reach the end of the input. It moves left and replaces the rightmost 0
by ⊔ to account for the extra 0 produced when replacing :. This finishes the check to see that the input is
actually in the right form, and it puts the input into the form 0i+j : 0k. Now one moves the reading head
to the very beginning. Note that the Turing machine knows where the beginning is because one placed the
⊔ at the very beginning. It changes it to a 1. Skip all intermediate 0, goes past the : symbol, and replace
one 0 by a 1. Goes back to the beginning and “crosses” the next zero out with a 1 and moves to the other
side of the : and crosses out a 0 with a 1. If at any point, the machine crosses out a 0 but can not find a
0 on the right side to cross out, the machine rejects the input. If after crossing out a 0 from the right side,
the machine can not find a 0 on the left side, it goes back to the right side. If it find a 0 on the right side, it
rejects. If it only finds ⊔ symbols, as the only non-1 symbols, then it would accept. Note that this machine
terminates on all input because this Turing machine never writes over blank symbols and the first time the
machine encounters the blank symbol it goes back left. The second time it encounter the blank symbol it
either accepts or rejects (depending on certain conditions). It could also reject if simply i + j 6= k. Because
all input strings are finite, this machine will either accept or reject a string because it is in the wrong form,
because i + j 6= k, or because it will hit a blank symbol a second time (representing a reject or accept).

To be more precise, this paper gives the state diagram of this Turing machine below:

s1 s2 s3 s4 s5

s6s7s8s9s10

s11 s13

s12

s14

s15

s16 s17 s18 s⋆

s×

0 → ⊔, R

0 → 0, R

:→ 0, R 0 → 0, R

0 → 0, R

:→:, L

0 →:, R

:→ 0, R0 → 0, R

0 → 0, R

⊔ → ⊔, L0 → ⊔, L

0 → 0, L

⊔ → 1, R

1 → 1, R
0 → 1, R

:→:, L

0 → 0, R

:→:, R

1 → 1, R

0 → 1, L
1 → 1, L

:→:, L

0 → 0, R

1 → 1, R :→:, R

1 → 1, R

⊔ → ⊔, R

⊔ → ⊔, R

0 → 0, R

Note that although, only two states point to the reject state, by convention, the Turing machine goes to
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the reject state whenever the arrows that correspond to a particualar state and symbol does not appear on
the diagram. This occurs in the early states, where one is merely checking if the input is in the appropriate
form.

The formal description of this Turing machine is {{q1, ..., q18, q⋆, q×}, {0, 1, :}, {0, 1, :,⊔}, δ, q1, q⋆, q×},
where the transition function δ given by δ =
{(q1, 0, q2,⊔, R), (q1, 1, q×, 1, R), (q1, :, q×, :, R), (q1,⊔, q×,⊔, R),
(q2, 0, q2, 0, R), (q2, 1, q×, 1, R), (q2, :, q3, 0, R), (q2,⊔, q×,⊔, R),
(q3, 0, q4, 0, R), (q3, 1, q×, 1, R), (q3, :, q×, :, R), (q3,⊔, q×,⊔, R),
(q4, 0, q4, 0, R), (q4, 1, q×, 1, R), (q4, :, q5, :, L), (q4,⊔, q×,⊔, R),
(q5, 0, q6, :, R), (q5, 1, q×, 1, R), (q5, :, q×, :, R), (q5,⊔, q×,⊔, R),
(q6, 0, q×, 0, R), (q6, 1, q×, 1, R), (q6, :, q7, 0, R), (q6,⊔, q×,⊔, R),
(q7, 0, q8, 0, R), (q7, 1, q×, 1, R), (q7, :, q×, :, R), (q7,⊔, q×,⊔, R),
(q8, 0, q8, 0, R), (q8, 1, q×, 1, R), (q8, :, q×, :, R), (q8,⊔, q9,⊔, L),
(q9, 0, q10,⊔, L), (q9, 1, q×, 1, R), (q9, :, q×, :, R), (q9,⊔, q×,⊔, R)
(q10, 0, q10, 0, L), (q10, 1, q×, 1, R), (q10, :, q11, :, L), (q10,⊔, q×,⊔, R),
(q11, 0, q11, 0, L), (q11, 1, q12, 1, R), (q11, :, q×, :, R), (q11,⊔, q13, 1, R),
(q12, 0, q13, 1, R), (q12, 1, q×, 1, R), (q12, :, q×, :, R), (q12,⊔, q×,⊔, R)
(q13, 0, q13, 0, R), (q13, 1, q×, 1, R), (q13, :, q14, :, R), (q13,⊔, q×,⊔, R),
(q14, 0, q15, 1, L), (q14, 1, q14, 1, R), (q14, :, q×, :, R), (q14,⊔, q×,⊔, R),
(q15, 0, q×, 0, R), (q15, 1, q15, 1, L), (q15, :, q16, :, L), (q15,⊔, q×,⊔, R),
(q16, 0, q11, 0, R), (q16, 1, q17, 1, R), (q16, :, q×, :, R), (q16,⊔, q×,⊔, R),
(q17, 0, q×, 0, R), (q17, 1, q×, 1, R), (q17, :, q18, :, R), (q17,⊔, q×,⊔, R)
(q18, 0, q×, 0, R), (q18, 1, q18, 1, R), (q1, :, q×, :, R), (q18,⊔, q⋆,⊔, R)
(q⋆, 0, q⋆, 0, R), (q⋆, 1, q⋆, 1, R), (q⋆, :, q⋆, :, R), (q⋆,⊔, q⋆,⊔, R),
(q×, 0, q×, 0, R), (q×, 1, q×, 1, R), (q×, :, q×, :, R), (q×,⊔, q×,⊔, R)} �

Definition 3.7 : A Turing machine is a 6-tuple (Σ, Λ, Γ, δ, s0, F ) where Σ is a finite set of objects, called
states, Λ is a finite set (called the Alphabet) of objects such that ⊔ /∈ Λ (the blank symbol), Γ is a finite set
(called the Tape Alphabet) such that ⊔ ∈ Γ and Λ ⊂ Γ, δ : Σ × Γ → Σ × Γ × {L, R} called the transition
function, s0 ∈ Σ is the start state, and F ⊂ Σ is the set of halting states.

Remarks : Everything is interpreted the same as the first definition of a Turing machine, except here one
permits more than just two halting states.

Theorem 3.8 : The Turing machine in Definition 3.1 is equivalent to the Turing machine is Definition 3.7.

Proof : It is clear that the first Turing machine has an equivalent Turing machine of the second kind. Simply
let F = {s⋆, s×}.

A Turing machine of the second kind can be converted into a Turing machine of the first kind by desig-
nating one element of F to be s⋆. Then let every other element of F be renamed s⋆. That is, in the transition
function, whenever, one sees a state s ∈ F , then one changes it to s⋆. Now if for a particular string the
Turing machine of the second kind halts, then it lands on a state s ∈ F , but this means that this same input
caused the new converted Turing machine of the first kind to land on s⋆; therefore, the new Turing machine
accepts this string as well. The two Turing machines accept the same language. �.

Remarks : For conceptual reason and ease, one sometimes would like a Turing machine to stay put (repre-
sented as S) after changing states and rewriting an entry. The next theorem shows such a Turing machine
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is equivalent to the Turing machine in Definition 3.1.

Theorem 3.9 : A Turing machine that is the same as the Turing machine in Definition 3.1, except
δ : Σ × Γ → Σ × Γ × {L, R, S} is equivalent to the Turing machine in Definition 3.1.

Proof : It is clear that a Turing machine of the first kind is a Turing machine of this new type. Simply, the
Turing machine of the first kind has a transition function that never uses S.

To show that the new Turing machine is equivalent to the first Turing machine, note that the new tran-
sition function is still a set of 5-tuples. Consider the set A all ordered tuple of the form (q, α, q′, β, S). Add
the following new states qα for each q and α that make up the first two entry of the same 5-tuple in A.
Then remove every 5-tuple in A from the transition function, and replace each deleted (q, α, q′, β, S) with
(q, α, qα, β, R) and (qα, β, q′, β, L). This alteration removes all the 5-tuples that contains the stay put in-
struction. This Turing machine of the first kind clearly imitates the stay-put Turing machine since it merely
moves right and then move back left. �

Remarks : Because one has shown that all three Turing machines presented thus far are equivalent, this
paper could have used any as the “basic” Turing machine. Definition 3.1 played this role because it appears
simplier; however, from hence forth, the term Turing machine will alway mean the last Stay-put Turing
machine (of Theorem 3.9). This is for conceptual reasons.

