HILBERT'S NULLSTELLENSATZ AND ITS APPLICATION IN GRAPH THEORY

JE-OK CHOI

Abstract

Hilbert's Nullstellensatz, one of the fundamental theorems of Algebraic Geometry, is a powerful algebraic technique that has extensive applications in Graph Theory. In this paper, we prove Combinatorial Nullstellensatz, a localization of Hilbert's Nullstellensatz, which asserts a stronger conclusion. We then present its applications in demonstrating the results on the existence of regular subgraphs, the choosability of directed graphs, and the cube covering by hyperplanes.

Contents

1. Hilbert's Nullstellensatz 1
2. Regular Subgraphs 3
3. Colorings of Directed Graphs 4
4. Cube Covering by Hyperplanes 9
Acknowledgments 9
References 9

1. Hilbert's Nullstellensatz

Theorem 1.1. (Hilbert's Nullstellensatz) For F an algebraically closed field, let $f, g_{1}, \ldots g_{m}$ be polynomials in $F\left[x_{1}, \ldots, x_{n}\right]$. If $g_{i}(x)=0$ for all $1 \leq i \leq m$ implies $f(x)=0$, then there exists $k \in \mathbb{N}$ and $h_{1}, \ldots, h_{m} \in F\left[x_{1}, \ldots x_{n}\right]$ such that $f^{k}=$ $\sum_{i=1}^{m} h_{i} g_{i}$.

For its combinatorial application, one considers the special case with the following conditions:
(1) $m=n$
(2) Each g_{i} is univariate in the form of $\prod_{s \in S_{i}}\left(x_{i}-s\right)$
(3) The condition on algebraic closure is loosened

Theorem 1.2. (Combinatorial Nullstellensatz) For F a field and $S_{1}, . ., S_{n}$ nonempty subsets of F, let $g_{i}\left(x_{i}\right)=\prod_{s \in S_{i}}\left(x_{i}-s\right)$. If, for $f \in F\left[x_{1}, \ldots, x_{n}\right], f\left(s_{1}, \ldots, s_{n}\right)=$ $0 \forall s_{i} \in S_{i}$, then there exists $h_{1}, \ldots, h_{n} \in F\left[x_{1}, \ldots x_{n}\right]$ such that $\operatorname{deg}\left(h_{i}\right) \leq \operatorname{deg}(f)-$ $\operatorname{deg}\left(g_{i}\right)$ and $f=\sum_{i=1}^{n} h_{i} g_{i}$. Furthermore, if $f, g_{1}, \ldots, g_{n} \in R\left[x_{1}, \ldots, x_{n}\right]$ for R a subring of F, then $h_{1}, \ldots, h_{n} \in R\left[x_{1}, \ldots x_{n}\right]$

In order to prove Combinatorial Nullstellensatz, we need the following lemma.

[^0]Lemma 1.3. For F a field and $p \in F\left[x_{1}, \ldots, x_{n}\right]$, suppose that the degree of p as a polynomial in x_{i} is at most t_{i} and $S_{i} \subset F$ such that $\left|S_{i}\right| \geq t_{i}+1 \forall i$. If $p\left(x_{1}, \ldots, x_{n}\right)=0 \forall\left(x_{1}, \ldots x_{n}\right) \in S_{1} \times \ldots \times S_{n}$, then $p \equiv 0$
Proof. (Induction on n)
(1) Base case: For $n=1$, a non-zero single-variable polynomial of degree t_{1} can have at most t_{1} distinct zeros by the Fundamental Theorem of Algebra. Hence, $p \equiv 0$.
(2) Inductive case: For $n \geq 2$, assume true for $n-1$.

Let $p=p\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial satisfying the hypotheses. p can be written as a polynomial in x_{n} :

$$
p=\sum_{i=0}^{t_{n}} p_{i}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{i}
$$

Note that the degree of each p_{i} as a polynomial in x_{j} is at most t_{j}. For each fixed $(n-1)$-tuple $\left(c_{1}, \ldots, c_{n-1}\right) \in S_{1} \times \ldots \times S_{n-1}$,

$$
p\left(x_{n}\right)=\sum_{i=0}^{t_{n}} p_{i}\left(c_{1}, \ldots, c_{n-1}\right) x_{n}^{i}=0 \text { for all } x_{n} \in S_{n}
$$

Thus, $p_{i}\left(x_{1}, \ldots x_{n}\right)=0$ for all $\left(x_{1}, \ldots, x_{n-1}\right) \in S_{1} \times \ldots \times S_{n-1}$. Then, by the induction hypothesis, $p_{i} \equiv 0$ for all i, and, consequently, $p \equiv 0$.

