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Abstract. Herein I present multiple solutions to an improper integral using

elementary calculus and real analysis. The integral, sometimes known as the

Dirichlet integral, is often evaluated using complex-analytic methods, e.g. via
contour integration. While the proofs presented here may not be as direct as

certain complex-analytic approaches, they do illustrate the unique real variable

techniques for dealing with this type of problem.
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1. Elementary Approach to the Dirichlet Integral

The integral we work with here is ∫ ∞
−∞

sinx
x

dx.

Our claim is that
∫∞
−∞

sin x
x dx = π. We first show that the integral converges.

Noting that the integrand is even, a simple parity check implies that we may work
with

∫∞
0

sin x
x dx. If we let

I =
∫ ∞

0

sinx
x

dx,

then equivalently,
I = lim

a↘0
b→∞

Iab

where

Iab =
∫ b

a

sinx
x

dx.

We demonstrate convergence through a simple integration by parts argument. First,
note that if the upper limit of our integral I is finite, then the integral is convergent
since sin x

x is continuous for all finite x (for x = 0, we have lim
x→0

sin x
x = 1). In
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other words, for the purpose of showing convergence, we may consider sin x
x to be a

continuous function at zero whose value at zero is 1. Note that

Iab =
∫ b

a

sinx
x

dx =
∫ b

a

1
x

d(1− cosx)
dx

dx.

Integration by parts gives

Iab =
1− cos b

b
− 1− cos a

a
+
∫ b

a

1− cosx
x2

dx

=
1− cos b

b
− sin a · sin a

a
· 1

1 + cos a
+
∫ b

a

1− cosx
x2

dx.

Now

I =
∫ ∞

0

sinx
x

dx = lim
a↘0
b→∞

Iab =
∫ ∞

0

1− cosx
x2

dx,

where the last integral on the right is convergent (one way to see this is to apply
the integral test to

∫∞
1

1−cos x
x2 dx and consider

∫ 1

0
1−cos x
x2 dx as the integral of a

continuous function). Having established convergence, we now calculate the value.
First, we state and prove a special case of the Riemann-Lebesgue lemma.

Lemma 1.1. If f is continuous on [a, b], then

lim
λ→∞

∫ b

a

f(t) sinλt dt = 0.

Proof. Let n be a natural number and P = {t0, t1, . . . , tn} be the partition that
divides [a, b] into n equal subintervals, where

a = t0 < t1 < ... < tn = b,

ti − ti−1 =
b− a
n

.

Then∫ b

a

f(t) sinλt dt =
n∑
i=1

∫ ti

ti−1

f(t) sinλt dt

=
n∑
i=1

∫ ti

ti−1

[f(t)− f(ti)] sinλt dt+
n∑
i=1

f(ti)
∫ ti

ti−1

sinλt dt.

Since f is continuous on [a, b], f is uniformly continuous on [a, b] . Given ε > 0,
there is some δ > 0 such that, for all x and y in [a, b] ,

|x− y| < δ ⇒ |f(x)− f(y)| < ε

2(b− a)
.

If n > b−a
δ , then for t such that ti−1 ≤ t ≤ ti, |t− ti| ≤ |ti − ti−1| = b−a

n < δ
(i = 1, ..., n) implies

|f(t)− f(ti)| <
ε

2(b− a)
.
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Consequently,∣∣∣∣∣
n∑
i=1

∫ ti

ti−1

[f(t)− f(ti)] sinλt dt

∣∣∣∣∣ ≤
n∑
i=1

∫ ti

ti−1

|f(t)− f(ti)| · |sinλt| dt

≤
n∑
i=1

∫ ti

ti−1

|f(ti)− f(ti−1)| dt

<
ε

2(b− a)
· (b− a) =

ε

2
.

On the other hand, we compute∣∣∣∣∣
∫ ti

ti−1

sinλt dt

∣∣∣∣∣ =
∣∣∣∣− 1
λ

[cosλti − cosλti−1]
∣∣∣∣

≤ |cosλti|+ |cosλti−1|
λ

≤ 2
λ
.

