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Abstract. Hilbert’s Nullstellensatz, one of the fundamental theorems of Al-

gebraic Geometry, is a powerful algebraic technique that has extensive applica-

tions in Graph Theory. In this paper, we prove Combinatorial Nullstellensatz,
a localization of Hilbert’s Nullstellensatz, which asserts a stronger conclusion.

We then present its applications in demonstrating the results on the existence

of regular subgraphs, the choosability of directed graphs, and the cube covering
by hyperplanes.
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1. Hilbert’s Nullstellensatz

Theorem 1.1. (Hilbert’s Nullstellensatz) For F an algebraically closed field, let
f , g1,...gm be polynomials in F [x1, ..., xn]. If gi(x) = 0 for all 1 ≤ i ≤ m implies
f(x) = 0, then there exists k ∈ N and h1, ..., hm ∈ F [x1, ...xn] such that fk =∑m

i=1 higi.

For its combinatorial application, one considers the special case with the follow-
ing conditions:

(1) m = n
(2) Each gi is univariate in the form of

∏
s∈Si

(xi − s)

(3) The condition on algebraic closure is loosened

Theorem 1.2. (Combinatorial Nullstellensatz) For F a field and S1, .., Sn non-
empty subsets of F , let gi(xi) =

∏
s∈Si

(xi−s). If, for f ∈ F [x1, ..., xn], f(s1, ..., sn) =

0 ∀si ∈ Si, then there exists h1, ..., hn ∈ F [x1, ...xn] such that deg(hi) ≤ deg(f) −
deg(gi) and f =

∑n
i=1 higi. Furthermore, if f, g1, ..., gn ∈ R[x1, ..., xn] for R a

subring of F , then h1, ..., hn ∈ R[x1, ...xn]

In order to prove Combinatorial Nullstellensatz, we need the following lemma.
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Lemma 1.3. For F a field and p ∈ F [x1, ..., xn], suppose that the degree of p
as a polynomial in xi is at most ti and Si ⊂ F such that |Si| ≥ ti + 1 ∀i. If
p(x1, ..., xn) = 0 ∀(x1, ...xn) ∈ S1 × ...× Sn, then p ≡ 0

Proof. (Induction on n)

(1) Base case: For n = 1, a non-zero single-variable polynomial of degree t1
can have at most t1 distinct zeros by the Fundamental Theorem of Algebra.
Hence, p ≡ 0.

(2) Inductive case: For n ≥ 2, assume true for n− 1.
Let p = p(x1, ..., xn) be a polynomial satisfying the hypotheses. p can be
written as a polynomial in xn:

p =

tn∑
i=0

pi(x1, ..., xn−1)xi
n

Note that the degree of each pi as a polynomial in xj is at most tj . For
each fixed (n− 1)-tuple (c1, ..., cn−1) ∈ S1 × ...× Sn−1,

p(xn) =

tn∑
i=0

pi(c1, ..., cn−1)xi
n = 0 for all xn ∈ Sn

Thus, pi(x1, ...xn) = 0 for all (x1, ..., xn−1) ∈ S1 × ...× Sn−1. Then, by the
induction hypothesis, pi ≡ 0 for all i, and, consequently, p ≡ 0.

�

Proof of Combinatorial Nullstellensatz. . Let ti = |Si| − 1 for all i.

f(x1, ..., xn) = 0 for all n-tuple (x1, ..., xn) ∈ S1 × ...Sn

For each i, 1 ≤ i ≤ n, gi can be written as follows:

gi(xi) =
∏
s∈Si

(xi − s) = xti+1
i −

ti∑
j=0

gijx
j
i

Hence, for s ∈ Si,

xti+1
i =

ti∑
j=0

gijx
j
i

Using the above relation, one can repeatedly replace xj
i in f where 1 ≤ i ≤ n

and j > ti by a linear combination of lower degree terms. Let f̄ be the resulting
polynomial whose degree in xi is at most ti. Then, f̄ is f subtracted by the linear
combination