Proof of Combinatorial Nullstellensatz. . Let $t_{i}=\left|S_{i}\right|-1$ for all i.

$$
f\left(x_{1}, \ldots, x_{n}\right)=0 \text { for all n-tuple }\left(x_{1}, \ldots, x_{n}\right) \in S_{1} \times \ldots S_{n}
$$

For each $i, 1 \leq i \leq n, g_{i}$ can be written as follows:

$$
g_{i}\left(x_{i}\right)=\prod_{s \in S_{i}}\left(x_{i}-s\right)=x_{i}^{t_{i}+1}-\sum_{j=0}^{t_{i}} g_{i j} x_{i}^{j}
$$

Hence, for $s \in S_{i}$,

$$
x_{i}^{t_{i}+1}=\sum_{j=0}^{t_{i}} g_{i j} x_{i}^{j}
$$

Using the above relation, one can repeatedly replace x_{i}^{j} in f where $1 \leq i \leq n$ and $j>t_{i}$ by a linear combination of lower degree terms. Let \bar{f} be the resulting polynomial whose degree in x_{i} is at most t_{i}. Then, \bar{f} is f subtracted by the linear combination $\sum_{i=1}^{n} h_{i} g_{i}$ where $h_{i} \in F\left[x_{1}, \ldots, x_{n}\right]$ and $\operatorname{deg}\left(h_{i}\right) \leq \operatorname{deg}(f)-\operatorname{deg}\left(g_{i}\right)$ for $1 \leq i \leq n$. Moreover, the coefficients of each h_{i} are in the smallest ring containing the coefficients of f and g_{1}, \ldots, g_{n}. Since

$$
\bar{f}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)=0 \text { for all n-tuple }\left(x_{1}, \ldots, x_{n}\right) \in S_{1} \times \ldots S_{n}
$$

$\bar{f} \equiv 0$, by Lemma 1.3. Thus, $f=\sum_{i=1}^{n} h_{i} g_{i}$.
Corollary 1.4. For F an arbitrary field, let f be a polynomial in $F\left[x_{1}, \ldots, x_{n}\right]$. Suppose $\operatorname{deg}(f)=\sum_{i=1}^{n} t_{i}$ where $t_{i} \geq 0$ for all i and the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in f is nonzero. If S_{1}, \ldots, S_{n} are subsets of F such that $\left|S_{i}\right|>t_{i}$, then there exists an n-tuple $\left(s_{1}, \ldots, s_{n}\right) \in S_{1} \times \ldots \times S_{n}$ such that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

Proof. Without the loss of generality, assume that $\left|S_{i}\right|=t_{i}+1$. Suppose that there exists no such n-tuple, and let $g_{i}\left(x_{i}\right)=\prod_{s \in S_{i}}\left(x_{i}-s\right)$. By Theorem 1.2, there exists polynomials $h_{1}, \ldots h_{n}$ in $F\left[x_{i}, \ldots, x_{n}\right]$ such that $f=\sum_{i=1}^{n} h_{i} g_{i}$ and $\operatorname{deg}\left(h_{i}\right) \leq$ $\operatorname{deg}(f)-\operatorname{deg}\left(g_{i}\right)$. For each $1 \leq i \leq n$, the degree of $h_{i} g_{i}=h_{i} \prod_{s \in S_{i}}\left(x_{i}-s\right)$ is at most $\operatorname{deg}(f)$, and if there are any monomials of degree $\operatorname{deg}(f)$, they are products of $x_{i}^{t_{i}+1}$. Hence, the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in the right side is zero, which leads to a contradiction.

2. Regular Subgraphs

Definition 2.1. A graph G is an ordered pair (V, E) consisting of V, the set of vertices, and E, the set of edges which are unordered pairs of vertices in V.

Definition 2.2. A graph $G=(V, E)$ is called regular if every vertex has the same degree. G is d-regular if every vertex is of degree d.

Definition 2.3. A graph $G=(V, E)$ is called simple if G contains no multiple edges, i. e. each pair of vertices can have at most one edge that is incident to them.

Theorem 2.4. Every simple 4-regular contains a 3 -regular subgraph.
The preceding theorem was conjectured by Berge and Sauer and, later, proved by Taśkinov. However, if the assumption on simplicity is relaxed, the result is false, as demonstrated by a 3 -vertex graph with two edges between each pair of vertices. In this case, one extra edge is sufficient to ensure the existence of a 3-regular subgraph. Hilbert's Nullstellensatz shows not only the existence of a 3-regular subgraph within an "almost" 4-regular graph but also more generalized result stated as follows:

Theorem 2.5. For p a prime, any loopless graph $G=(V, E)$ with average degree greater than $2 p-2$ and maximum degree at most $2 p-1$ contains a p-regular subgraph.