Since f is continuous on [a, b], f is bounded above, i.e., there is some M such that
|f(x)| ≤M for all x in [a, b]. Hence,∣∣∣∣∣

n∑
i=1

f(ti)
∫ ti

ti−1

sinλt dt

∣∣∣∣∣ ≤ M

n∑
i=1

∣∣∣∣∣
∫ ti

ti−1

sinλt dt

∣∣∣∣∣
≤ M

n∑
i=1

2
λ

=
2Mn

λ
.

Choose a real number R so that R > 4Mn
ε . If λ > R,∣∣∣∣∣

∫ b

a

f(t) sinλt dt − 0

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

∫ ti

ti−1

[f(t)− f(ti)] sinλt dt

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=1

f(ti)
∫ ti

ti−1

sinλt dt

∣∣∣∣∣
<

ε

2
+

2Mn

λ
<

ε

2
+
ε

2
= ε.

Since ε was arbitrary, it follows that lim
λ→∞

∫ b
a
f(t) sinλt dt = 0, as desired. �

We want to write our original integral in a form that allows us to apply the lemma.
Let c be an arbitrary positive number. The substitution x = λt, dx = λ dt gives

(1.2) lim
λ→∞

∫ c

0

sinλt
t

dt = lim
λc→∞

∫ λc

0

sinx
x

dx = I.

Hence, the integral we want to evaluate can be rewritten as a limit of integrals over
a fixed interval. However, we cannot simply apply our lemma to f(t) = 1

t . Instead,
we evaluate our integral in terms of an expression we can easily determine. Keeping
the details of the lemma in mind, we try to determine a function g such that the
function f, whose values are defined by

f(x) =
1
x
− 1
g(x)

=
g(x)− x
xg(x)

x 6= 0,
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is continuous on a closed interval [0, c] , c > 0. In particular, we require lim
x→0

f(x)

to exist (and equal f(0)). Let us assume for now that lim
x→0

g(x) = 0 and g′ exists.
Then we may apply l’Hopital’s rule to get

lim
x→0

f(x) = lim
x→0

g(x)− x
xg(x)

= lim
x→0

g′(x)− 1
g(x) + g′(x)x

.

Now if we further assume that lim
x→0

g′(x) = 1 and g′′ exists, then applying l’Hopital’s
rule again gives

lim
x→0

f(x) = lim
x→0

g′(x)− 1
g(x) + g′(x)x

= lim
x→0

g′′(x)
g′(x) + g′′(x)x+ g′(x)

.

Finally, if we assume that lim
x→0

g′′(x) = 0, and recall that we want f continuous,
then

lim
x→0

f(x) = lim
x→0

g′′(x)
2

= 0 = f(0).

Moreover, our set of assumptions for g implies that lim
x→0

g(x) + g′′(x) = 0. These
conditions suggest that g = sin is a candidate, and it is easy to check that sine does
satisfy our assumptions for g. If we define

f(t) =

{
1
t −

1
sin t if t > 0

0 if t = 0
,

then it follows from the above discussion that f is continuous on the interval [0, c],
provided that we restrict c so that 0 ≤ c < π. We may apply Lemma 1.1 to f to
get

(1.3) lim
λ→∞

∫ c

0

sinλt
t

dt = lim
λ→∞

∫ c

0

sinλt
sin t

dt.

We know from (1.2) that the expression on the left-hand side of this last equality is
equivalent to the integral we want to evaluate. If we can evaluate the expression on
the right-hand side of (1.3), then we are done. Note that we may replace λ with an
expression that tends to infinity. To complete the problem, we prove the following
trigonometric identity:

(1.4) 1 + 2 cos 2t+ 2 cos 4t+ ...+ 2 cos 2nt =
sin(2n+ 1)t

sin t
.

From the identity sin a− sin b = 2 sin
(
a−b

2

)
cos
(
a+b

2

)
, we have

sin(2k + 1)t− sin(2k − 1)t = 2 sin (t) cos (2kt) .