∑n
i=1 higi where hi ∈ F [x1, ..., xn] and deg(hi) ≤ deg(f)− deg(gi) for

1 ≤ i ≤ n. Moreover, the coefficients of each hi are in the smallest ring containing
the coefficients of f and g1,...,gn. Since

f̄(x1, ..., xn) = f(x1, ..., xn) = 0 for all n-tuple (x1, ..., xn) ∈ S1 × ...Sn,

f̄ ≡ 0, by Lemma 1.3. Thus, f =
∑n

i=1 higi. �

Corollary 1.4. For F an arbitrary field, let f be a polynomial in F [x1, ..., xn].
Suppose deg(f) =

∑n
i=1 ti where ti ≥ 0 for all i and the coefficient of

∏n
i=1 x

ti
i in

f is nonzero. If S1,...,Sn are subsets of F such that |Si| > ti, then there exists an
n-tuple (s1, ..., sn) ∈ S1 × ...× Sn such that f(s1, ..., sn) 6= 0.
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Proof. Without the loss of generality, assume that |Si| = ti +1. Suppose that there
exists no such n-tuple, and let gi(xi) =

∏
s∈Si

(xi − s). By Theorem 1.2, there

exists polynomials h1,...hn in F [xi, ..., xn] such that f =
∑n

i=1 higi and deg(hi) ≤
deg(f) − deg(gi). For each 1 ≤ i ≤ n, the degree of higi = hi

∏
s∈Si

(xi − s) is at

most deg(f), and if there are any monomials of degree deg(f), they are products
of xti+1

i . Hence, the coefficient of
∏n

i=1 x
ti
i in the right side is zero, which leads to

a contradiction. �

2. Regular Subgraphs

Definition 2.1. A graph G is an ordered pair (V,E) consisting of V , the set of
vertices, and E, the set of edges which are unordered pairs of vertices in V .

Definition 2.2. A graph G = (V,E) is called regular if every vertex has the same
degree. G is d-regular if every vertex is of degree d.

Definition 2.3. A graph G = (V,E) is called simple if G contains no multiple
edges, i. e. each pair of vertices can have at most one edge that is incident to them.

Theorem 2.4. Every simple 4-regular contains a 3-regular subgraph.

The preceding theorem was conjectured by Berge and Sauer and, later, proved by
Taśkinov. However, if the assumption on simplicity is relaxed, the result is false, as
demonstrated by a 3-vertex graph with two edges between each pair of vertices. In
this case, one extra edge is sufficient to ensure the existence of a 3-regular subgraph.
Hilbert’s Nullstellensatz shows not only the existence of a 3-regular subgraph within
an “almost” 4-regular graph but also more generalized result stated as follows:

Theorem 2.5. For p a prime, any loopless graph G = (V,E) with average degree
greater than 2p−2 and maximum degree at most 2p−1 contains a p-regular subgraph.

Proof. For v ∈ V and e ∈ E, let av,e = 1, if v ∈ e, and av,e = 0, otherwise. Consider
the following polynomial in (xe)e∈E over GF (p):

F ((xe)e∈E) =
∏
v∈V

[1− (
∑
e∈E

av,exe)
p−1]−

∏
e∈E

(1− xe)

Due to the assumption on average degree,

2|E|
|V |

> 2p− 2

|E| > (p− 1)|V |
Hence, the degree of F is |E| =

∑
e∈E te where te = 1 for all e ∈ E. The coefficient

of
∏

e∈E xte
e =

∏
e∈E xe = (−1)|E|+1 6= 0. Let Se = {0, 1} for all e ∈ E. Since

|Se| > te for all e ∈ E, by Corollary 1.4, there exists (se)e∈E such that se ∈ Se for
all e ∈ E and F ((se)e∈E) 6= 0. Such vector is not the zero vector, since F (0) =∏

v∈V 1 −
∏

e∈E 1 = 1 − 1 = 0. Thus,
∏

e∈E(1 − se) = 0. Then, for each v ∈ V ,∑
e∈E av,ese ≡ 0 (mod p). Otherwise, by Fermat’s Little Theorem,

∑
e∈E av,ese ≡ 1

(mod p), and F ((se)e∈E) = 0. Thus, in the subgraph consisting of all edges e ∈ E
such that se = 1, all the endpoints of the edges are of degree p, since the maximum
degree is at most 2p− 1. �

One can easily see that the special case p = 3 of the above result demonstrates
the existence of a 3-regular subgraph within a 4-regular graph with an extra edge.
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3. Colorings of Directed Graphs

Definition 3.1. An orientation of an undirected graph G = (V,E) is a map
D : E 7→ E′ which maps an unordered pair of vertices into an ordered pair of the
same vertices, thus, assigning a direction to each edge of G.