Proof. For $v \in V$ and $e \in E$, let $a_{v, e}=1$, if $v \in e$, and $a_{v, e}=0$, otherwise. Consider the following polynomial in $\left(x_{e}\right)_{e \in E}$ over $G F(p)$:

$$
F\left(\left(x_{e}\right)_{e \in E}\right)=\prod_{v \in V}\left[1-\left(\sum_{e \in E} a_{v, e} x_{e}\right)^{p-1}\right]-\prod_{e \in E}\left(1-x_{e}\right)
$$

Due to the assumption on average degree,

$$
\begin{aligned}
\frac{2|E|}{|V|} & >2 p-2 \\
|E| & >(p-1)|V|
\end{aligned}
$$

Hence, the degree of F is $|E|=\sum_{e \in E} t_{e}$ where $t_{e}=1$ for all $e \in E$. The coefficient of $\prod_{e \in E} x_{e}^{t_{e}}=\prod_{e \in E} x_{e}=(-1)^{|E|+1} \neq 0$. Let $S_{e}=\{0,1\}$ for all $e \in E$. Since $\left|S_{e}\right|>t_{e}$ for all $e \in E$, by Corollary 1.4, there exists $\left(s_{e}\right)_{e \in E}$ such that $s_{e} \in S_{e}$ for all $e \in E$ and $F\left(\left(s_{e}\right)_{e \in E}\right) \neq 0$. Such vector is not the zero vector, since $F(\mathbf{0})=$ $\prod_{v \in V} 1-\prod_{e \in E} 1=1-1=0$. Thus, $\prod_{e \in E}\left(1-s_{e}\right)=0$. Then, for each $v \in V$, $\sum_{e \in E} a_{v, e} s_{e} \equiv 0(\bmod \mathrm{p})$. Otherwise, by Fermat's Little Theorem, $\sum_{e \in E} a_{v, e} s_{e} \equiv 1$ $(\bmod \mathrm{p})$, and $F\left(\left(s_{e}\right)_{e \in E}\right)=0$. Thus, in the subgraph consisting of all edges $e \in E$ such that $s_{e}=1$, all the endpoints of the edges are of degree p, since the maximum degree is at most $2 p-1$.

One can easily see that the special case $p=3$ of the above result demonstrates the existence of a 3 -regular subgraph within a 4 -regular graph with an extra edge.

3. Colorings of Directed Graphs

Definition 3.1. An orientation of an undirected graph $G=(V, E)$ is a map $D: E \mapsto E^{\prime}$ which maps an unordered pair of vertices into an ordered pair of the same vertices, thus, assigning a direction to each edge of G.

Hence, an orientation transforms its underlying undirected graph into a directed graph, or a digraph, whose definition is formally stated as follows:

Definition 3.2. A directed graph, or digraph, D is an ordered pair (V, E) consisting of V, the set of vertices, and E, the set of directed edges which are ordered pairs of vertices in V.

Definition 3.3. A vertex coloring of a directed or an undirected graph $G=$ (V, E) is a map $c: V \mapsto \mathbb{Z}$ that assigns a color to each vertex of G .

Definition 3.4. A vertex coloring $c: V \mapsto Z$ of a directed or an undirected graph $G=(V, E)$ is proper if $c\left(v_{i}\right) \neq c\left(v_{j}\right)$ for all $\left(v_{i}, v_{j}\right) \in E$.

Definition 3.5. A directed or an undirected graph $G=(V, E)$ is d-colorable if there exists a proper vertex coloring $c: V \mapsto\{1, \ldots, d\}$.

Definition 3.6. For a directed or an undirected graph $G=(V, E)$ and a function $f: V \mapsto \mathbb{N}, \mathrm{G}$ is f-choosable if for every assignment of a set of integers $S(v) \subset \mathbb{Z}$ to each vertex $v \in V$ where $|S(v)|=f(v)$ for each $v \in V$, there exists a proper vertex coloring $c: V \mapsto Z$ such that $c(v) \in S(v)$ for all $v \in V$.

Definition 3.7. A directed or an undirected graph $G=(V, E)$ is k-choosable if G is f-choosable for the constant function $f(v)=k$.

Definition 3.8. For $v \in V$ a vertex of a directed graph $D=(V, E)$, the indegree of $v, d^{-}(v)$, is equal to $|\{(u, v):(u, v) \in E\}|$, the number of directed edges to v. Similarly, the outdegree of $v, d^{+}(v)$, is equal to $|\{(v, u):(v, u) \in E\}|$, the number of directed edges from v. For $H=(V(H), E(H))$, a subdigraph of D, and $v \in V(H), d_{H}^{-}(v)$ and $d_{H}^{+}(v)$ denote the indegree and the outdegree of v as a vertex of H, respectively.

Definition 3.9. A subdigraph $H=(V(H), E(H))$ of a directed graph $D=(V, E)$ is Eulerian if $d_{H}^{-}(v)=d_{H}^{+}(v)$ for all $v \in V . H$ is even if $|E(H)|$ is even, and, likewise, H is odd if $|E(H)|$ is odd. $E E(D)$ and $E O(D)$ denote the numbers of even and odd Eulerian subgraphs, respectively.

Lemma 3.10. Every Eulerian subgraph is a union of edge-disjoint directed simple cycles.

Proof. For each vertex of an Eulerian subgraph, its indegree is equal to its outdegree. Hence, one can inductively remove directed simple cycles from the subgraph.

