ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS

COURTOIS

ABSTRACT. This paper is intended as a brief introduction to one of the very
first applications of Fourier analysis: the study of heat conduction. We derive
the steady state equation, which serves as our motivating PDE, and then iden-
tify solutions to two fundamental scenarios: the first, a heat distribution on a
circle; the second, one on a rod. In doing all of this there is much more room
for depth that simply isn’t explored for brevity’s sake. A more comprehensive
paper could explicitly define what constitutes a good kernel, the limitations of
convergence of the Fourier transform, and different ways to circumvent these
limitations. Theoretically, there’s room to explore harmonic functions explic-
itly, as well as Hilbert spaces and the L? space. That would be the more
analytic route to take; on the other hand there are many fascinating applica-
tions that aren’t broached either. In math, application is nearly synonymous
with PDEs, and as far as partial differential equations are concerned, the most
important feature that the Fourier transform has is the property of exchanging
differentiation for multiplication. This property is really what makes bothering
with the Fourier transforms of most functions worth it at all. Another equally
important property of Fourier transforms is called scaling, which, in physics,
directly leads to a concept called the Heisenberg Uncertainty Principle, which,
like the whole of quantum physics, is very good at bothering people.
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1. INTRODUCTION

The mathematical field of Fourier Analysis was born out of the search for a
general solution to the heat equation near the turn of the 19th century. Because
we seek to explore several applications of Fourier Analysis, it will be necessary to
redevelop the techniques and properties that combine to make this subject area
illustrative and useful. As far as a starting point: there’s no better place to start
than the very problem that motivated this powerful technique - the heat equation.
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2. THE HEAT EQUATION

Consider an infinite metal plate which we model as the plane R?, and suppose
we start with an initial heat distribution at time ¢ = 0. Let the temperature at
point (x,y) at time t = 0 be denoted by u(x,y,t).

Consider a small square centered at (zg,yo) with sides parallel to the axis and
of side length h, as shown in the picture below.

,(Iusyu) \

The amount of heat energy in S at time ¢ is given by

H(t) :0//Su(x,y,t) dx dy,

where o is a constant called the specific heat of the material. Therefore, the heat

flow into S is
oOH ou
o = C / /S ot .

ou
<o h2 a(xoﬂl/out)

(...as S has an area of h2.) Given two bodies with a common surface K, New-
ton’s law of cooling states that heat flows at a rate proportional to the difference in
temperature between the bodies integrated over K. Note that « is a proportionality
constant named the conductivity.

@:n// Vu-ndK,
dt K

For the vertical side on the right of our square S, this becomes

ou
- hi o h 27 O7t )
Kh (50 = 1/2,10,1)
We can find the net rate of heat change on the square by adding up the other

sides as well.
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dH ou ou
dt =kh %(xo + h/2,yo,t) — %(xo — h/2,y0,t)

ou ou
+ %(xmyo + h/Qat) - %(xmyo - h/2at)

Then, by the mean value theorem and letting h tend to 0, we derive

cou 0%u  u
(2.1) Lot o + 87y2

a partial differential equation affectionately called the heat equation.

3. THE STEADY-STATE EQUATION AND THE LAPLACIAN

If we wait long enough, the system will reach thermal equilibrium and the time
derivative will reach zero. Our heat equation becomes
Pu  0%*u
0=-5++>
0x2 = Oy?

This is called Laplace’s equation. Laplace’s equation is the specific case of the
Laplacian of a function being equal to zero. The Laplacian is a differential operator,
denoted by either V2 or A. For a function f,

o%f  0*f  O*f 0*f
ox? +8x§ * Oz " ”+6x%

Laplace’s equation, Af = 0, is a partial equation with solutions that are im-
portant in many fields of science, such as electromagnetism, astronomy, and fluid
dynamics. These solutions are important because they describe the behavior of
electromagnetic, gravitational, and fluid potentials. In heat conduction specifically,
Laplace’s equation is called the steady state equation, representing a final heat
distribution that is no longer changing, equation 3.1 above.