Hence, an orientation transforms its underlying undirected graph into a directed
graph, or a digraph, whose definition is formally stated as follows:

Definition 3.2. A directed graph, or digraph, D is an ordered pair (V,E)
consisting of V , the set of vertices, and E, the set of directed edges which are
ordered pairs of vertices in V .

Definition 3.3. A vertex coloring of a directed or an undirected graph G =
(V,E) is a map c : V 7→ Z that assigns a color to each vertex of G.

Definition 3.4. A vertex coloring c : V 7→ Z of a directed or an undirected graph
G = (V,E) is proper if c(vi) 6= c(vj) for all (vi, vj) ∈ E.

Definition 3.5. A directed or an undirected graph G = (V,E) is d-colorable if
there exists a proper vertex coloring c : V 7→ {1, ..., d}.

Definition 3.6. For a directed or an undirected graph G = (V,E) and a function
f : V 7→ N, G is f-choosable if for every assignment of a set of integers S(v) ⊂ Z
to each vertex v ∈ V where |S(v)| = f(v) for each v ∈ V , there exists a proper
vertex coloring c : V 7→ Z such that c(v) ∈ S(v) for all v ∈ V .

Definition 3.7. A directed or an undirected graph G = (V,E) is k-choosable if
G is f -choosable for the constant function f(v) = k.

Definition 3.8. For v ∈ V a vertex of a directed graph D = (V,E), the indegree
of v, d−(v), is equal to |{(u, v) : (u, v) ∈ E}|, the number of directed edges to
v. Similarly, the outdegree of v, d+(v), is equal to |{(v, u) : (v, u) ∈ E}|, the
number of directed edges from v. For H = (V (H), E(H)), a subdigraph of D, and
v ∈ V (H), d−H(v) and d+

H(v) denote the indegree and the outdegree of v as a vertex
of H, respectively.

Definition 3.9. A subdigraph H = (V (H), E(H)) of a directed graph D = (V,E)
is Eulerian if d−H(v) = d+

H(v) for all v ∈ V . H is even if |E(H)| is even, and,
likewise, H is odd if |E(H)| is odd. EE(D) and EO(D) denote the numbers of
even and odd Eulerian subgraphs, respectively.

Lemma 3.10. Every Eulerian subgraph is a union of edge-disjoint directed simple
cycles.

Proof. For each vertex of an Eulerian subgraph, its indegree is equal to its out-
degree. Hence, one can inductively remove directed simple cycles from the sub-
graph. �

Definition 3.11. For an undirected graph G = (V,E) where V = {v1, ..., vn}, its
graph polynomial fG = fG(x1, .., xn) is defined as follows:

fG(x1, ..., xn) =
∏

{vi,vj}∈E;i<j

(xi − xj)
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Definition 3.12. For each directed edge e = (vi, vj) oriented by an orientation
D : E 7→ E′ of an undirected graph G = (V,E), its weight w(e) is defined as
follows:

w(e) = xi if i < j

= −xi if i > j

The weight w(D) of an orientation D is
∏

e∈E′ w(e).

Definition 3.13. For a directed edge e = (vi, vj), e is decreasing if i > j. An
orientation D : E 7→ E′ of an undirected graph G = (V,E) where V = {v1, ..., vn}
is called even if E′ has an even number of decreasing directed edges. Otherwise,
D is odd. For non-negative integers d1, ..., dn, DE(d1, ..., dn) and DO(d1, ..., dn)
denote the sets of all even and odd orientations of G such that the outdegree of the
vertex vi is di for 1 ≤ i ≤ n, respectively.