Hence,

1 + 2 cos 2t+ ...+ 2 cos 2nt = 1 +
1

sin t

[
n∑
k=1

sin(2k + 1)t− sin(2k − 1)t

]

= 1 +
1

sin t
[sin(2n+ 1)t− sin t]

=
sin(2n+ 1)t

sin t
,

as desired.
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Now notice the similarity between the integrand of the expression on the right-hand
side of (1.3) and the right-hand side of (1.4). In fact, we can safely replace λ with
2n + 1 in (1.3) since 2n + 1 → ∞ as n → ∞. Since (1.3) holds for 0 ≤ c < π, we
may integrate both sides of (1.4) over the interval

[
0, π2

]
to get∫ π

2

0

sin(2n+ 1)t
sin t

dt =
∫ π

2

0

(1 + 2 cos 2t+ 2 cos 4t+ ...+ 2 cos 2nt) dt

=
π

2
+
[
sin 2t+

sin 4t
2

+ ...+
sin 2nt
n

]π
2

0

=
π

2
.

Hence (1.3) in the case c = π
2 implies

lim
λ→∞

∫ π
2

0

sinλt
t

dt = lim
λ→∞

∫ π
2

0

sinλt
sin t

dt = lim
n→∞

∫ π
2

0

sin(2n+ 1)t
sin t

dt =
π

2
.

We recall from (1.2) that∫ ∞
0

sinx
x

dx = I = lim
λ→∞

∫ π
2

0

sinλt
t

dt =
π

2
.

Another parity check shows that
∫∞
−∞

sin x
x dx = π, as desired.

2. The Dirichlet Integral and Fourier Series

Many of the ideas used in the previous section arise naturally in the basic analysis
of Fourier series. We introduce the basic definitions and then prove a theorem that
implicitly contains the solution to the Dirichlet integral.

If f is any function that is integrable on [−π, π], the numbers

av =
1
π

∫ π

−π
f(t) cos vt dt, bv =

1
π

∫ π

−π
f(t) sin vt dt

are called the Fourier coefficients of f. We can write down the series

a0

2
+
∞∑
v=1

(av cos vx+ bv sin vx) ,

which is called the Fourier series corresponding to f. We want to know under what
conditions does the Fourier series corresponding to f actually converge to f . We
assume that f is also 2π periodic. Let us consider the partial sums

Sn(x) =
a0

2
+

n∑
v=1

(av cos vx+ bv sin vx) .

By substituting the expressions for the coefficients av and bv found above and
interchanging the order of integration and summation we get

Sn(x) =
1
π

∫ π

−π
f(t)

[
1
2

+
n∑
v=1

(cos vt cos vx+ sin vt sin vx)

]
dt.

or,

Sn(x) =
1
π

∫ π

−π
f(t)

[
1
2

+
n∑
v=1

cos v(t− x)

]
dt,
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Since sin a− sin b = 2 sin
(
a−b

2

)
cos
(
a+b

2

)
,

cos v(t− x) =
sin (v + 1

2 )(t− x)− sin (v − 1
2 )(t− x)

2 sin ( t−x2 )
.

If we sum this last expression from 1 to n, we would get a telescoping sum due to
the right-hand side. Consequently,

Sn(x) =
1

2π

∫ π

−π
f(t)

sin (n+ 1
2 )(t− x)

sin ( t−x2 )
dt.

Substituting u = (t− x) and recalling the periodicity of the integrand, we have

(2.1) Sn(x) =
1

2π

∫ π

−π
f(x+ u)

sin (n+ 1
2 )u

sin u
2

dt.

Note that this form of the partial sum Sn(x) was largely obtained by applying the
same argument used to derive the equation in (1.4). In fact, if we replace t with t

2
in (1.4) and divide both sides by 2, we can define the expression

Dn(x) =
1
2

+
n∑
v=1

cos vx =
sin (n+ 1

2 )
2 sin x

2

,

as the Dirichlet kernel. Clearly, the Dirichlet kernel will play an important role in
showing that Sn(x) tends to f(x). Before we can impose conditions on f so that
Sn(x) will indeed converge and represent f(x), we introduce the following notions.

A function f is sectionally smooth on an interval if it is itself sectionally continuous
(i.e., continuous on the interval except at a finite number of jump discontinuities;
also referred to as piecewise continuous) and if its first derivative f ′ is sectionally
continuous.