Solutions of Laplace’s equation are also of interest in pure mathematics. For L,
an open subset of R™, a harmonic function is a twice continuously differentiable
function f : L — R, that satisfies Laplace’s equation, that is Af = 0. Harmonic
analysis is a field of mathematics that studies various properties of these harmonic
functions, as well as those of the Fourier series and the Fourier transform.

(3.1)

(3.2) Af =

4. THE DIRICHLET PROBLEM ON THE DISC

Consider the unit disc and its boundary, the unit circle:

(4.1) D= {(r,0) e R*:r < 1},
(4.2) C={(r0)ecR?:r=1}

The Dirichlet problem (for the Laplacian on the unit disc) concerns the search
for solutions that satisfy the following conditions:

i) u is a harmonic function on D,
it) u is equal to a scalar function f(6) on C.
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In the context of heat conduction, this involves fixing a predetermined temper-

ature distribution on the unit circle, waiting a long time, and then examining the
final distribution of temperature.

Au=10

The boundary, f(8), is not easily expressible in Cartesian coordinates and so it’s
helpful to express the Laplacian in terms of polar coordinates. This is done by an
application of the chain rule for partial derivatives. The end result:

0%u  10u 1 0%u

Au=0=—-—5+-———+ 5=
or? + r Oor + r2 062
Rearranging the equation and multiplying by 72,

Pu_ o o
a0z ~ " a2 T or

We now separate variables and look for a solution of the form u(r, ) = F(r)G(0).
We find:

r2F" (r) +rF'(r) B G"(0)

F(r) - GO

Because each side depends on a different variable, they must each be equal to a
constant, call this .

G"(6) + AG(6) = 0
{ P2 (r) + 1 F'(r) = AF(r) = 0

Functions sin(f), cos(#), and € are all valid solutions for G. Because Laplace’s
equation is linear, a full solution can be expressed as a superimposition of all possible
solutions and, indeed, this sum for G(9) is
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G(0) = A, cos(nb) + B, sin(nf), n € Z

(4.3) ~ Z ane™
n=—oo

The only solution for F(r) defined at the origin turns out to be F(r) = "l
Therefore, we are left with the following solution:

(4.4) u(r,0) = Z anrilein?

n=—oo

This is not just a Fourier series, but in fact the Abel means of our function w.

5. ABEL MEANS AND THE POISSON KERNEL

Fourier series are very delicate creatures. Given functions that are too unruly,
the Fourier sum may not converge in places.

Sn(f)(0) # f(6)

FIGURE 1. castastrophe!

For people like you and I who are interested in expressing functions in terms of
their Fourier series, this can be a very bad thing. If we add the constraint that our
functions be of the class C?, our Fourier series will naturally uniformly converge
everywhere.

That said, the more accommodating the domain of an operation, the stronger
it’s generally considered. The simple Fourier sum of a function f is of the form

o
Su(H)0) = > ane™,
n=-—oo
We can extend the class of functions whose Fourier series converge by looking
at our sums in terms of Abel summation. A sum is Abel summable to s if for
0<r<li,

oo
Ap(r,0) = Z anr™ converges and lim A(r) = s
0 r—1
By looking at our Fourier series in terms of Abel summability, we can guarantee
pointwise convergence of Fourier series anywhere a function is continuous. Let’s
play around with our Abel sum!

oo
§ : T|n\anem«9

n=—oo

A (£)(0)

oo

1 4 . .
|m] —ing inf
> 7 <27r - flee d@>e

n=—oo

(5.1) = f(w)( > r"e-inw—@)) dip

n=—oo
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This form of Abel summation becomes particularly illustrative if we introduce a
new operation. For two functions r(t) and s(t), their convolution, denoted (rx* s)(t)
is defined:

o0

(r*s)(t) = / r(r)-s(t—7)dr
oo

Convolution is a binary operation that performs a sort of “sliding integral of

two functions.” The feature of convolutions that currently interests us is called
approximation to the identity. Given a function f and a good kernel K,,

lim (f * K,)(x) = /(2)

wherever f is continuous. Functions must have a certain set of properties to qualify
as good kernels but that exact definition is tangential to this paper. Instead, if we
examine (5.1), it is evident that our Abel means is actually the convolution of two
functions. In fact,