Lemma 3.14. For an undirected graph G = (V,E), let D̄ be the set of all orienta-
tions of G. Then,

fG(x1, ..., xn) =
∑
D∈D̄

w(D) =
∑

d1,...,dn≥0

(|DE(d1, ..., dn)| − |DO(d1, ..., dn)|)
n∏

i=1

xdi
i

Proof. Each term in the expansion of fG(x1, ..., xn) =
∏
{vi,vj}∈E;i<j(xi−xj) corre-

sponds to w(D) for some orientation D of G by Definition 3.12. Thus, fG(x1, ..., xn) =∑
D∈D̄ w(D). Moreover, for a directed edge e = (vi, vj) for a fixed vi, w(e) = xi if e

is increasing and w(e) = −xi if e is decreasing. Then, for D ∈ DE(d1, ..., dn),

w(D) =
∏n

i=1 x
di
i , and for D ∈ DE(d1, ..., dn), w(D) = −

∏n
i=1 x

di
i . Hence,

fG(x1, ..., xn) =
∑

d1,...,dn≥0(|DE(d1, ..., dn)| − |DO(d1, ..., dn)|)
∏n

i=1 x
di
i . �

Definition 3.15. For D1, D2 ∈ DE(d1, ..., dn) ∪DO(d1, ..., dn), D1 ⊕D2 denotes
the set of oriented edges in D1 whose orientation in D2 is in the opposite direction.

Lemma 3.16. D1 ⊕D2 is an Eulerian subgraph of D1.

Proof. For each vi ∈ V , let d+
1 (vi) and d+

2 (vi) denote the outdegree of vi in the
orientations D1 and D2, respectively. Similarly, let d−1 (vi) and d−2 (vi) denote the
indegree of vi in the orientations D1 and D2, respectively. Let d+

1⊕(vi) and d+
2⊕(vi)

denote the numbers of directed edges from vi that are the elements of D1⊕D2 in D1

and D2, respectively, and let d+
1	(vi) and d+

2	(vi) denote the numbers of directed
edges from vi that are not the elements of D1 ⊕ D2 in D1 and D2, respectively.
Similarly, let d−1⊕(vi) and d−2⊕(vi) denote the numbers of directed edges to vi that

are the elements of D1⊕D2 in D1 and D2, respectively, and let d−1	(vi) and d−2	(vi)
denote the numbers of directed edges to vi that are not the elements of D1⊕D2 in
D1 and D2. Then,

d+
1 (vi) = d+

1⊕(vi) + d+
1	(vi)

d−1 (vi) = d−1⊕(vi) + d−1	(vi)

d+
2 (vi) = d+

2⊕(v) + d+
2	(vi)

d−2 (vi) = d−2⊕(v) + d−2	(vi)

By Definition 3.15, d+
1⊕(v) = d−2⊕(v) and d−1⊕(v) = d+

2⊕(v). In addition, if an edge
is not a member of D1 ⊕ D2, it has the same orientation in D1 and D2. Thus,
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d+
1	(v) = d+

2	(v) and d−1	(v) = d−2	(v). Since d+
1 (vi) = di = d+

2 (vi),

d+
1⊕(vi) + d+

1	(vi) = d+
2⊕(v) + d+

2	(vi)

d+
1⊕(vi) + d+

1	(vi) = d−1⊕(v) + d+
2	(vi)

d+
1⊕(vi) = d−1⊕(v)

Since d+
1⊕(vi) is the outdegree of vi in the orientation D1 ⊕D2 and d−1⊕(vi) is the

indegree of vi in the orientation D1 ⊕D2, D1 ⊕D2 is Eulerian. �

Lemma 3.17. For a fixed sequence d1, ..., dn and D1 ∈ DE(d1, ..., dn)∪DO(d1, ..., dn),
a map TD1 : DE(d1, ..., dn) ∪ DO(d1, ..., dn) 7→ EE(D1) ∪ EO(D1) such that
TD1

(D2) = D1 ⊕ D2 is a bijection. Moreover, if D1 is even, T maps even ori-
entations to even Eulerian subgraphs and odd orientations to odd Eulerian sub-
graphs. Otherwise, it maps even orientations to odd Eulerian subgraphs and odd
orientations to even Eulerian subgraphs. Thus,

||DE(d1, ..., dn)| − |DO(d1, ..., dn)|| = |EE(D1)− EO(D2)|

Proof. For A ∈ EE(D1) ∪ EO(D1), let DA be the orientation constructed by re-
versing the orientations for the edges of A in D1. Since A is Eulerian, the outdegree
of vi in DA is equal to that of D1. Thus, DA ∈ DE(d1, ..., dn)∪DO(d1, ..., dn) and
TD1