Definition 3.10 : A Multitape Turing machine with k tapes is a 7 tuple (Σ, Λ, Γ, δ, s0, s⋆, s×) where
Σ is a finite set of objects called states, Λ is a finite set (called the Alphabet) of objects such that
⊔ /∈ Λ (the blank symbol), Γ is a finite set (called the Tape Alphabet) such that ⊔ ∈ Γ and Λ ⊂ Γ,
δ : Σ×Γk → Σ×Γk ×{L,R,S}k called the transition function, s0 ∈ Σ is the start state, s⋆ ∈ Σ is the accept
state, and s× ∈ Σ is the reject state.

Remarks : The interpretation of this definition is that the multitape Turing machine is a Turing machine
with several tapes. The first tape contains the input and the other tapes intially contain only blank symbols.
If the Turing machine is currently in state s and the pointers are on b1, b2, b3, ..., bk of the first, second, ...,
kth tape, respectively, and δ(s, b1, ..., bk) = (s′, c1, ..., ck, D1, ..., Dk) where Di ∈ {L, R, S}, then the Turing
machine changes to state s′, writes ci on the ith tape, and move that pointer in the Di direction.

On the state diagram of a multitape Turing machine with n tapes, suppose there is an arrow from state s
to q, then the arrow would take the form a1, ..., an → b1...bn, D1, ..., Dn, where ai, bi ∈ Γ and Di ∈ {L, R, S}
for 1 ≤ i ≤ n. This arrow means δ(s, a1, ..., an) = (q, b1, ..., bn, D1, ..., Dn).

Theorem 3.11 : Every multitape Turing machine is equivalent to a Turing machine.

Proof : Suppose M = (ΣM , ΛM , ΓM , δM , sM
0 , sM

⋆ , sM
× ) is a multitape Turing machine with k tapes. Let

T = (ΣT , ΛT , ΓT , δT , sT
0 , sT

⋆ , sT
×) be the Turing machine that should imitate M . Let ΣT = ΣM . As usual let

ΣT ⊂ ΓT and ⊔ ∈ ΓT . However, let the following symbol | ∈ ΓT , let ΓM ⊂ ΓT and for each α ∈ ΓM , ᾱ ∈ ΓT .
One wish to store the content of all k tapes of M onto the single tape of T . The symbol “|” seperate the
string on seperate tapes and if on the ith tape, the pointer sits on the symbol α ∈ ΓM , then in T , on the
substring that represent the ith tape, one replaces the symbol α by ᾱ to denote the pointer currently sits
there.

On input w = w1...wn, the Turing machine T rewrites its tapes into the form |w̄1w2...wn|⊔̄|⊔̄|...|⊔̄ ⊔ ⊔...,
where there are k − 1 ⊔̄. This represents M having its first points on the input w, and all its other pointers
on blank symbols. Since this procedure is purely mechanical, one is safe to assume such a Turing machine
can be written. Next T scans this string starting from the first | to the last, looking for what symbols are
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under the bar. It then consults the transition function of M to see how to change these symbols and where
to move the bars. If the pointer move the bar right onto |, then it adds on a ⊔̄ to represent M moving
onto a blank symbol at the end of a particular tape. If the pointer moves left onto the |, then it stays put.
Again this process is mechanical, and one can construct such a Turing machine by creating the appropriate
trasition function δT which depend on δM and additional symbols to ΓT , if necessary. It is clear that T will
reach an accept state for a particular input if and only if M accepts that particular input, as well. �

Remarks : Historically, various models of computation (with certain restrictions such that as the ability to
do only finite amount of “work” per step) have been shown to be equivalent to each other. Without details,
Turing machines, multitape Turing machine, nondeterministic Turing machine, unlimited register machine,
λ-calculus, general recursive functions, and several other models have been proven to be equivalent.

Furthermore, a totally non-mathematical statement known as the Church-Turing Thesis essentially as-
serts that the intuitive notion of algorithms is the same as a Turing machine. One can even define an
algorithm in term of a Turing machine. If one accepts the Church-Turing Thesis, one could justify the vari-
ous instances in the above proofs where the paper assumes there is a Turing machine which does precisely
what was described and believed to be an algorithmic process.

In light of the Church-Turing Thesis, for several of the following next results, this paper will outline
the Turing machine algorithm that produces a certain result but will not give the state diagram or formal
description. The description will describe a definite algorithmic process, and one could write out an explicit
Turing machine given time and care.

Often a Turing machine may be used to solve problems about various objects, such as polynomials,
graphs, finite automaton, and even other Turing machines. However, the input of a Turing machine is al-
ways a string in some language. Therefore, often one needs to make an encoding to represent that object as
a string. If O is some object in consideration, the paper shall use the symbol 〈0〉 to be the encoding string.
This paper shall not be concerned about how the object is encoded because one could always make a Turing
machine translate one encoding into an encoding of another form. The important fact is that an object can
be encoded into any language with at least two symbols. However, during the construction of the Universal
Turing machine, this paper will give an explicit encoding of Turing machines as strings in the language of
the Universal Turing machine.
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Section 4: Decidability in Languages

Theorem 4.1 Let Λ = {0, 1}. Let J be a language over Λ defined as follows:

J = {w | w contains equal numbers of 0 and 1}

This language is decidable.

Proof : One will construct a decider Turing machine D that recognizes this language. D will be a two tape
Turing machine. Initially, it will have the input in the first tape. The second tape will contain all blank
symbols. First, it will move the head of the second tape to the second blank symbol ⊔. The first blank
symbol will indicate the beginning of the second tape. On the first input symbol of tape 1, if it is a zero, the
machine will write it over by a ⊔ (to indicate the beginning of tape 1) and move right. If it is 1, then D will
write ⊔ (to indicate beginning of tape 1) and write a 0 on tape 2 and move right on both tapes. Tape 2 is
used to count the number of 1 that occurs. For all other symbols, if the tape 1 symbol in the reading frame
is 0, the reading pointer moves right and tape 2 does nothing. If the input symbol in the reading frame of
tape 1 is 1, then D writes over 1 with a 0 and in tape 2, writes over a ⊔ with a 0, and both tapes move
right. This process continues until, the input string is over (as indicated by a ⊔). At this point tape 1 and
2 have all zeros. If the number of 0 in tape 1 is two times the number of 0 on tape 2, then the input had
equal number of 0 and 1. It would accept otherwise reject. To check this, tape 1 must move back to the
beginning. When it hits the ⊔ that D placed at the beginning, it changes it to 0. Then tape 1 stays put.
Then D moves tape 2 back to the beginning. When it hits ⊔, tape 2 moves right to the first 0. Now both
tape’s reading head are on zeros. As long as both reading head are 0, both strings move right. When tape
2 reaches ⊔ at the end, if tape 1 is also on ⊔, then this means the input had only 1. Reject. Otherwise,
tape 1 is on a zero, so move tape 2 left. Now both tape 1 and tape 2 heads are on 0. Move tape 1 right,
and move tape 2 left. So long as both reading heads are on 0, move tape 1 right and move tape 2 left. If
tape 1 has a 0 and tape 2 has ⊔, then reject because the input had more zeros than 1. If tape 1 has ⊔ and
tape 2 has 0, then reject because there were more 1. If both reaches ⊔ at the same time accept because the
number of 1 and 0 were the same. D halts on all input because it never changes the ⊔ at the end into any
other symbol. The first time tape 1 reaches ⊔, it moves back. Then D keeps moving right and when it hits
⊔ again it accepts or rejects (unless something else happens before that which causes D to reject).

Since this Turing machine is quite simple, the state diagram is provided below:

s1 s2 s3 s4 s5

s6s7s⋆

s×

0,⊔ → 0,⊔, S, R

1,⊔ → 1,⊔, S, R

0,⊔ → ⊔,⊔, R, S

1,⊔ → ⊔, 0, R, R

0,⊔ → 0,⊔, R, S

1,⊔ → 0, 0, R, S

⊔,⊔ → ⊔,⊔, L, S

0,⊔ → 0,⊔, L, S

⊔,⊔ → 0,⊔, S, L

0, 0 → 0, 0, S, L

0,⊔ → 0,⊔, S, R

0, 0 → 0, 0, R, R0,⊔ → 0,⊔, S, L

0, 0 → 0, 0, R, L

⊔,⊔ → ⊔,⊔, R, R

⊔,⊔ → ⊔,⊔, R, R

0,⊔ → 0,⊔, R, R

⊔, 0 → ⊔, 0, R, R

The formal description of this Turing machine is {{s1, ..., s7, s⋆, s×}, {0, 1}, {0, 1,⊔}, δ, s1, s⋆, s×}, where
the transition function δ can easily be read off the diagram. This paper does not list the set of 8-tuple that
make δ because there are |Σ| |Γ|2 = 9 · 32 = 81 such tuples. �

Remarks : Note that J is the same language in Theorem 2.26. So there are decidable langauges that are
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non-regular.

Theorem 4.2 : Every regular language is a decidable language.