Definition 3.11. For an undirected graph $G=(V, E)$ where $V=\left\{v_{1}, \ldots, v_{n}\right\}$, its graph polynomial $f_{G}=f_{G}\left(x_{1}, . ., x_{n}\right)$ is defined as follows:

$$
f_{G}\left(x_{1}, \ldots, x_{n}\right)=\prod_{\left\{v_{i}, v_{j}\right\} \in E ; i<j}\left(x_{i}-x_{j}\right)
$$

Definition 3.12. For each directed edge $e=\left(v_{i}, v_{j}\right)$ oriented by an orientation $D: E \mapsto E^{\prime}$ of an undirected graph $G=(V, E)$, its weight $w(e)$ is defined as follows:

$$
\begin{aligned}
w(e) & =x_{i} \text { if } i<j \\
& =-x_{i} \text { if } i>j
\end{aligned}
$$

The weight $w(D)$ of an orientation D is $\prod_{e \in E^{\prime}} w(e)$.
Definition 3.13. For a directed edge $e=\left(v_{i}, v_{j}\right), e$ is decreasing if $i>j$. An orientation $D: E \mapsto E^{\prime}$ of an undirected graph $G=(V, E)$ where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is called even if E^{\prime} has an even number of decreasing directed edges. Otherwise, D is odd. For non-negative integers $d_{1}, \ldots, d_{n}, D E\left(d_{1}, \ldots, d_{n}\right)$ and $D O\left(d_{1}, \ldots, d_{n}\right)$ denote the sets of all even and odd orientations of G such that the outdegree of the vertex v_{i} is d_{i} for $1 \leq i \leq n$, respectively.
Lemma 3.14. For an undirected graph $G=(V, E)$, let \bar{D} be the set of all orientations of G. Then,

$$
f_{G}\left(x_{1}, \ldots, x_{n}\right)=\sum_{D \in \bar{D}} w(D)=\sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\left|D E\left(d_{1}, \ldots, d_{n}\right)\right|-\left|D O\left(d_{1}, \ldots, d_{n}\right)\right|\right) \prod_{i=1}^{n} x_{i}^{d_{i}}
$$

Proof. Each term in the expansion of $f_{G}\left(x_{1}, \ldots, x_{n}\right)=\prod_{\left\{v_{i}, v_{j}\right\} \in E ; i<j}\left(x_{i}-x_{j}\right)$ corresponds to $w(D)$ for some orientation D of G by Definition 3.12. Thus, $f_{G}\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{D \in \bar{D}} w(D)$. Moreover, for a directed edge $e=\left(v_{i}, v_{j}\right)$ for a fixed $v_{i}, w(e)=x_{i}$ if e is increasing and $w(e)=-x_{i}$ if e is decreasing. Then, for $D \in D E\left(d_{1}, \ldots, d_{n}\right)$, $w(D)=\prod_{i=1}^{n} x_{i}^{d_{i}}$, and for $D \in D E\left(d_{1}, \ldots, d_{n}\right), w(D)=-\prod_{i=1}^{n} x_{i}^{d_{i}}$. Hence, $f_{G}\left(x_{1}, \ldots, x_{n}\right)=\sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\left|D E\left(d_{1}, \ldots, d_{n}\right)\right|-\left|D O\left(d_{1}, \ldots, d_{n}\right)\right|\right) \prod_{i=1}^{n} x_{i}^{d_{i}}$.

Definition 3.15. For $D_{1}, D_{2} \in D E\left(d_{1}, \ldots, d_{n}\right) \cup D O\left(d_{1}, \ldots, d_{n}\right), D_{1} \oplus D_{2}$ denotes the set of oriented edges in D_{1} whose orientation in D_{2} is in the opposite direction.
Lemma 3.16. $D_{1} \oplus D_{2}$ is an Eulerian subgraph of D_{1}.
Proof. For each $v_{i} \in V$, let $d_{1}^{+}\left(v_{i}\right)$ and $d_{2}^{+}\left(v_{i}\right)$ denote the outdegree of v_{i} in the orientations D_{1} and D_{2}, respectively. Similarly, let $d_{1}^{-}\left(v_{i}\right)$ and $d_{2}^{-}\left(v_{i}\right)$ denote the indegree of v_{i} in the orientations D_{1} and D_{2}, respectively. Let $d_{1 \oplus}^{+}\left(v_{i}\right)$ and $d_{2 \oplus}^{+}\left(v_{i}\right)$ denote the numbers of directed edges from v_{i} that are the elements of $D_{1} \oplus D_{2}$ in D_{1} and D_{2}, respectively, and let $d_{1 \ominus}^{+}\left(v_{i}\right)$ and $d_{2 \ominus}^{+}\left(v_{i}\right)$ denote the numbers of directed edges from v_{i} that are not the elements of $D_{1} \oplus D_{2}$ in D_{1} and D_{2}, respectively. Similarly, let $d_{1 \oplus}^{-}\left(v_{i}\right)$ and $d_{2 \oplus}^{-}\left(v_{i}\right)$ denote the numbers of directed edges to v_{i} that are the elements of $D_{1} \oplus D_{2}$ in D_{1} and D_{2}, respectively, and let $d_{1 \ominus}^{-}\left(v_{i}\right)$ and $d_{2 \ominus}^{-}\left(v_{i}\right)$ denote the numbers of directed edges to v_{i} that are not the elements of $D_{1} \oplus D_{2}$ in D_{1} and D_{2}. Then,