(DA) = A. In addition, if A 6= B for A,B ∈ EE(D1) ∪ EO(D1), DA and
DB are clearly not equal. Thus, TD1

is a bijection. For D1 ∈ DE(d1, ..., dn), if
D2 ∈ DE(d1, ..., dn), the number of edges that are decreasing in D1 and increasing
in D2 or vice-versa is even. Thus, D1 ⊕D2 is even. Other statements are proven
by analogous arguments. �

Corollary 3.18. Let D be an orientation of an undirected graph G = (V,E) where
V = {v1, ...vn}. For 1 ≤ i ≤ n, let di = d+

D(vi) the outdegree of vi in D. then

the absolute value of the coefficient of the monomial
∏n

i=1 x
di
i in the expansion of

fG = fG(x1, ..., xn) is |EE(D)− EO(D)|. Particularly, if EE(D) 6= EO(D), then
the coefficient is not zero.

Proof. This follows from Lemma 3.14 and Lemma 3.17. �

Theorem 3.19. Let D = (V,E) be a directed graph where V = {v1, ..., vn}. Let
f : V 7→ N be a function such that f(vi) = d+

D(vi) + 1 for 1 ≤ i ≤ n. If EE(D) 6=
EO(D), then D is f-choosable.

Proof. The degree of fG is
∑

1≤i≤n d
+
D(vi). In addition, since EE(D) 6= EO(D),

the coefficient of
∏

1≤i≤n x
d+
D(vi)

i is not zero by Corollary 3.18. Hence, by Corollary

1.4, there exists an n-tuple (c1, ..., cn) ∈ S1 × ... × Sn such that fG(c1, ..., cn) 6= 0.
Thus, by letting c(vi) = ci for 1 ≤ i ≤ n, D is f -choosable. �

Corollary 3.20. Let G = (V,E) be an undirected graph where V = {v1, ..., vn}.
If G has an orientation D satisfying EE(D) 6= EO(D) in which the maximum
outdegree is d, then G is (d + 1)-colorable. Particularly, if the maximum outdegree
is d and D contains no odd directed simple cycle, then G is (d + 1)-colorable.

Proof. Let S(i) = {1, ..., d + 1} for 1 ≤ i ≤ n. By Theorem 3.19, G is (d + 1)-
colorable. By Lemma 3.10, an odd Eulerian subgraph ought to contain at least one
odd directed simple cycle. Then, EO(D) = 0, and since ∅ ∈ EE(D), EE(D) ≥ 1.
Hence, EE(D) 6= EO(D), and G is (d + 1)-colorable. �
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Definition 3.21. For a directed or an undirected graph G = (V,E), an indepen-
dent set is a set of vertices I ⊂ V such that for each pair vi, vj ∈ I, (vi, vj) /∈ E.

Corollary 3.22. Let G = (V,E) be an undirected graph where V = {v1, ..., vn}. If
G has an orientation D satisfying EE(D) 6= EO(D) in which the maximum outde-
gree is d, then G has an independent set of size at least dn/(d + 1)e. Particularly,
if the maximum outdegree is d and D contains no odd directed simple cycle, then G
has an independent set of size at least dn/(d + 1)e.

Proof. By the Pigeonhole Principle and Corollary 3.20, there exists an s ∈ {1, ...d+
1} such that |{vi ∈ V : c(vi) = s}| ≥ dn/(d + 1)e. Such subset of V is clearly
independent. �

Corollary 3.23. Let G = (V,E) be an undirected graph where V = {v1, ..., vn}.
Suppose G has an orientation D satisfying EE(D) 6= EO(D) and let d1 ≥ ... ≥ dn
be the ordered sequence of outdegrees of the vertices in D. Then, for every k,
n > k ≥ 0, G has an independent set of at least d(n− k)/(dk+1 + 1)e.