Proof : Let A be a regular language recognized by a deterministic finite automaton D′ = {Σ′, Λ′, δ′, s′0, F}.
To prove, the decidability of this language, one must construct a Decider D = {Σ, Λ, Γ, δ, s0, s⋆, s×} for this
language.

D will be a Turing machine that only moves right. When D reads a particular input symbol, it will go
to the state (of the Turing machine corresponding to the state of the finite automaton) indicated by the
transition function δ′. The end of the input string is indicated by ⊔. Therefore, when D reads ⊔, if the
current state of the Turing machine is a state in F , the Turing machine goes to s⋆ (accepts). If it reads ⊔
and the current state is in Σ′\F , then the Turing machine goes to state s×. This is a decider (i.e. halts on
all inputs) because this machine only moves right. When the reading head reaches ⊔, it must decide to go
to s⋆ or s×. Because a string has only a finite number of symbols, it must eventually reach the ⊔ at the end.

Constuct D as follows. Let s⋆ and s× represent the accept and reject state. Let Σ = Σ′ ∪ {s⋆, s×}. Let
Λ = Λ′. Let ⊔ be the blank symbol. Then let Γ = Λ ∪ {⊔}. The start state is s0. The accept state is s⋆,
and the reject state is s×. The transition function is

δ(s, a) =







(δ′(s, a), a, R) if s ∈ Σ and a 6= ⊔
(s⋆, a, R) if s ∈ F and a = ⊔
(s×, a, R) if s ∈ Σ\F and a = ⊔
(s⋆, a, R) if s = s⋆

(s×, a, R) if s = s×

�

Theorem 4.3 : Let A = {〈B, w〉 | B is a deterministic finite automaton that accepts w}. (Note 〈B, w〉 is
an encoding of B and w). A is a decidable language.

Proof : From the encoding of B, have a Turing machine D simulate B on w. There is certainly a Turing
machine that can imitate an arbitrary finte automaton. (In fact, later this paper will construct the Universal
Turing which imitates arbitrary Turing machines.) First, one should make a Turing machine that checks if
the input string is actually a finite automaton encoding. Run the simulator Turing machine on w. If the
simulation indicates that B accepts w, then D accepts 〈B, w〉. If the simulation indicates that B rejects
w, then D rejects. D certainly halts on all input. First, if the input is not in the form of an encoding of
〈B, w〉, the Turing machine would have thrown it out during checking. If it is an actually finite automaton
and a appropriate string, then D would halt since all finite automaton accept or reject any string in a finite
number of steps. �

Theorem 4.4 : Let E = {〈B〉 | B is a finite automaton and L(B) = ∅}. E is decidable.

Proof : This will be a High-Level Description of a clearly algorithmic procedure. If one accept the Church-
Turing Thesis, then there is a Turing machine that represents this process.

First, one would mark the start state of B. Then mark all states that have arrows coming from the start
state of B. Recursively, mark all states that have arrows coming from already marked states. Repeat, this
procedure until no new marked states are generated. Then check to see if an accept state is marked. If an
accept state is marked then there is a string that can get there. Accept. If no accept states are marked,
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reject. �

Theorem 4.5 : Let Q = {〈A, B〉 | A and B are finite automata and L(A) = L(B)}. Q is decidable.

Proof : One seeks to construct D a decider for Q. Given the encoding of A and B, one can construct a finite
automaton C that recognizes L(A)∆L(B). The Turing machine D can construct C by the same algorithmic
constructions used in the proof of the closure of regular langauges under various operations in Section 2. By
Theorem 4.4, there is a Turing machine T that decides whether the langauge of a finite automaton is empty.
As a sub-Turing machine of D, run T on the newly constructed C. If T accept 〈C〉, then D accepts 〈A, B〉
because T accepting C means that the L(C) = L(A)∆L(B) = ∅. This only happen if L(A) = L(B). If T
rejects, then D would also reject. �

Theorem 4.6 : The set of all Turing machine is countable.

Proof : Note, that the alphabet of each Turing machine must be finite. Other than how one names the
symbols, all alphabets of the same cardinality are the same. Hence alphabets are determined by a natural
number n which is the number of symbols in that alphabet. Therefore, the set of all alphabets has cardinality
ℵ0. Similarly the set of states and the tape alphabet are finite sets determined by the number of elements in
them; so they are of cardinality ℵ0. For a fixed (and always finite) Σ and Γ, the cardinality of the domain of
δ which is Σ×Γ is |Σ| |Γ|. The cardinality of the range, which is Σ×Γ×{L, R, S}, is |Σ| |Γ| · 3. Since both
the range and domain are finite, the number of such function δ : Σ×Γ → Σ×Γ×{L, R, S} is (3|Σ| |Γ|)|Σ| |Γ|

by Theorem 1.11. Let ∆Σ,Γ = {δ | δ : Σ×Γ → Σ×Γ×{L, R, S}}. Let ∆ be the set of all possible transition
function for every possible Turing machine. One then has

∆ =
⋃

Σ

⋃

Γ

∆Σ,Γ

Where the unions are taken over all possible Σ and Γ for any possible Turing machine. Since the set of all set
of states Σ and the set of tape alphabet Γ are countable, one sees that ∆ is a countable union of countable
sets; therefore, ∆ is countable by Theorem 1.9.

A Turing machine is the 7-tuple (Σ, Λ, Γ, s0, s⋆, s×). The set of the set of states, the set of all alphabets,
and the set of all tape alphabet are countable. s0, s⋆, and s× are elements of the set of state. For any
particular Turing machine, there are only a finite number of states; hence, only finite choices of states would
make sense in the 7-tuple. But as an added liberty, let allow s0, s×, s⋆ come from the union of all possible
set of states. Since each set of state is finite, this union, call it U can at most be countable. So there are
countable choices for these three values. The set of all ordered 7-tuple is the cartesian product of the set
of set of states with the set of alphabets with the the set of tape alphabets, with δ (the set of all possible
transition functions), and U3. All of these sets are countable, so by Theorem 1.10, the finite cartesian product
is countable. Note that only a subset of this cartesian product corresponds to a Turing machine, since in
a given tuple, the transition function from δ or the states from U may not correspond to the particular
Σ, Λ, and Γ. However, subset of countably infinite sets can at most be countably infinite. �

Theorem 4.7 : The set of all languages over an alphabet is uncountable.

Proof : First, given an alphabet, the set A of all (finite) strings is countable. Let n be the cardinality of the
alphabet. Let Ai be the set of all strings of length i. The cardinality of Ai is ni, since each place can have
n possible symbols. One has that A =

⋃

n∈N
An which is a countable union of countable (finite) sets; hence,

A is countable. Put a total order on the alphabet. This can be done since the alphabet is just a finite set.
List A in lexographical order. Let L be a language over the alphabet. The characteristic sequence of L is a
infinite sequence of 0’s and 1’s such that the ith term of the characteristic sequence is 0 if the ith string in
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the lexographical order is not an element of L and 1 if it is. This defines a bijection from the set of languages
over the alphabet and the set of sequence of two elements. By Theorem 1.12, we know the set of sequence
of two distinct element is uncountable. �

Theorem 4.8 : There are languages that are not Turing-Recognizable. There are languages that are not
decidable.

Proof : By Theorem 2.10, there is an uncountable number of languages over a given alphabet. By Theorem
2.9, there is only a countable number of Turing machine with any alphabet. Since for each Turing machine,
there is one language it recognizes, there must be languages that are not recognizable. There are languages
that are not decidable since the set of all undecidable languages is a superset of the set of unrecognizable
languages. �

Remark : A Universal Turing machine is a Turing machine that simulates an arbitrary Turing machine
when given its description. One possible purpose of the Universal Turing machine is that when given the
description or encoding of a Turing machine (in the alphabet of the Universal Turing machine) and the
encoding of the input string for that Turing machine (of course in the alphabet of the Universal Turing
machine), the Universal Turing machine would return accept if and only if that Turing machine accepts the
string.

Theorem 4.9 : There exists a Universal Turing machine U = {Σ, Λ, Γ, δ, s0, s⋆, s×} that when given an
encoding 〈T, w〉 such that T is a Turing machine and w is a string in the alphabet of T , then U accepts
〈T, w〉 if and only if T accepts w.

Proof : In order to construct in detail an actual Universal Turing machine, one must describe how to encode
a Turing machine in some language. The Universal Turing machine to be constructed will have Λ = {0, +, :}
and Γ = {0, +, :,⊔}, where ⊔ is the blank symbol. Now let T = {ΣT , ΛT , ΓT , δT , sT

0 , sT
⋆ , sT

×} be a Turing
machine and w = w1w2...wn be some string. For simplicity, this Turing machine has at least three distinct
states sT

0 , sT
⋆ , sT

×. T may move Left, Right, or Stay put. First, note that ΣT , ΛT , ΓT are all finite sets. Other
than the name given to the individual elements of those sets, all sets of states with the same cardinality
(number of elements) are essentially the same (and same goes for the Alphabet and the Tape Alphabet).
This indicates that one may represent ΣT with x number of elements by a string of x zeros. Same for ΛT

and ΓT .
Ultimately one wishes to encode 〈T, w〉 as a string over {0, +, :}. So far, one can encode ΣT , ΛT , and ΓT

as the string
+ 00...00

︸ ︷︷ ︸

|ΣT | times

+ + 00...00
︸ ︷︷ ︸

|ΛT | times

+ + 00...00
︸ ︷︷ ︸

|ΓT | times

+...........