Now recall that we defined f to be periodically extended beyond the interval [−π, π].
But for each point at which f(x) has a jump discontinuity, we will, if needed, write

f(x) =
1
2
[
f(x−) + f(x+)

]
,

where f(x−) and f(x+) are the limits of f(y) as y approaches x from the left and
from the right, respectively. This last equation clearly holds for each point x at
which f is continuous.

We want to prove that if f is sectionally smooth and satisfies the last equation,
then the partial sum Sn(x) in the form shown in (2.1), tends to f(x). The special
case of the Riemann-Lebesgue lemma (Lemma 1.1) seems applicable here, but we
asserted that f was to be continuous in the statement of the lemma. But in fact,
the exact same proof would demonstrate the conclusion of the Riemann-Lebesgue
lemma for a sectionally continuous function f . This follows from the fact that
we could always express the integral of a piecewise continuous function as a finite
number of integrals that appear in the limit of Lemma 1.1. However, we can easily
generalize the Riemann-Lebesgue lemma to integrable functions.

Lemma 2.2. If f is integrable on [a, b], then

lim
λ→∞

∫ b

a

f(t) sinλt dt = 0 and lim
λ→∞

∫ b

a

f(t) cosλt dt = 0.
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Proof. We prove the first limit. The second limit follows from the same method.
A function s is called a step function if there is a partition P = {t0, . . . , tn} of [a, b]
such that s is a constant on each (ti−1, ti) . We will use the fact that if f is integrable
on [a, b], then for any ε > 0 there is a step function s ≤ f with

∫ b
a
f −

∫ b
a
s < ε.

This means that∣∣∣∣∣
∫ b

a

f(x) sinλx dx−
∫ b

a

s(x) sinλx dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

[f(x)− s(x)] sinλx dx

∣∣∣∣∣
≤

∫ b

a

[f(x)− s(x)] · |sinλx| dx

≤
∫ b

a

[f(x)− s(x)] dx < ε.

If s has the values si on (ti−1, ti) , then

lim
λ→∞

∫ b

a

s(x) sinλx dx = lim
λ→∞

n∑
i=1

si

∫ ti

ti−1

sinλx dx = 0.

Hence,

lim
λ→∞

∣∣∣∣∣
∫ b

a

f(x) sinλx dx

∣∣∣∣∣ < ε

Since ε was arbitrary, we conclude that lim
λ→∞

∫ b
a
f(t) sinλt dt = 0, as desired. �

Now we state and prove the main theorem of this section.

Theorem 2.3. If the function f is sectionally smooth and at each point of discon-
tinuity of x satisfies the equation f(x) = 1

2 [f(x−) + f(x+)] , then the Fourier series
corresponding to f(x) converges at every point and represents the function and we
have

lim
n→∞

Sn(x) = lim
n→∞

1
2π

∫ π

−π
f(x+ t)

sin (n+ 1
2 )t

sin t
2

dt = f(x).

Proof. We first subdivide the interval of integration at the origin. If we fix the
values of x, the function

s(t) =
f(x+ t)− f(x+)

2sin t2
is sectionally continuous on [0, π] . This is clear when t ∈ (0, π], but the continuity
of s at t = 0 follows from the existence of the right-hand derivative

lim
t→0, t>0

f(x+ t)− f(x+)
t

= lim
t→0

f(x+ t)− f(x+)
2 sin t

2

·
2 sin t

2

t

= lim
t→0

f(x+ t)− f(x+)
2 sin t

2

.

By Lemma 2.2 (Riemann-Lebesgue),

1
π

∫ π

0

s(t) sinλt dt =
1

2π

∫ π

0

f(x+ t)
sinλt
sin t

2

− 1
2π

∫ π

0

f(x+)
sinλt
sin t

2

tends to zero as λ = n+ 1
2 increases without bound. We can take the factor f(x+)

out of the second integral on the right. Moreover, a familiar calculation using the
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Dirichlet kernel shows that for λ = n + 1
2 , the integral

∫ π
0

sinλt
2 sin t

2
is equal to π

2 . It
follows immediately that

lim
λ→∞

1
2π

∫ π

0

f(x+ t)
sinλt
sin t

2

=
1
2
f(x+).