Proof. Without the loss of generality, assume that d+
D(vi) = di. Let S(i) =

{1, ..., di + 1} for 1 ≤ i ≤ n. By Theorem 3.19, there exists a proper coloring
c : V 7→ Z such that c(vi) ∈ S(i) for 1 ≤ i ≤ n. For each k such that 0 ≤ k < n,
c(vk+1), ..., c(vn) ∈ {1, ..., dk+1 +1}. Thus, by the Pigeonhole Principle, there exists
an independent set of the size at least d(n− k)/(dk+1 + 1)e. �

Definition 3.24. For an undirected graph G = (V,E), L(G) = max(|E(H)|/|V (H)|),
where H = (V (H), E(H)) ranges over all subgraphs H ⊂ G.

Definition 3.25. A matching M in a graph G = (V,E) is a subset M ⊂ E such
that no two edges in M are incident on the same vertex, i.e. if (w, x), (y, z) ∈
M , then w, x, y, z are distinct. A maximum matching of G is a matching of a
maximum size.

Definition 3.26. For M a matching in a graph G = (V,E), a vertex v ∈ V is
M-saturated if there exists an edge in M incident on v. Otherwise, v is M-
unsaturated.

Definition 3.27. For M a matching in a graph G = (V,E), an M-alternating
path is a path in G whose edges are alternately in M and outside of M . An M-
alternating path whose end vertices are M-unsaturated is called an M-augmenting
path.

Lemma 3.28. If M is a maximum matching of a graph G = (V,E), there can be
no M -augmenting paths in G.

Proof. Assume the contradiction that there exists P an M -augmenting path in G.
Let M ′ = M ∪ (P ∩M c) \ (P ∩M). Since P is an M -augmenting path, none of the
vertices in P is an endpoint of the edges in M \ P . Thus, M ′ is a valid matching
in G. Since |M ′| = |M | + 1, M is not a maximum matching, which leads to a
contradiction. �

Definition 3.29. A graph G = (V,E) is a bipartite graph if V = V1 ∪ V2 where
V1 and V2 are disjoint independent sets of vertices. Such bipartite graph is denoted
by G = (V1, V2, E).
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Definition 3.30. For a bipartite graph G = (V1, V2, E), a matching M in G is
called a complete matching if M saturates all the vertices in V1.

Definition 3.31. For a bipartite graph G = (V1, V2, E) and a subset of vertices
S ⊂ V1, the neighborhood N(S) is

N(S) = {v ∈ V2 : ∃u ∈ S1, (u, v) ∈ E}

Lemma 3.32. (Hall’s Theorem) For a bipartite graph G = (V1, V2, E) where |V1| ≤
|V2|, G has a complete matching if and only if |S| ≤ |N(S)| for all S ⊂ V1.

Proof. If G has a complete matching M , for each S ⊂ V1, every vertex v ∈ S has
a matching vertex in V2 by M . Thus, |S| ≤ |N(S)|.
Conversely, if |S| ≤ |N(S)| for all S ⊂ V1, assume the contradiction that G has no
complete matching. Let M be a maximum matching in G. Since M is not complete,
there exists s an M -unsaturated vertex in V1. Let Z be the set of vertices in G
that are reachable from s by M -alternating paths. Let S = Z ∩V1 and T = Z ∩V2.
Since there exist no M -augmenting paths in G by Lemma 3.28, every vertex in
T has a matching vertex in S \ {s} by M , and every vertex in S \ {s} has a
matching vertex in T by M . Hence, |T | = |S| − 1. Moreover, T = N(S). Thus,
|S| > |N(S)| = |T | = |S| − 1, which leads to a contradiction. �

Lemma 3.33. An undirected graph G = (V,E) has an orientation D in which the
maximum outdegree is d if and only if L(G) ≤ d.