Furthermore, each state in the set of state and each symbol in the alphabet can be represented as a
string of 0 in the following way. Put some arbitrary order on the set of alphabet ΛT and ΓT such that for
all x, y ∈ ΛT if x < y, then x < y as elements of ΓT . The paper adds an extra convention that all elements
of ΛT be less than elements in ΓT \ΛT and the ⊔T is the very last or greatest element. Number the elements
according to this order (this can be done since they are finite sets). That number of zeros will indicate
that symbol. For example, if x is the 5th symbol, then its encoding will be 〈x〉 = 00000. By the paper’s
convention, 〈⊔T 〉 = 00...00 |ΓT | number of times. Same thing for ΣT . However, one adds the convention
that the start symbol sT

0 is the first state, s⋆ is the (|ΣT | − 1)th state, and s× is the last (|ΣT |th state).
The + symbol serves as the delimiter. Later, one will need to encode the directional symbols L, R, and S.
The convention is that 〈L〉 = 0, 〈R〉 = 00, and 〈S〉 = 000. Next one must encode the transition function
δ : ΣT ×ΓT → ΣT ×T ΓT ×{L, R, S}. The transition function may be represented as a set of 5-tuples. To add
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the information about the transition function onto the encoding string started above, one first use ++ at the
beginning and end of the information encoding δ for seperation purposes. Suppose that (s, a, s′, b, R) ∈ δ.
One would encode this as +〈s〉 + 〈a〉 + 〈s′〉 + 〈b〉 + 〈R〉+. For simplicity, one allows more than one 5-tuples
with the same first two coordinates to be in the encoding of δ. In the actual simulation of T on w by U , U
will only use the first 5-tuple that has the required first two coordinates, it is looking for. As an example of
δ, suppose one has (sT

0 , a2, s3, a4, R) where s0 is the start state, a2 and a4 are the second and fourth symbol
in the alphabet under the arbitrary pre-decided ordering, and s3 is the third state under the ordering of ΣT ,
then its encoding is

+0 + 00 + 000 + 0000 + 00+

where the final + indicates the end. So now adding the transition function (in the example) to the encoding
string of T , one gets something that looks like the following

+ 00...00
︸ ︷︷ ︸

|ΣT | times

+ + 00...00
︸ ︷︷ ︸

|Λ| times

+ + 00...00
︸ ︷︷ ︸

|Γ| times

+ + + + 0 + 00 + 000 + 0000 + 00 + ... other 5-tuples ... + +...........

The next part of the encoding of T is its start state which by convential is represented by a single 0. Then
one has s⋆, which is followed by s×. By convention, 〈s⋆〉 is |ΣT | − 1 zeros and 〈s×〉 is |ΣT | zeros. + again
serves as the delimiter. Adding this information on, one has

+ 00...00
︸ ︷︷ ︸

|ΣT | times

+ + 00...00
︸ ︷︷ ︸

|Λ| times

+ + 00...00
︸ ︷︷ ︸

|Γ| times

+ + + + 0 + 00 + 000 + 0000 + 00 + ... other 5-tuples ... + +

+0 + 00...00
︸ ︷︷ ︸

|ΣT |−1 times

+ 00...00
︸ ︷︷ ︸

|ΣT | times

+.........

The final part of the encoding of 〈T, w〉 is the input string w. If w = w1w2...wn, one makes 〈w〉 = 〈w1〉 :
〈w2〉 : ... : 〈wn〉. The : is the delimiter for different symbols of the imput string. The + will be used to
seperate 〈w〉 from previous part of the encoding. + will also end the encoding. As an example, suppose that
w = aT

1 aT
4 , where a1 and a4 indicate the first and fourth symbol in ΛT . Then +〈w〉+ = +0 : 0000+. If one

let w be the w in the example, then an example of a complete encoding of 〈T, w〉 would be

+ 00...00
︸ ︷︷ ︸

|ΣT | times

+ + 00...00
︸ ︷︷ ︸

|Λ| times

+ + 00...00
︸ ︷︷ ︸

|Γ| times

+ + + + 0 + 00 + 000 + 0000 + 00 + ... other 5-tuples ... + +

+0 + 00...00
︸ ︷︷ ︸

|ΣT |−1 times

+ 00...00
︸ ︷︷ ︸

|ΣT | times

+ + 0 : 0000+

Now for the high level description of U . Note the high-level description will leave out many technical
details such as marking the beginning of tapes and exactly how certain things are done. The state diagram
of U provided at the end will give the precise details of how U functions.

U will be a 4-tape Turing machine. First, U must check whether its given input is even an encoding of
a Turing machine and its input. It scans over 〈ΣT 〉 and stores the encoding on tape 2. Then it scans over
〈ΛT 〉 and puts it over tape 4. As it scan 〈ΓT 〉, U will check that |ΓT | ≥ |ΛT | and copy ΓT on to tape 3. U
will then erase the content of tape 4 because it is no longer needed. Then U will go into the encoding of δ.
It will check each 5-tuple. It will see that the first string of zeros is not bigger than |ΣT | (whose information
is written on tape 3) because it is suppose to represent a state of T . Then it checks that the second string
of zeros is no bigger than |ΓT |, which is written on tape 3, as it is suppose to represent an alphabet symbol.
It checks that the thirds string is no larger than |ΣT |. It checks that the fourth string is no larger than |ΓT |.
Then it check the fifth string of zeros is either 0, 00, or 000. U keeps checking 5-tuples until there are no
more in the encoding of δ. Next it checks that the input string makes sense. U goes back and copy Λ onto
tape 3. Then U goes through the encoding of w to see that the number of 0 that represent the symbols of
w do not exceed the number of zeros that represents the input alphabet Λ. As it is checking w, it writes the
encoding of w onto tape 2 and tape 4. After it is done, U will need to prepare for the simulation stage. It
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goes back and copy ΓT on tape 3. Then it copies ΣT at the end of tape 3, with + as a seperator. One needs
〈ΓT 〉 because it also represents the encoding of ⊔ by convention. Note that U rejects its input string if it
fails the check at any point.

The current state (sT
0 at the start of the simulation) is written using : symbols over the encoding of ΣT

on the end of the third tape. The current symbol, which the simulation of T is on, is represented by a ⊔
instead of the + delimiter on the encoding of w on tape 2 and 4. [1] Now for the simulation, first U must
check whether it is in the accept or reject state. It uses the encoding of ΣT to do so. The detail are in the
state diagram. If it is in the accept state, U accepts. If it is in the reject state, then U rejects. Note that
this reject that represent T rejecting w can be distinguished from merely the encoding failing the check stage
simply by running the verfication part of U again. [2] If it is not in either state, then U looks for the current
state on the first part of each 5-tuple in the encoding of δ. If it finds a state that matches the current state,
it looks at the next symol of that 5-tuple. If it does not match the current symbol on the simulation of T ,
then it goes back to (2) on the next 5-tuple. If, however, the second coordinate of the encoding of the 5-tuple
matches the current symbol of the simulation of T , then U will change its current state which is recorded
on tape 3 and write over the encoding of the current symbol of the simulation of T on only tape 2 with the
encoding of the symbol in the 4th part of the 5-tuple. Then U uses the copy of the string on tape 4, to write
the substring that follows the symbol that was written over at the end of what was just changed on tape
2. Then U copies tape 2 to tape 4. Finally it reads the fifth part of the 5-tuple. If it is 〈L〉, U moves the
⊔ symbol on tape 2 and 4, which indicates the current reading head position of the simulation of T to the
beginning of the encoding of the symbol to the left of the current symbol. Of course, if it is already at the
left most end, U does not move at all. Make this change for both tape 2 and 4. Similarly, if it is 〈R〉, then
U moves the head-indicating symbol to the beginning of the symbol to the right of the current symbol. If it
moves to ⊔ of U , this means that T moved to a blank symbol as well. U will then change its own ⊔ to the
encoding of ⊔T . Remember that the encoding of ⊔T is stored at the beginning of tape 3. If it reads 〈S〉, U
will not moves the head-indicator symbol. When this is done, U moves its own reading head to where it was
before part (1). Then U repeats (1) again.