Similarly, we obtain

lim
λ→∞

1
2π

∫ 0

−π
f(x+ t)

sinλt
sin t

2

=
1
2
f(x−)

for the interval [−π, 0] . Adding these last two equations gives

lim
λ→∞

1
2π

∫ π

−π
f(x+ t)

sinλt
sin t

2

= f(x),

as desired. �

Corollary 2.4.
∫∞
−∞

sin x
x dx = π.

Proof. In the above theorem, we obtained the equation
1

2π

∫ π

0

f(x+ t)
sinλt
sin t

2

=
1
2
f(x+).

If we let x = 0, f(t) = sin t
2

t in this equation, and substitute u = λt, then

lim
λ→∞

∫ λπ

0

sinu
u

du = π · lim
y↘0

sin y
2

y
=
π

2
.

By parity symmetry, we find that
∫∞
−∞

sin x
x dx = π, as desired. �

This approach to the Dirichlet integral is perhaps more structured than the previous
approach. By attempting to prove a theorem in the setting of Fourier series, the
Dirichlet kernel arises more naturally. Yet both approaches are inevitably very
similar due to the usage of the same theorems and equations.

3. The Dirichlet Integral as a Generalized Function

We may also think of the Dirichlet integral in terms of a generalized function. The
notion of a generalized function, also called a distribution, was originally introduced
to solve problems in which the classical idea of a function was inadequate. A
generalized function is a continuous linear functional on a vector space of so called
“test functions.” We define a generalized function by its action on all of the test
functions in the vector space. We can choose the space K of test functions ϕ in
many ways, but we often require these test functions to satisfy certain smoothness
conditions.

Let K be the set of all finite functions ϕ on (−∞,∞) which are also infinitely
differentiable, where each function ϕ ∈ K, being finite, vanishes outside some finite
interval depending on the choice of ϕ. K is then a linear space, and we introduce
the notion of convergence on K as follows:

Definition 3.1. A sequence (ϕn) of functions in K is said to converge to a function
ϕ ∈ K provided that there exists an interval outside which all the functions ϕn
vanish and that the sequence (ϕ(k)

n ) of derivatives of order k converges uniformly
on this interval to ϕ(k) for each k = 0, 1, 2, ... .
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The linear space K just introduced is called the test space, and the functions in K
are called test functions.

Definition 3.2. Every continuous linear functional T (ϕ) on the test space K is
called a generalized function (or distribution) on (−∞,∞) , where continuity of
T (ϕ) means that ϕn → ϕ in K implies T (ϕn)→ T (ϕ)

If f(x) is a locally integrable function (a function integrable on every compact set
of its domain), then f(x) generates a generalized function via the expression

Tf (ϕ) = (f, ϕ) =
∫ ∞
−∞

f(x)ϕ(x) dx,

which is a continuous linear functional on K. Many of the operations defined on
smooth functions with compact support can also be defined for distributions. How-
ever, the notion we need most to compute the Dirichlet integral is presented in the
following theorem

Theorem 3.3. Let X be an open set in Rm, and Ω be a measure space. Given
f(x, ω), for each ω ∈ Ω, a generalized function of x ∈ X, define:(∫

Ω

f(·, ω) dω, ϕ
)

:=
∫

Ω

(f(·, ω)ϕ) dω, ϕ ∈ D(X).

Assuming that the integral above is well-defined and generates a distribution, we
have

∂

∂xi

∫
Ω

f(x, ω) dω =
∫

Ω

∂

∂xi
f(x, ω) dω.

This operation is known as differentiation under the integral sign. To justify the
usage of this operation to compute the Dirichlet integral, we first note that the
expression

∫∞
0

sinα·x
x dx is locally integrable and hence a parity argument shows that∫∞

−∞
sinα·x
x dx generates a distribution. Moreover, we have already demonstrated

the convergence of
∫∞
−∞

sin x
x dx in the ordinary sense. Hence, we should be able to

apply Theorem 3.3 to
∫∞
−∞

sinα·x
x dx.