Proof. If there exists such an orientation D, then, for each subgraph H ⊂ G,

|E(H)| =
∑

v∈V (H)

d+
H(v) ≤

∑
v∈V (H)

d+
D(v) ≤ d|V (H)|

Hence, |E(H)|/|V (H)| ≤ d for each H ⊂ G, and L(G) ≤ d.
Conversely, suppose L(G) ≤ d. Let F be a bipartite graph on the classes of vertices,
A = E and B, a union of d disjoint copies V1, ..., Vn of V . Each e = (u, v) ∈ E = A
is joined by edges in F to the d copies of u and the d copies of v. For E′ ⊂ E a
set of edges of a subgraph H of G whose vertices are the endpoints of the edges in
E′, in F , |N(E′)| = d|V (H)|. By Definition 3.24, |E′|/|V (H)| ≤ L(G) ≤ d. Hence,
|E′| ≤ d|V (H)| = |N(E′)|. By Hall’s theorem, F has a complete matching M . By
orienting each edge in E from its matching vertex by M , the resulting orientation
D has the maximum outdegree d. �

Theorem 3.34. Every bipartite graph G = (V1, V2, E) is (dL(G)e+ 1)-choosable.

Proof. For d = dL(G)e, there exists an orientation D of G in which the maximum
outdegree is at most dL(G)e. Since bipartite graphs have no odd cycles, EE(D) 6=
EO(D), and by Theorem 3.19, G is (dL(G)e+ 1)-choosable. �

Remark 3.35. The assumption that G is bipartite is necessary.

Proof. For G = Kn a complete graph on n vertices, L(G) = n−1
2 , but G is clearly

not k-choosable for k < n. �

Remark 3.36. For every k, there exists a bipartite graph G such that L(G) ≤ k
and G is not k-choosable. Hence, Theorem 3.34 is sharp.
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Proof. Let G be a complete bipartite graph on the classes of vertices, A and B,
where |A| = kk and |B| = k. For H the induced graph on A′ ∪ B′ where A′ ∈ A
and B′ ∈ B, |E(H)| =

∑
a∈A′ dH(a) ≤ k|A′| ≤ k|V (H)|. Thus, L(G) ≤ k. For

B = {b1, ..., bn}, let S(bi) = {(i − 1)k + 1, (i − 1)k + 2, ..., ik} for each 1 ≤ i ≤ n.
For A = {ai1,...,ik : 1 ≤ ij ≤ k for 1 ≤ j ≤ k}, let

S(ai1,...,ik) = {i1, k + i2, ..., (k − 1)k + ik}
Suppose that there exists a proper coloring c : A∪B 7→ Z such that c(v) ∈ S(v) for
all v ∈ A ∪B. Then, there exists an k-tuple (c1, ..., ck) such that 1 ≤ c1, ..., ck ≤ k
and c(bi) = (i−1)k+ ci for 1 ≤ i ≤ k. However, ac1,...,ck has no value in S(ai1,...,ik)
which is distint from the colors of its neighbors. Hence, c is not a proper coloring,
which leads to a contradiction. �

4. Cube Covering by Hyperplanes

Theorem 4.1. Let H1, ...,Hm be a family of hyperplanes in Rn that cover all the
vertices of the unit cube {0, 1}n but one. Then, m ≥ n.

Proof. Without the loss of generality, assume that the uncovered vertex is 0 =
(0, ..., 0). For each 1 ≤ i ≤ m, Hi is defined by the equation ai · x = bi where
ai = (ai,1, ..., ai,n) and x = (x1, ..., xn). Since Hi does not cover the origin for each
1 ≤ i ≤ m, bi 6= 0 for 1 ≤ i ≤ m. Assume the contradiction that m < n, and
consider the polynomial

F (x) = (−1)n+m
m∏
j=1

bj

n∏
i=1

(xi − 1)−
m∏
i=1

[(ai, x)− bi]

The degree of F is n =
∑n

i=1 1, and the coefficient of
∏n

i=1 xi is (−1)n+m
∏m

j=1 bj 6=
0. Let Si = {0, 1} for all 1 ≤ i ≤ n. Since |Si| = 2 > 1 for all 1 ≤ i ≤ n, by Corollary
1.4, there exists c = (c1, ..., cn) ∈ {0, 1}n such that F (c) 6= 0. Since

F (0) = (−1)n+m
m∏
j=1

bj(−1)n −
m∏
i=1

(−bi) = (−1)m
m∏
j=1

bj − (−1)m
m∏
i=1

(bi) = 0,

c 6= 0. Since c is covered by some Hi, (ai, x) − bi = 0 for some i. Then, F (c) =
0− 0 = 0, which leads to a contradiction. �
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