$$
\begin{aligned}
d_{1}^{+}\left(v_{i}\right) & =d_{1 \oplus}^{+}\left(v_{i}\right)+d_{1 \ominus}^{+}\left(v_{i}\right) \\
d_{1}^{-}\left(v_{i}\right) & =d_{1 \oplus}^{-}\left(v_{i}\right)+d_{1 \ominus}^{-}\left(v_{i}\right) \\
d_{2}^{+}\left(v_{i}\right) & =d_{2 \oplus}^{+}(v)+d_{2 \ominus}^{+}\left(v_{i}\right) \\
d_{2}^{-}\left(v_{i}\right) & =d_{2 \oplus}^{-}(v)+d_{2 \ominus}^{-}\left(v_{i}\right)
\end{aligned}
$$

By Definition 3.15, $d_{1 \oplus}^{+}(v)=d_{2 \oplus}^{-}(v)$ and $d_{1 \oplus}^{-}(v)=d_{2 \oplus}^{+}(v)$. In addition, if an edge is not a member of $D_{1} \oplus D_{2}$, it has the same orientation in D_{1} and D_{2}. Thus,

$$
\begin{aligned}
d_{1 \ominus}^{+}(v)=d_{2 \ominus}^{+}(v) \text { and } d_{1 \ominus}^{-}(v)=d_{2 \ominus}^{-}(v) . & \text { Since } d_{1}^{+}\left(v_{i}\right)=d_{i}=d_{2}^{+}\left(v_{i}\right), \\
d_{1 \oplus}^{+}\left(v_{i}\right)+d_{1 \ominus}^{+}\left(v_{i}\right) & =d_{2 \oplus}^{+}(v)+d_{2 \ominus}^{+}\left(v_{i}\right) \\
d_{1 \oplus}^{+}\left(v_{i}\right)+d_{1 \ominus}^{+}\left(v_{i}\right) & =d_{1 \oplus}^{-}(v)+d_{2 \ominus}^{+}\left(v_{i}\right) \\
d_{1 \oplus}^{+}\left(v_{i}\right) & =d_{1 \oplus}^{-}(v)
\end{aligned}
$$

Since $d_{1 \oplus}^{+}\left(v_{i}\right)$ is the outdegree of v_{i} in the orientation $D_{1} \oplus D_{2}$ and $d_{1 \oplus}^{-}\left(v_{i}\right)$ is the indegree of v_{i} in the orientation $D_{1} \oplus D_{2}, D_{1} \oplus D_{2}$ is Eulerian.

Lemma 3.17. For a fixed sequence d_{1}, \ldots, d_{n} and $D_{1} \in D E\left(d_{1}, \ldots, d_{n}\right) \cup D O\left(d_{1}, \ldots, d_{n}\right)$, a map $T_{D_{1}}: D E\left(d_{1}, \ldots, d_{n}\right) \cup D O\left(d_{1}, \ldots, d_{n}\right) \mapsto E E\left(D_{1}\right) \cup E O\left(D_{1}\right)$ such that $T_{D_{1}}\left(D_{2}\right)=D_{1} \oplus D_{2}$ is a bijection. Moreover, if D_{1} is even, T maps even orientations to even Eulerian subgraphs and odd orientations to odd Eulerian subgraphs. Otherwise, it maps even orientations to odd Eulerian subgraphs and odd orientations to even Eulerian subgraphs. Thus,

$$
\left|\left|D E\left(d_{1}, \ldots, d_{n}\right)\right|-\left|D O\left(d_{1}, \ldots, d_{n}\right)\right|\right|=\left|E E\left(D_{1}\right)-E O\left(D_{2}\right)\right|
$$

Proof. For $A \in E E\left(D_{1}\right) \cup E O\left(D_{1}\right)$, let D_{A} be the orientation constructed by reversing the orientations for the edges of A in D_{1}. Since A is Eulerian, the outdegree of v_{i} in D_{A} is equal to that of D_{1}. Thus, $D_{A} \in D E\left(d_{1}, \ldots, d_{n}\right) \cup D O\left(d_{1}, \ldots, d_{n}\right)$ and $T_{D_{1}}\left(D_{A}\right)=A$. In addition, if $A \neq B$ for $A, B \in E E\left(D_{1}\right) \cup E O\left(D_{1}\right), D_{A}$ and D_{B} are clearly not equal. Thus, $T_{D_{1}}$ is a bijection. For $D_{1} \in D E\left(d_{1}, \ldots, d_{n}\right)$, if $D_{2} \in D E\left(d_{1}, \ldots, d_{n}\right)$, the number of edges that are decreasing in D_{1} and increasing in D_{2} or vice-versa is even. Thus, $D_{1} \oplus D_{2}$ is even. Other statements are proven by analogous arguments.
Corollary 3.18. Let D be an orientation of an undirected graph $G=(V, E)$ where $V=\left\{v_{1}, \ldots v_{n}\right\}$. For $1 \leq i \leq n$, let $d_{i}=d_{D}^{+}\left(v_{i}\right)$ the outdegree of v_{i} in D. then the absolute value of the coefficient of the monomial $\prod_{i=1}^{n} x_{i}^{d_{i}}$ in the expansion of $f_{G}=f_{G}\left(x_{1}, \ldots, x_{n}\right)$ is $|E E(D)-E O(D)|$. Particularly, if $E E(D) \neq E O(D)$, then the coefficient is not zero.