The state diagram of U is given on the next page. Dashed arrows indicate redirection to previous states.
Following previously established conventions, the reject states are tacit and only given if the author feels the
need for the emphasis.
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s0 s1 s2 s3 s4

s5s6s7s8s9

s10 s11 s12 s13 s14

s15s16s17s18

s19

s20 s21

s22 s23

s24 s25

s26

s27

s28

s29

s30s31s32s33s34

s35

s36

s37 s38

s39

s40 s41

s42 s43

s44 s45

s46

s47

s48s49

s50s51

s52s53s54

s55

s×

s×s×

s×

s×

⊔ ⊔ ⊔⊔ → ⊔ ⊔ ⊔ ⊔ SSLS

+ ⊔ ⊔⊔ → ⊔ ⊔ ⊔ ⊔ RRSS 0 ⊔ ⊔⊔ → 00 ⊔ ⊔RRSS 0 ⊔ ⊔⊔ → 00 ⊔ ⊔RRSS 0 ⊔ ⊔⊔ → 00 ⊔ ⊔RRSS

00 ⊔ ⊔ → 00 ⊔ ⊔RRSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSR

0 ⊔ ⊔⊔ → 0 ⊔ ⊔0RSSR

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSL

+ ⊔ ⊔0 → + ⊔ ⊔0SSSL

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSRR

0 ⊔ ⊔0 → 0 ⊔ 00RSRR

0 ⊔ ⊔⊔ → 0 ⊔ 0 ⊔ RSRS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ SSSL

+ ⊔ ⊔0

+ ⊔ ⊔0 →
+ ⊔ ⊔ ⊔ SSSL

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ SLSS

+0 ⊔ ⊔ → +0 ⊔ ⊔SLSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ SSLS

+ ⊔ 0⊔ → + ⊔ 0 ⊔ SSLS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS + ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RRSS

00 ⊔ ⊔ → 00 ⊔ ⊔RRSS

0 ⊔ ⊔⊔
: 0 ⊔ ⊔ →: 0 ⊔ ⊔SLSS

: ⊔ ⊔ ⊔ →: ⊔ ⊔ ⊔SLSS

: 0 ⊔ ⊔ →: 0 ⊔ ⊔SLSS

: ⊔ ⊔ ⊔ →: ⊔ ⊔ ⊔RSRS

0 ⊔ 0⊔ → 0 ⊔ 0 ⊔ RSRS

0 ⊔ ⊔⊔

: ⊔0⊔ →: ⊔0 ⊔ SSLS

: ⊔ ⊔ ⊔ →: ⊔ ⊔ ⊔SSLS

: ⊔0⊔ →: ⊔0 ⊔ SSLS

: 0 ⊔ ⊔ →: 0 ⊔ ⊔RRSS

00 ⊔ ⊔ → 00 ⊔ ⊔RRSS

0 ⊔ ⊔⊔

: 0 ⊔ ⊔ →: 0 ⊔ ⊔SSLS

: 0 ⊔ ⊔ →: 0 ⊔ ⊔SSLS

: ⊔ ⊔ ⊔ →: ⊔ ⊔ ⊔RSRS
0 ⊔ ⊔⊔

0 ⊔ 0⊔ → 0 ⊔ 0 ⊔ RSRS

: ⊔0⊔ →: ⊔0 ⊔ SSLS

: ⊔ ⊔ ⊔ →: ⊔ ⊔ ⊔SSLS

: ⊔0⊔ →: ⊔0 ⊔ SSLS

: ⊔ ⊔ ⊔ →: ⊔ ⊔ ⊔RSSS

0 ⊔ ⊔⊔ → 0 ⊔ ⊔ ⊔ RSSS

0 ⊔ ⊔⊔ → 0 ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS

0 ⊔ ⊔⊔ → 0 ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS

0 ⊔ ⊔⊔ → 0 ⊔ ⊔ ⊔ SRSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RRSS

00 ⊔ ⊔ → 00 ⊔ ⊔RRSS

+0 ⊔ ⊔ → +0 ⊔ ⊔RRSS+0 ⊔ ⊔ → +0 ⊔ ⊔RRSS

00 ⊔ ⊔ → 00 ⊔ ⊔RRSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RLSS

00 ⊔ ⊔ → 00 ⊔ ⊔RLSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RRSR

00 ⊔ ⊔ → 00 ⊔ 0RRSR
0 ⊔ ⊔⊔ → 00 ⊔ 0RRSR
: 0 ⊔ ⊔ →:: ⊔ : RRSR

: ⊔ ⊔ ⊔ →:: ⊔ : RRSR

⊔0 ⊔ ⊔ → ⊔ ⊔ ⊔ ⊔ SRSS

⊔0 ⊔ ⊔ → ⊔ ⊔ ⊔ ⊔ SRSS

⊔ ⊔ ⊔⊔ → ⊔ ⊔ ⊔ ⊔ SLSS

⊔ ⊔ ⊔⊔ →
⊔ ⊔ ⊔ ⊔ SLSS

⊔0 ⊔ ⊔ → ⊔0 ⊔ ⊔SSSL

⊔ ⊔ ⊔⊔ → ⊔ ⊔ ⊔ ⊔ SLSL

⊔0 ⊔ 0 → ⊔0 ⊔ 0SLSL
⊔ : ⊔ :→ ⊔ : ⊔ : SLSL

⊔ ⊔ ⊔⊔ → ⊔ ⊔ ⊔ ⊔ LSSS
0 ⊔ ⊔⊔ → 0 ⊔ ⊔ ⊔ LSSS
: ⊔ ⊔ ⊔ →: ⊔ ⊔ ⊔LSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ LSSS

⊔ ⊔ ⊔⊔ → ⊔ ⊔ ⊔ ⊔ RSSS

0 ⊔ ⊔⊔ → 0 ⊔ ⊔ ⊔ RSSS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSSS
+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSRS

0 ⊔ 0⊔ → 0 ⊔ 0 ⊔ RSRS
0 ⊔ ⊔⊔ → 0 ⊔ 0 ⊔ RSRS

+ ⊔ 0⊔ → + ⊔ ⊔ ⊔ SSRS

+ ⊔ 0⊔ → + ⊔ ⊔ ⊔ SSRS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ SSLS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ SSLS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ SSLS

+ ⊔ 0⊔ → + ⊔ 0 ⊔ SSLS

+ ⊔ 0⊔ → + ⊔ 0 ⊔ SSLS + ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ SSLS

+00⊔ → +00 ⊔ SRRS

+ : 0⊔ → + : 0 ⊔ SSLS
+ : ⊔⊔ → + : ⊔ ⊔ SSLS

+ : ⊔⊔ →: + ⊔ ⊔SRRS

+ ⊔ ⊔⊔ →
+ ⊔ ⊔ ⊔ SSLS

+ ⊔ 0⊔ → + ⊔ 0 ⊔ SSLS

+0 ⊔ ⊔

+ ⊔ 0⊔ → + ⊔ 0 ⊔ SSLS

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ RSRS

0 ⊔ 0⊔ → 0 ⊔ 0 ⊔ RSRS
0 ⊔ ⊔⊔ → 0 ⊔ 0 ⊔ RSRS

+ ⊔ ⊔⊔ → + ⊔ + ⊔ LSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ LSSS

+ ⊔ +⊔ → + ⊔ + ⊔ LSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ LSSS

+ ⊔ +⊔ → + ⊔ + ⊔ LSSS
+ ⊔ +⊔ → + ⊔ + ⊔ LSSS

+ ⊔ +⊔ → + ⊔ + ⊔ LSRS

0 ⊔ ⊔⊔ → 0 ⊔ 0 + LSRS
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s56 s57 s58 s59 s60

s61s62s63s64s65

s66 s67 s68 s69 s70

s71

s72s73

s74s75s76s77

s78 s79 s80

s81s82s83

s84 s85 s86 s87

s88 s89

s90

s91s92s93s94s95

s96 s97 s98 s99 s100

s× s⋆

s70

s×
s70

s83

s89

⊔ ⊔ 0⊔ → ⊔ ⊔ 0 ⊔ SSLS

⊔ ⊔ +⊔ → ⊔ ⊔ + ⊔ RSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS + ⊔ +⊔ → + ⊔ + ⊔ RSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS+ ⊔ +⊔ → + ⊔ + ⊔ SSRS+ ⊔ 0⊔ → +⊔ : ⊔SSLS

+ ⊔ +⊔ → + ⊔ + ⊔ SSRS

+⊔ : ⊔ → +⊔ : ⊔SSRS

+ ⊔ 0⊔ → + ⊔ 0 ⊔ SSRS

+ ⊔ ⊔⊔

+ ⊔ 0⊔ → + ⊔ 0 ⊔ SSLS

+ ⊔ ⊔⊔

+ ⊔ 0⊔ → + ⊔ 0 ⊔ SSLS

+⊔ : ⊔ + ⊔ : ⊔SSLS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSRS

0⊔ : ⊔ → 0⊔ : ⊔RSRS

0 ⊔ 0⊔ → 0 ⊔ 0 ⊔ SSLS
: ⊔ : ⊔ →: ⊔ : ⊔SSLS

0⊔ : ⊔ → 0⊔ : ⊔SSLS
: ⊔ : ⊔ →: ⊔ : ⊔SSLS

0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS
: ⊔ + ⊔ →: ⊔ + ⊔RSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS
: ⊔ + ⊔ →: ⊔ + ⊔RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS

: ⊔0⊔ →: ⊔0 ⊔ SSLS

: ⊔ : ⊔ →: ⊔ : ⊔SSLS

: ⊔ + ⊔ →: ⊔ + ⊔RRSR

00 + 0 → 00 + 0RRSR

0 : + :→ 0 : + : SLSL
: 0 + 0 →: 0 + 0SLSL

:: + :→:: + : RSRS
00 + 0 → 00 + 0SLSL
: 0 + 0 →: 0 + 0SLSL

0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS
: ⊔ + ⊔ →: ⊔ + ⊔RSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS
: ⊔ + ⊔ →: ⊔ + ⊔RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ LSSS + ⊔ +⊔

0 :::→ 0 ::: RSRS
0 : 0 :→ 0 ::: RSRS

::::→:: 0 : SSRS

:: 0 :→:: 0 : SSLS

::::→:: 0 : SSRS

:: ⊔ :→:: ⊔ : SSLS

:: 0 :→:: 0 : SSLS

::::→:::: SSLS

::::→:::: SSLS

:: + :→:: + : SLSS

: 0+ :→: 0+ : SLSS

: ⊔+ :→: ⊔+ : RRSS

00+ :→ 00+ : RRSS
0 : + :→ 00+ : RRSS
0 ⊔ + :→ 00+ : RRSS

: 0+ :→: 0+ : SSSR
:: + :→:: + : SSSR

: ⊔+ :→: ⊔+ : SSSR

: 0 + 0 →: 0 + 0SRSR
:: +0 →: 0 + 0SRSR

: ⊔ + 0 →: 0 + 0SRSR

: 0+ :→:: + : SRSR
:: + :→:: + : SRSR
: ⊔+ :→:: + : SRSR

: 0 + ⊔ →: ⊔ + ⊔SRSS
:: +⊔ →: ⊔ + ⊔SRSS

: ⊔ + ⊔ →: ⊔ + ⊔SLSS

: 0 + ⊔ →: 0 + ⊔SRSS
:: +⊔ →: ⊔ + ⊔SRSSS

: ⊔ + ⊔ →: ⊔ + ⊔SLSS

: ⊔ + ⊔ →: ⊔ + ⊔SLSS

: 0 + ⊔ →: 0 + ⊔SLSS

: 0 + ⊔ →: 0 + ⊔SLSS
:: +⊔ →:: + ⊔ SSLS

: ⊔ + ⊔ →: ⊔ + ⊔SLSS

: 0 + ⊔ →: 0 + ⊔SSLS
:: +⊔ →:: + ⊔ SSLS

: ⊔ + ⊔ →: ⊔ + ⊔SSSL

: ⊔ + 0 →: ⊔ + 0SSSL
: ⊔+ :→: ⊔+ : SSSL

: ⊔ + ⊔ →: ⊔ + ⊔SSSL

: ⊔ + 0 →: ⊔ + 0SSSL
: ⊔+ :→: ⊔+ : SSSL

: ⊔ + ⊔ →: ⊔ + ⊔SRSR

: 0 + 0 →: 0 + 0SRSR
: 0+ :→: 0+ : SRSR

: 0 + ⊔ →: 0 + 0SRSR
:: +0 →:: + : SRSR
:: + :→:: + : SRSR
:: +⊔ →:: + : SRSR

: ⊔ + 0 →: ⊔ + ⊔SRSR
: ⊔+ :→: ⊔ + ⊔SRSR

: ⊔ + ⊔ →: ⊔ + ⊔SRSR

: 0 + 0 →: 0 + 0SRSR
: 0+ :→: 0 + 0SRSR

: 0 + ⊔ →: 0 + 0SRSR

:: +0 →:: + : SRSR
:: + :→:: + : SRSR
:: +⊔ →:: + : SRSR

: ⊔ + ⊔ →: ⊔ + ⊔SLSL

: ⊔ + 0 →: ⊔ + ⊔SSSR
: ⊔+ :→: ⊔ + ⊔SSSR

: ⊔ + 0 →: ⊔ + ⊔SSSR
: ⊔+ :→: ⊔ + ⊔SSSR

: ⊔ + ⊔ →: ⊔ + ⊔SSSL

: ⊔ + ⊔ →: ⊔ + ⊔SSSL

: ⊔ + 0 →: ⊔ + 0SLSS

: 0 + 0 →: 0 + 0SLSL
:: + :→:: + : SLSL

: ⊔ + ⊔ →: ⊔ + ⊔SLSL

: ⊔ + ⊔ →: ⊔ + ⊔RSSS

: 0 + 0 →: 0 + 0SRSR : ⊔ + ⊔ →:: + : RSSS

0 : + :→ 0 : + : RSSS
0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS
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s101 s102 s103 s104 s105

s106s107s108s109s110

s107

s65

+ : + :→ + : + : SLSL

+ ⊔ +⊔ → + ⊔ + ⊔ LSSS

0 : + :→ 0 : + : RSSS
0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS

+0 + 0 → +0 + 0SLSL

+ : + :→ + ⊔ + ⊔ LSSS

+ : + :→ + : + : SRSR
+ ⊔ +⊔ → + ⊔ + ⊔ SRSR

0 : + :→ 0 : + : RSSS
0 ⊔ +⊔ → 0 ⊔ + ⊔ RSSS

+0 + 0 → +0 + 0SRSR

+ ⊔ +⊔ → + : + : SRLR

+ : + :→ + ⊔ + ⊔ LSSS

+ ⊔ 0⊔ → +000SRLR

+ ⊔ ⊔⊔ → + ⊔ ⊔ ⊔ SLRL

+000 → +000SLRS
+ ⊔ +⊔ → + ⊔ + ⊔ LSSS

+ : + :→ + ⊔ + ⊔ LSSS
+ ⊔ +⊔ → + ⊔ + ⊔ LSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ LSSS

+ ⊔ +⊔ → + ⊔ + ⊔ LSSS+ ⊔ +⊔ → + ⊔ + ⊔ LSSS

+ ⊔ +⊔ → + ⊔ + ⊔ RSSS

0 ⊔ +⊔ → 0 ⊔ + ⊔ LSSS

The formal description of U is U = {{s0, ..., s110, s⋆, s×}, {0, 1 :}, {0, 1, :,⊔}, δ, s0, s⋆, s×}, where the transition
function can be read off the state diagram. �

Definition 4.10 : Let A = {〈T, w〉 | T is a Turing machine and T accepts w}.

Theorem 4.11 : A is Turing-recognizable.

Proof : Let U ′ have a universal Turing machine, such as in Theorem 4.9, as a sub-Turing machine. U
simulates T on w and U ′ returns accept if T accept w and reject if T rejects w. This Turing machine U ′

certainly recognizes A. �

Remark : Note that if T loops on w in the above construction of U ′, then U ′ would also loop. Hence U ′ is
not a decider of the language A.

Theorem 4.12 : A is undecidable.

Proof : Let 〈T 〉 be the encoding of T . Suppose that such a decider D of A exists. Now construct a new
Turing machine Q that has D as a submachine. One will feed to this machine the encoding 〈T 〉 of a Turing
machine T . Q will use the decider D on the input 〈T, 〈T 〉〉. That is D will determine where T accepts its
own encoding. If D accepts, then Q rejects 〈T 〉. If D rejects , then Q accepts. Note that since D is a
decider, Q will aways return accept or reject, that is it is a decider. Clearly, Q is itself a Turing machine.
What happens when Q is given its own encoding as input. If Q accepts 〈Q〉, then D returns accept, so Q
returns the opposite, that is Q reject 〈Q〉. This case is impossible. If Q rejects 〈Q〉, then D returns reject,
so Q returns the opposite, that is Q accepts 〈Q〉. This is also impossible. However, Q is a decider because
D is a decider, but neither accept nor reject is possible for Q on 〈Q〉. This is a contradiction. �

Remarks : One says that A is reducible to another problem B if a solution to B would give a solution to A.
Furthermore, if A is reducible to B and there is no solution to A, then there must be no solution to B. This
method of reducibility allows one to find other undecidable problems from a known undecidable problem
like A above.

Theorem 4.13 : (Halting Problem) Let H = {〈T, w〉 | T is a Turing machine that halts on input w}. H is

26



undecidable.