Furthermore, it is certainly permissible to differentiate
∫∞
−∞

sinα·x
x dx under the in-

tegral sign to determine if the resulting expression is a continuous linear functional.
If this is true (which we soon find out is the case), we may conclude that the an-
tiderivative was indeed a distribution and differentiating under the integral sign
was allowable. Hence we work with ∂

∂α

∫∞
−∞

sinα·x
x dx in a distributional sense. We

rewrite the integrand to introduce Fourier phases as follows

∂

∂α

∫ ∞
−∞

sinα · x
x

dx =
∂

∂α

∫ ∞
−∞

eiαx − e−iαx

2ix
dx.

Differentiating under the integral sign gives

∂

∂α

∫ ∞
−∞

sinα · x
x

dx =
∫ ∞
−∞

∂

∂α

eiαx − e−iαx

2ix
dx =

1
2

∫ ∞
−∞

(
eiαx + e−iαx

)
dx.

Noting that the Fourier transform (non-unitary angular frequency convention) of
the constant function f(x) = 1, is the Dirac delta function multiplied by 2π, we
have

∂

∂α

∫ ∞
−∞

sinα · x
x

dx = 2πδ(α).
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The Dirac delta “function” is a continuous linear functional, and it is the distribu-
tional derivative of the Heaviside step function. Hence, integrating both sides of
the last equation with respect to α from −c to c and noting the parity symmetry
shows that in the sense of generalized functions, we have∫ ∞

−∞

sin c · x
x

dx = πsgn(c).

Once again, we have already demonstrated convergence in the ordinary sense of
the left hand side for c = 1. The same argument shows convergence in this sense
for c in a neighborhood of 1. By integrating against test functions supported about
c = 1, we conclude that the Dirichlet integral evaluates to π, as before.

This approach to the Dirichlet integral demonstrates the usefulness of differentiation
under the integral sign. It is actually possible to calculate the value of the Dirichlet
integral by applying Fourier inversion techniques to the sinc function, but this
approach is more difficult to justify and perhaps less elegant. By working with
generalized functions, we were lead to a quick solution to a concrete problem.

4. Concluding Remarks

Although we have refrained from using complex analysis to evaluate the Dirichlet
integral, the solutions presented above are not necessarily less elegant. Perhaps
one difference is that contour integration via the Cauchy integral formula and the
method of residues is a direct technique for evaluating definite integrals, whereas
the solutions above may seem relatively indirect. For example, the first approach,
when divorced from the setting of Fourier series, may seem like a series of tricks.
Considering the first two approaches together, both are perhaps rather indirect
methods to obtaining the answer to our problem. Although the generalized func-
tions approach may seem more direct than the previous approaches, the value of
the Dirichlet integral is often used to establish theorems in distribution theory and
Fourier transforms. For instance, the value of the Dirichlet integral can be used to
actually prove that the Fourier transform of f(x) = 1 is the Dirac delta. Hence,
there is perhaps an element of circularity in our approaches.

While the complex-analytic route may be seem more straightforward for integrals
such as the Dirichlet integral, there are more direct approaches to our problem that
use real analysis. For the sake of having an elementary approach that leads to a
direct evaluation of the Dirichlet integral, we conclude with the following solution.

We continue with the line of thought introduced in our initial demonstration of the
convergence of the Dirichlet integral. Recall that we showed that

I =
∫ ∞

0

sinx
x

dx =
∫ ∞

0

1− cosx
x2

dx.

Now the trick is to rewrite 1
x2 as

∫∞
0
te−tx dt so that

I =
∫ ∞

0

1− cosx
x2

dx =
∫ ∞

0

∫ ∞
0

(1− cosx) · te−tx dt dx.
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Since everything is positive, Tonelli’s theorem says that we may reverse the order
of integration so that

I =
∫ ∞

0

∫ ∞
0

(1− cosx) · te−tx dt dx =
∫ ∞

0

∫ ∞
0

(
te−tx − t cosxe−tx

)
dx dt.

A simple computation shows that∫
t cosxe−tx dx =

1
t2 + 1

(
t sinxe−tx − t2 cosxe−tx

)
so we have

I =
∫ ∞

0

[
−e−tx −

(
t

1 + t2
sinxe−tx − t2

1 + t2
cosxe−tx

)]x=∞

x=0

dt

=
∫ ∞

0

1
1 + t2

dt = [arctan t]∞0 =
π

2
.

It follows that
∫∞
−∞

sin x
x dx = π

2 , as desired.
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