Proof. This follows from Lemma 3.14 and Lemma 3.17.
Theorem 3.19. Let $D=(V, E)$ be a directed graph where $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $f: V \mapsto \mathbb{N}$ be a function such that $f\left(v_{i}\right)=d_{D}^{+}\left(v_{i}\right)+1$ for $1 \leq i \leq n$. If $E E(D) \neq$ $E O(D)$, then D is f-choosable.

Proof. The degree of f_{G} is $\sum_{1 \leq i \leq n} d_{D}^{+}\left(v_{i}\right)$. In addition, since $E E(D) \neq E O(D)$, the coefficient of $\prod_{1 \leq i \leq n} x_{i}^{d_{D}^{+}\left(v_{i}\right)}$ is not zero by Corollary 3.18. Hence, by Corollary 1.4 , there exists an n-tuple $\left(c_{1}, \ldots, c_{n}\right) \in S_{1} \times \ldots \times S_{n}$ such that $f_{G}\left(c_{1}, \ldots, c_{n}\right) \neq 0$. Thus, by letting $c\left(v_{i}\right)=c_{i}$ for $1 \leq i \leq n, D$ is f-choosable.

Corollary 3.20. Let $G=(V, E)$ be an undirected graph where $V=\left\{v_{1}, \ldots, v_{n}\right\}$. If G has an orientation D satisfying $E E(D) \neq E O(D)$ in which the maximum outdegree is d, then G is $(d+1)$-colorable. Particularly, if the maximum outdegree is d and D contains no odd directed simple cycle, then G is $(d+1)$-colorable.

Proof. Let $S(i)=\{1, \ldots, d+1\}$ for $1 \leq i \leq n$. By Theorem $3.19, G$ is $(d+1)$ colorable. By Lemma 3.10, an odd Eulerian subgraph ought to contain at least one odd directed simple cycle. Then, $E O(D)=0$, and since $\emptyset \in E E(D), E E(D) \geq 1$. Hence, $E E(D) \neq E O(D)$, and G is $(d+1)$-colorable.

Definition 3.21. For a directed or an undirected graph $G=(V, E)$, an independent set is a set of vertices $I \subset V$ such that for each pair $v_{i}, v_{j} \in I,\left(v_{i}, v_{j}\right) \notin E$.
Corollary 3.22. Let $G=(V, E)$ be an undirected graph where $V=\left\{v_{1}, \ldots, v_{n}\right\}$. If G has an orientation D satisfying $E E(D) \neq E O(D)$ in which the maximum outdegree is d, then G has an independent set of size at least $\lceil n /(d+1)\rceil$. Particularly, if the maximum outdegree is d and D contains no odd directed simple cycle, then G has an independent set of size at least $\lceil n /(d+1)\rceil$.

Proof. By the Pigeonhole Principle and Corollary 3.20, there exists an $s \in\{1, \ldots d+$ $1\}$ such that $\left|\left\{v_{i} \in V: c\left(v_{i}\right)=s\right\}\right| \geq\lceil n /(d+1)\rceil$. Such subset of V is clearly independent.

Corollary 3.23. Let $G=(V, E)$ be an undirected graph where $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Suppose G has an orientation D satisfying $E E(D) \neq E O(D)$ and let $d_{1} \geq \ldots \geq d_{n}$ be the ordered sequence of outdegrees of the vertices in D. Then, for every k, $n>k \geq 0, G$ has an independent set of at least $\left\lceil(n-k) /\left(d_{k+1}+1\right)\right\rceil$.
Proof. Without the loss of generality, assume that $d_{D}^{+}\left(v_{i}\right)=d_{i}$. Let $S(i)=$ $\left\{1, \ldots, d_{i}+1\right\}$ for $1 \leq i \leq n$. By Theorem 3.19, there exists a proper coloring $c: V \mapsto \mathbb{Z}$ such that $c\left(v_{i}\right) \in S(i)$ for $1 \leq i \leq n$. For each k such that $0 \leq k<n$, $c\left(v_{k+1}\right), \ldots, c\left(v_{n}\right) \in\left\{1, \ldots, d_{k+1}+1\right\}$. Thus, by the Pigeonhole Principle, there exists an independent set of the size at least $\left\lceil(n-k) /\left(d_{k+1}+1\right)\right\rceil$.