Proof : Suppose H is decidable with the decider Turing machine DH . DH accepts 〈T, w〉 if T accepts or
rejects w, but rejects 〈T, w〉 if T loops on w. Using DH , one shall create a decider Turing machine DA

which will decide A. DA will use DH and a Universal Turing machine, like in Theorem 4.9, to simulate what
T does on w. DA will function as follows: given an arbitrary Turing machine T and an input w, give its
encoding 〈T, w〉 to DH . If DH rejects 〈T, w〉, then DA rejects it also. If DH accepts, then run U on 〈T, w〉.
If U accepts 〈T, w〉 (which means T accepts w), then DA accepts. If U rejects (which means T rejects w),
then DA rejects. U must either reject or accept 〈T, w〉 since DH has already determined that T will halt on
w. This DA would be a decider of A. Contradiction! It was already shown above that A is undecidable. �

Theorem 4.14 : Let E = {〈T 〉 | T is a Turing machine and L(T ) = ∅}. E is undecidable.

Proof : Suppose that E can be decided by a Turing machine DE . One wishes to construct a decider Turing
machine DA for A. So suppose T is a Turing machine, and w is some string. From the description or
encoding 〈T, w〉, DA constructs the encoding of a new Turing machine Tw which behaves as follows. If x is
a string such that x 6= w, then Tw rejects. If x = w, then run T on w and accept w if T accepts w. Clearly,
constructing and running Tw from 〈T, w〉 is an algorithmic procedure. The checking of whether x = w can
easily be accomplish if w is built into the description of Tw, and Tw would merely check symbol by symbol
whether x = w. After Tw has been constructed, DA will run DE , the decider of E, on Tw. If DE accepts
〈Tw〉, then DA rejects 〈T, w〉, because DE accepting Tw means that L(Tw) is empty. If DE rejects 〈Tw〉, then
accept. By how Tw was constructed, the only possible string that Tw could accept was w. If the language
is empty, then Tw must reject or loop on w, which only happens if T rejects or loops on w. Similarly, DE

rejecting Tw means that L(Tw) 6= ∅. By constructing Tw can only possibly accept w. So if the language is
nonempty, the language contains only one string, i.e. w. If Tw accepts w, then T accepts w. This DA is a
decider for A. Contradiction! �

Theorem 4.15 : Let Q = {〈F1, F2〉 | F1 and F2 are Turing machines such that L(F1) = L(F2)}. Q is
undecidable.

Proof : This is a proof by reducing E, above, to Q. Suppose Q was decidable by a Turing machine DQ. Find
or construct a Turing machine R that rejects all input, that is L(R) = ∅. For instance the Turing machine
that goes from s0 to s× on every input symbol is such a Turing machine. Now one wishes to construct a
Turing machine DE using DQ. The construction is as follows. For any Turing machine T , run DQ on 〈T, R〉.
If DQ accepts, then DE accepts because T has the same language as R, i.e. L(T ) = L(R) = ∅. If DQ rejects,
then DE rejects because L(T ) 6= L(R) = ∅. DE would be a decider for E, but this contradicts Theorem
4.14. �

Theorem 4.16 : Let R = {〈T 〉 | T is a Turing machine and L(T ) is a regular language.}. R is undecidable.

Proof : Suppose that R is decidable by a Turing machine DR. One will seek to create a decider DA that
decides the acceptance problem A. First, recall from Theorem 2.17, the set of all strings over an alphabet
Λ, that is Λ∗, is a regular language. By Theorem 2.26, the language {0n2

| n ∈ N} is a nonregular language.
Now construct DA as follows. Given an arbitrary Turing machine T and string w, from the encoding

〈T, w〉, construct the Turing machine Tw with an nonempty alphabet Λ. Let a ∈ Λ. Tw functions as follows:

For some x a string over Λ, (it is helpful to think of x ∈ Λ∗), if x is in the form an2

for some n ∈ N, then Tw

accepts x. If x is not in this form, then Tw accepts x if T accepts w. Now run DR on 〈Tw〉. If DR accepts,
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then DA accepts. If DR rejects, then DA rejects. DA is a decider for A.
To see this, note that from the construction of Tw, one sees that Tw accepts the set of every string (i.e.

Λ∗), a regular language, if T accepts w. If T does not accept w, then Tw will only accept strings of the

form an2

which is a nonregular language. That is if T accepts w, then L(Tw) is a regular language. If T

does not accept w, then L(T ) = {an2

| n ∈ N} is a nonregular language. If DR decides if a Turing machine
has a regular language or not, then DR can tell whether Tw accepts a regular or non-regular language.
Therefore, DA constructed using DR can decided A. Since one knows that A is undecidable, this leads to a
contradiction. �

Theorem 4.17 : (Rice’s Theorem) If P is a language consisting of Turing machine encodings such that
(1) P is nontrivial - P is not empty and does not contain every Turing machine.
(2) If T1 and T2 are Turing machines and L(T1) = L(T2), then 〈T1〉 ∈ P if and only if 〈T2〉 ∈ P .
Then P is an undecidable langauge.

Proof : This is proved by reducing A to P . Let DP be a decider of P . Let 〈T∅〉 be an encoding of a Turing
machine that rejects all strings; such a Turing machine exists. One can assume that 〈T∅〉 /∈ P , for otherwise
one could work with P c. Let T be a Turing machine such that 〈T 〉 ∈ P . Note that L(T ) 6= ∅, since if
L(T ) = ∅ = L(T∅), by condition (2), 〈T 〉 /∈ P because by assumption 〈T∅〉 /∈ P . Also note that condition (1)
shows that there exists a 〈T 〉 that is not in the same set (P or P c) as 〈T∅〉.

DA works as follows: First, from the encoding 〈M, w〉 where M is an arbitrary Turing machine, DA

constructs the Turing machine Mw. Mw behaves as follows. Given an input string x, if M rejects w, then
Mw rejects. If M accepts w, then simulate T on x. If T accepts x, then Mw accepts. If T reject x, then Mw

rejects x.
Now run DP on 〈Mw〉. If DP accepts, then DA accepts. If DP rejects 〈Mw〉, then DA rejects. This DA

is a decider for A.
Note that if M accepts w, then L(Mw) = L(T ). One knows that 〈T 〉 ∈ P , so by condition (2), 〈Mw〉 ∈ P .

If M rejects w or M loops on w, then L(Mw) = L(T∅) = ∅ and using the fact that T∅ /∈ P , so by condition
(2), 〈Mw〉 /∈ P . One reduces A to deciding whether 〈Mw〉 ∈ P . Since it is known that A is undecidable, P
is also undecidable. �

Theorem 4.18 : Let B = {〈T 〉 | T is a Turing machine that halts on ǫ, in other words, ǫ ∈ L(T )}. B is
undecidable.

Proof : B is the set of all encoding of Turing machine that halts on the tape of just blank symbols.
Certainly B is nontrivial. Let ⊔ represent the blank symbol, s0 be the start state, s⋆ as the accept state,
and s× be the reject state. A Turing machine with (s0,⊔, s0,⊔, R) ∈ δ will loop on the tape of all blank
symbols. This Turing machine is not in B. Certainly there are Turing machines that do halt on the empty
string. An example is any Turing machine that has (s0,⊔, s⋆,⊔, R) ∈ δ. Also any Turing machine that has
(s0,⊔, s×,⊔, R) ∈ δ will reject on the empty string. Therefore, B is not an empty language and not the
language of all Turing machine encodings.

Now suppose T1 and T2 are Turing machines such that L(T1) = L(T2). If 〈T1〉 ∈ B, then ǫ ∈ L(T1) =
L(T2), so ǫ ∈ L(T2) so 〈T2〉 ∈ B. Similarly, if 〈T2〉 ∈ B, then ǫ ∈ L(T2) = L(T1), which implies that 〈T1〉 ∈ B.
By Rice’s Theorem, B is undecidable. �

Remarks : If one actually wanted to prove the undecidability of B by reducing some undecidable problem to
B and constructing an actual decider, one could do so by simply imitating the proof of Rice’s Theorem with
B is place of the arbitrary language P .
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Section 5: Computable Functions

Remarks : In this section, the concept of reducibility will be made more formal through comptuable functions
and mapping reducibility.

Definition 5.1 : Let Λ be an alphabet. A function f : Λ∗ → Λ∗ is a (Turing) Computable Function if some
Turing machine T , on input w over Λ∗, halts with f(w), as the nonblank symbols, on its tape.

Definition 5.2 : Let Λ be an alphabet. A language A, over Λ, is Mapping Reducible to language B, over
Λ, denoted A ≤m B, if there is a computable function f : Λ∗ → Λ∗ such that for every string w, w ∈ A if
and only if f(w) ∈ B. One calls the function the reduction of A to B.

Theorem 5.3 : If A ≤m B and B is decidable, then A is decidable.

Proof : Assume that A and B is over the same alphabet or else encode every string of one language into the
other alphabet. Because B is decidable it has a decider Turing machine called DB. Let Tf be the Turing
machine that computes the value of the function f , the computing function (in the definition of mapping
reducibility). One can construct a decider DA for A as follows:

On any input w. DA will first run Tf as a sub-Turing machine to compute the value of f(w). Then DA

will run DB on f(w). If DB accepts f(w), then DA accepts. If DB rejects f(w), then DA rejects. Note
that DA accepts w if and only if DB accepts f(w). By definition of mapping reducibility, w ∈ A if and only
if f(w) ∈ B. Since DB is a decider for B it accepts exactly those strings in B. Thus, DA, as constructed,
accepts exactly those things in A. So, DA is the desired decider. �

Theorem 5.4 : The function + : N × N → N is a computable function.

Proof : This is the addition function of N. Note that ordinarily the natural number are represented over the
alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. For this paper, to create the computing Turing machine for the addition
function +, one uses the alphabet {0, 1, :}. Let 〈0〉 = 0. For n ∈ N such that n > 0, 〈n〉 = 1...1, n times.
Since the addition function takes an ordered pair as its argument, the : symbol is the delimiter. That is, for
a, b ∈ N, 〈(a, b)〉 = 〈a〉 : 〈b〉. So 〈(3, 4)〉 = 111 : 1111 and 〈(0, 6)〉 = 0 : 111111.

The state diagram of the computing Turing machine is given below:

s1

s2

s7

s3 s4 s5

s6

s7 s8 s9 s10 s11

s12 s13

s⋆

1 → 1, R

1 → 1, R

:→ 1, R

1 → 1, R

1 → 1, R

⊔ → ⊔, L
1 → ⊔, S

0 → ⊔, L
1 → ⊔, S

0 → 1, R

:→ 1, R 1 → 1, R

1 → 1, R

⊔ → ⊔, L 1 → ⊔, L

1 → ⊔, S

0 → ⊔, L

1 → 1, L

1 → ⊔, S
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What remains on the tape is the value +(a, b). Recall that if 0 is the value of some function, then 〈0〉 = 0
would be left. This Turing machine operates by merely combining the 1’s, by removing the delimiter for
:. However, one must be careful, when 0 is being added. The formal description of this Turing machine
is {{s1, ..., s13, s⋆}, {0, 1, :}, {0, 1, :,⊔}, δ, s1, s⋆, s×}, where the δ can be read off the state diagram. On this
machine, one only considers what is left on the tape when the machine accepts. One does not consider what
is left if the machine rejects, since this means the string was not even a proper encoding. �

Theorem 5.5 : Let Λ be some alphabet. f : Λ∗ → Λ∗ be a computable function, then {(w, f(w)) | w ∈ Λ∗}
is decidable.

Proof : Suppose that the ordered pair has an appropriate encoding. Suppose T is the computing Turing
machine for f . One can create a decider D for this language. It would be a two tape Turing machine. First,
it check whether the input string is an correct encoding of some ordered pair made of string in Λ∗. Then
run T on w on the second tape. T must halt on w by definition of the computing Turing machine. Then
check whether the second coordinate is the encoding of f(w) which is left on the tape simulating T on w.
D accepts the ordered pair if it is, and rejects if it does not match. �

Remarks : For the next problem, the Turing machine is as defined in Definition 3.7. That is, it has a finite
set of states called the halting states (no distinction between accept and reject) and moves left or right.
Recall the transition function has |Σ| |Γ| number of elements in its codomain. Each element of the codomain
is mapped to an ordered 3-tuple, a state, symbol, and direction. Let |Σ| = a and |Γ| = b, where a, b > 0. If
N

× = N\{0}, then a, b ∈ N
×. Then there are (2ab)ab number of transition functions and hence that many

Turing machines with a states and b symbols in the Tape alphabet. Running all of them on the blank tape
(or string ǫ), some will halt and some with loop. The ones that halt are known as busy beavers. Of those
Turing machine that halt on the blank tape, let c be the number of steps needed by the Turing machine,
that takes the longest to halt, to halt. This value c is the value of the Busy Beaver Function f on (a, b).

Definition 5.6 : Let a, b ∈ N
×. For any Turing machine T , let ΣT and ΓT be the set of state and tape

alphabet of T . Let Ba,b = {T | |Σ| = a, |Γ| = b, and T halts on ǫ}. Define B = {T | T is a Busy Beaver}.
Let g : B → N be defined by g(T ) = number of steps it takes T to halt on ǫ. Then define the Busy Beaver
Function f : N

× × N
× → N by

f(a, b) = max{g(T ) | T ∈ Ba,b}

Theorem 5.7 : The busy beaver function is not computable.

Proof : For this proof, suppose Λ is the language of the encoding of everything in consideration.
Suppose the Busy Beaver function f is computable. Then by Theorem 5.5, the set

X = {(a, b, c) | a, b ∈ N
× and c = f(a, b)} is decidable. Of course this information must be encoded in Λ.

Let B = {〈T 〉 | T accepts ǫ} be the undecidable language from Theorem 4.18.
Next to show B ≤m X , (B is mapping reducible to X) one must create the desired computing function

h. First, note that if f is computable, then there is a Turing machine that can check whether a string is
an encoding of a Turing machine in B and, from the encoding, leave on its tape the cardinality of that
machine’s set of state or tape alphabet. For all input that are not an encoding of Turing machines in B,
the Turing machine leaves one string which is not a legal or proper encoding of an ordered pair of natural
numbers. Let w be some string. The Universal Turing machine constructed in the paper had the ability to
check if w was a Turing machine encoding and read the number of elements in a = Σw and b = Γw and write
the encodings of those numbers on one of its four tapes. If w is a Turing machine encoding, one can use a
modified Universal Turing machine U ′ to check if it is in B. U ′ will simulate the encoded Turing machine w
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while keeping record of the number of steps it has gone through. It accepts w if it halts on or before f(a, b)
number of steps (the Busy Beaver Function) and rejects w if on the f(a, b)th step, the simulation is not in
an accept state. In fact, this U ′ is a decider of B, which one knows is undecidable, so the proof could end
here; however, one wishes to use f to construct a mapping reduction between B and X .

From the above, it is clear that there is a computable function g : Λ∗ → Λ∗ such that g(w) = 〈(a, b)〉
when w = 〈T 〉 is an encoding of a Turing machine in B and a = ΣT and b = ΓT . If w is not a legal encoding
of any Turing machine, map g(w) to a string in Λ∗ which is not a legal encoding of any (a, b) such that
a, b ∈ N

×.
Next, supposing the busy beaver function is computable, one can create a Turing machine such that given

an encoding of (a, b) such that a, b ∈ N
×, it returns the encoding of (a, b, c) such that c = f(a, b), where f is

the busy beaver function. This Turing machine would merely read a, b off its tape, run the computing Turing
machine Tf on 〈a, b〉 and write the encoding of c = f(a, b) at the end of the input (or some other reasonable
manner according to the encoding). For all strings that are not encodings of ordered pairs of positive natural
numbers, the Turing would leave a string on its tape which is not a legal encoding of a 3-tuple of natural
numbers. Define the function p as follows, p : Λ∗ → Λ∗ such that when w = (a, b), where a, b ∈ N

×, p(w)
is mapped to 〈(a, b, c)〉, where c = 〈f(a, b)〉 and when w is not a legal encoding of such an ordered pair of
natural number, p(w) is a string that is not a legal encoding of a 3-tuple of natural numbers. The above
Turing machine shows that p is a computable function.

Recall computable functions have the same set as its domain and codomain. Clearly composition of
computable functions are computable. Merely one run the computing Turing machine on the argument of
the first function. What is left on the tape is the argument of the second function. The range of the first
function is in the domain of the second function by definition, so everything is well defined. This shows that
the function h = p ◦ g is a computable function.

One claims that this h is the function which makes B ≤m X . So suppose that 〈T 〉 ∈ B. h(〈T 〉) =
p(g(〈T 〉)) = p(〈(a, b)〉) = 〈(a, b, c)〉, where a = |ΣT |, b = |ΓT |, c = f(a, b). However, h(T ) = (a, b, c) ∈ X by
definition of X . Suppose h(w) = (a, b, c) ∈ X . This means that w = 〈T 〉 such that T is a Turing machine in
B. To prove this, suppose that w is not an encoding of a Turing machine in B. By how the function p and
g where defined on those strings which were not encodings of Turing machine in B and not ordered pairs
of positive natural numbers, respectively, h(w) could not be a encoding of a 3-tuple in X . Contradiction!
Therefore B ≤m X . By Theorem 5.5, X is decidable. By Theorem 5.3, B is decidable. However this
contradicts Theorem 4.18, which asserted that B is undecidable. Therefore, the Busy Beaver function f can
not be computable. �
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