Definition 3.24. For an undirected graph $G=(V, E), L(G)=\max (|E(H)| /|V(H)|)$, where $H=(V(H), E(H))$ ranges over all subgraphs $H \subset G$.

Definition 3.25. A matching M in a graph $G=(V, E)$ is a subset $M \subset E$ such that no two edges in M are incident on the same vertex, i.e. if $(w, x),(y, z) \in$ M, then w, x, y, z are distinct. A maximum matching of G is a matching of a maximum size.

Definition 3.26. For M a matching in a graph $G=(V, E)$, a vertex $v \in V$ is M-saturated if there exists an edge in M incident on v. Otherwise, v is Munsaturated.

Definition 3.27. For M a matching in a graph $G=(V, E)$, an M-alternating path is a path in G whose edges are alternately in M and outside of M. An Malternating path whose end vertices are M-unsaturated is called an M-augmenting path.

Lemma 3.28. If M is a maximum matching of a graph $G=(V, E)$, there can be no M-augmenting paths in G.

Proof. Assume the contradiction that there exists P an M-augmenting path in G. Let $M^{\prime}=M \cup\left(P \cap M^{c}\right) \backslash(P \cap M)$. Since P is an M-augmenting path, none of the vertices in P is an endpoint of the edges in $M \backslash P$. Thus, M^{\prime} is a valid matching in G. Since $\left|M^{\prime}\right|=|M|+1, \mathrm{M}$ is not a maximum matching, which leads to a contradiction.

Definition 3.29. A graph $G=(V, E)$ is a bipartite graph if $V=V_{1} \cup V_{2}$ where V_{1} and V_{2} are disjoint independent sets of vertices. Such bipartite graph is denoted by $G=\left(V_{1}, V_{2}, E\right)$.

Definition 3.30. For a bipartite graph $G=\left(V_{1}, V_{2}, E\right)$, a matching M in G is called a complete matching if M saturates all the vertices in V_{1}.

Definition 3.31. For a bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ and a subset of vertices $S \subset V_{1}$, the neighborhood $N(S)$ is

$$
N(S)=\left\{v \in V_{2}: \exists u \in S_{1},(u, v) \in E\right\}
$$

Lemma 3.32. (Hall's Theorem) For a bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ where $\left|V_{1}\right| \leq$ $\left|V_{2}\right|, G$ has a complete matching if and only if $|S| \leq|N(S)|$ for all $S \subset V_{1}$.

Proof. If G has a complete matching M, for each $S \subset V_{1}$, every vertex $v \in S$ has a matching vertex in V_{2} by M. Thus, $|S| \leq|N(S)|$.
Conversely, if $|S| \leq|N(S)|$ for all $S \subset V_{1}$, assume the contradiction that G has no complete matching. Let M be a maximum matching in G. Since M is not complete, there exists s an M-unsaturated vertex in V_{1}. Let Z be the set of vertices in G that are reachable from s by M-alternating paths. Let $S=Z \cap V_{1}$ and $T=Z \cap V_{2}$. Since there exist no M-augmenting paths in G by Lemma 3.28, every vertex in T has a matching vertex in $S \backslash\{s\}$ by M, and every vertex in $S \backslash\{s\}$ has a matching vertex in T by M. Hence, $|T|=|S|-1$. Moreover, $T=N(S)$. Thus, $|S|>|N(S)|=|T|=|S|-1$, which leads to a contradiction.

Lemma 3.33. An undirected graph $G=(V, E)$ has an orientation D in which the maximum outdegree is d if and only if $L(G) \leq d$.

Proof. If there exists such an orientation D, then, for each subgraph $H \subset G$,

$$
|E(H)|=\sum_{v \in V(H)} d_{H}^{+}(v) \leq \sum_{v \in V(H)} d_{D}^{+}(v) \leq d|V(H)|
$$

Hence, $|E(H)| /|V(H)| \leq d$ for each $H \subset G$, and $L(G) \leq d$.
Conversely, suppose $L(G) \leq d$. Let F be a bipartite graph on the classes of vertices, $A=E$ and B, a union of d disjoint copies V_{1}, \ldots, V_{n} of V. Each $e=(u, v) \in E=A$ is joined by edges in F to the d copies of u and the d copies of v. For $E^{\prime} \subset E$ a set of edges of a subgraph H of G whose vertices are the endpoints of the edges in E^{\prime}, in $F,\left|N\left(E^{\prime}\right)\right|=d|V(H)|$. By Definition 3.24, $\left|E^{\prime}\right| /|V(H)| \leq L(G) \leq d$. Hence, $\left|E^{\prime}\right| \leq d|V(H)|=\left|N\left(E^{\prime}\right)\right|$. By Hall's theorem, F has a complete matching M. By orienting each edge in E from its matching vertex by M, the resulting orientation D has the maximum outdegree d.

Theorem 3.34. Every bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is $(\lceil L(G)\rceil+1)$-choosable.
Proof. For $d=\lceil L(G)\rceil$, there exists an orientation D of G in which the maximum outdegree is at most $\lceil L(G)\rceil$. Since bipartite graphs have no odd cycles, $E E(D) \neq$ $E O(D)$, and by Theorem 3.19, G is $(\lceil L(G)\rceil+1)$-choosable.

Remark 3.35. The assumption that G is bipartite is necessary.
Proof. For $G=K_{n}$ a complete graph on n vertices, $L(G)=\frac{n-1}{2}$, but G is clearly not k-choosable for $k<n$.

Remark 3.36. For every k, there exists a bipartite graph G such that $L(G) \leq k$ and G is not k-choosable. Hence, Theorem 3.34 is sharp.

Proof. Let G be a complete bipartite graph on the classes of vertices, A and B, where $|A|=k^{k}$ and $|B|=k$. For H the induced graph on $A^{\prime} \cup B^{\prime}$ where $A^{\prime} \in A$ and $B^{\prime} \in B,|E(H)|=\sum_{a \in A^{\prime}} d_{H}(a) \leq k\left|A^{\prime}\right| \leq k|V(H)|$. Thus, $L(G) \leq k$. For $B=\left\{b_{1}, \ldots, b_{n}\right\}$, let $S\left(b_{i}\right)=\{(i-1) k+1,(i-1) k+2, \ldots, i k\}$ for each $1 \leq i \leq n$. For $A=\left\{a_{i_{1}, \ldots, i_{k}}: 1 \leq i_{j} \leq k\right.$ for $\left.1 \leq j \leq k\right\}$, let

$$
S\left(a_{i_{1}, \ldots, i_{k}}\right)=\left\{i_{1}, k+i_{2}, \ldots,(k-1) k+i_{k}\right\}
$$

Suppose that there exists a proper coloring $c: A \cup B \mapsto \mathbb{Z}$ such that $c(v) \in S(v)$ for all $v \in A \cup B$. Then, there exists an k-tuple $\left(c_{1}, \ldots, c_{k}\right)$ such that $1 \leq c_{1}, \ldots, c_{k} \leq k$ and $c\left(b_{i}\right)=(i-1) k+c_{i}$ for $1 \leq i \leq k$. However, $a_{c_{1}, \ldots, c_{k}}$ has no value in $S\left(a_{i_{1}, \ldots, i_{k}}\right)$ which is distint from the colors of its neighbors. Hence, c is not a proper coloring, which leads to a contradiction.

4. Cube Covering by Hyperplanes

Theorem 4.1. Let H_{1}, \ldots, H_{m} be a family of hyperplanes in R^{n} that cover all the vertices of the unit cube $\{0,1\}^{n}$ but one. Then, $m \geq n$.
Proof. Without the loss of generality, assume that the uncovered vertex is $\mathbf{0}=$ $(0, \ldots, 0)$. For each $1 \leq i \leq m, H_{i}$ is defined by the equation $a_{i} \cdot x=b_{i}$ where $a_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$. Since H_{i} does not cover the origin for each $1 \leq i \leq m, b_{i} \neq 0$ for $1 \leq i \leq m$. Assume the contradiction that $m<n$, and consider the polynomial

$$
F(x)=(-1)^{n+m} \prod_{j=1}^{m} b_{j} \prod_{i=1}^{n}\left(x_{i}-1\right)-\prod_{i=1}^{m}\left[\left(a_{i}, x\right)-b_{i}\right]
$$

The degree of F is $n=\sum_{i=1}^{n} 1$, and the coefficient of $\prod_{i=1}^{n} x_{i}$ is $(-1)^{n+m} \prod_{j=1}^{m} b_{j} \neq$ 0 . Let $S_{i}=\{0,1\}$ for all $1 \leq i \leq n$. Since $\left|S_{i}\right|=2>1$ for all $1 \leq i \leq n$, by Corollary 1.4, there exists $c=\left(c_{1}, \ldots, c_{n}\right) \in\{0,1\}^{n}$ such that $F(c) \neq 0$. Since

$$
F(\mathbf{0})=(-1)^{n+m} \prod_{j=1}^{m} b_{j}(-1)^{n}-\prod_{i=1}^{m}\left(-b_{i}\right)=(-1)^{m} \prod_{j=1}^{m} b_{j}-(-1)^{m} \prod_{i=1}^{m}\left(b_{i}\right)=0
$$

$c \neq \mathbf{0}$. Since c is covered by some $H_{i},\left(a_{i}, x\right)-b_{i}=0$ for some i. Then, $F(c)=$ $0-0=0$, which leads to a contradiction.

Acknowledgments. I sincerely thank my mentor, Matthew Thibault, for his guidance and assistance.

References

[1] Alon, N., \& Tarsi, M. (1992). Colorings and Orientations of Graphs. Combinatorica, 12:2. Springer Berlin.
[2] Alon, N. (1999). Combinatorial Nullstellensatz. Combinatorics, Probability and Computing, 8:7-29. Cambridge University Press.
[3] Charikar, M. (2004). Graph Theory: Matchings and Hall's Theorem. Discrete Mathematics, Princeton University Computer Science Department.

[^0]: Date: August 21, 2009.