6.2 ANO =GP0 =5 [ 1P ds
where -
P.(0) = Z plnlein®

is the Poisson kernel, which is not only a good kernel, but special enough to have
merit its own name. We can obtain a prettier version of the Poisson kernel by
parsing our infinite sums into a positive sum and a negative sum like so:

P.() = i re™? 4 i re” 0
n=0 n=1

These are infinite geometric sequences and thus their limit has an exact algebraic
representation. This limit is:
1—72

(53) L e ey e
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Theorem 5.4. Let f be an integrable function defined on the unit circle. Then the
function u defined in the unit disc by the Poisson integral

u(r,0) = (f = P,)(0)

has the following properties:

i) u has two continuous derivatives in the unit disc and satisfies Au = 0.
it) If 0 is any point of continuity of f, then
lim u(r, ) = f(0)
r—1
If f is continuous everywhere, this limit is uniform.

i) If f is continuous, then u(r,0) is the unique solution to the steady state
heat equation in the disc which satisfies 1) and ii).

To prove i), recall that u is given by the series (4.3). Fix p < 1; inside each disc
of radius 7 < p < 1 centered at the origin, the series for u can be differentiated
term by term, and the differential series is uniformly and absolutely convergent.
Thus u can be differentiated twice and since this holds for all p < 1, we conclude
that u is twice differentiable in the unit disc. Moreover, by using term by term
differentiation and Laplace’s equation in polar coordinates, we find that Au = 0.

Proving ii) is an easy affair. Express u(r,0) as in (5.3). Taking lim, 1,

u(r,0) = %/ﬂ flp) ( Z .1.e—in(¢—9)> dy

-r n=—oo

equals 27 if ¢ = 0, else 0
1
= J(0) 27 = 1(0)

The proof for 4ii) is a uniqueness proof: it consists in showing that given a
solution to this problem v, it will be equal to the solution u that we’ve actually
derived. Unfortunately, such proofs take up a good amount of space and aren’t
particularly illustrative or groundbreaking given all of the work we’ve already done
finding the solution, so this proof will be omitted. Otherwise, we’ve found the exact
solution to Dirichlet’s problem on the disc:

1 s
Py fp)

u(r,0) = o

(-
1—2rcos(p — 0) + 12

de if0<r<l,

f(0) if r =1.
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6. THE TIME-DEPENDANT HEAT EQUATION ON THE REAL LINE

Now consider an infinite rod which we model by the real line and suppose we
are given a temperature distribution f(z) on the rod at time ¢ = 0. The same
considerations given in section 2 that generate the heat equation for R?, give a one
dimensional equivalent for R

2
o) o _ oy
ot Ox?

The initial condition that we impose is u(x,0) = f(x). Let’s solve this directly
using a Fourier transform. The transform rule that we’ll need is:

f(x) — 2migf(€).

Taking the Fourier transform of (6.1) in the z variable, we get

.
S (6 = —4ma(c ).

Fixing &, this is an ordinary differential equation in the variable ¢t with unknown
(€, ), so there exists a constant A(£) so that

e, t) = A(g)e i

By transforming the initial conditions as well, we remark that @(£,0) = f ).

This leads us to conclude that A(§) = f(&). Thus,
(6.2) (&, 1) = (e

The final step is to find a way to inverse-transform our solution back to the
time-domain. This can be done by taking advantage of the behavior of Fourier
transformed convolutions. One property of convolutions is that given functions f
and g elements of the Schwartz space,

(F*9)(€) = F(©)ale).

Looking at (6.2), we can see that @& = f-e 47 &'t

a g such that

. This implies that there exists

(6.3) g(x) — §(&) = e 4T

Take (6.3) and perform a Fourier inversion on it, that is

(64) g(x) — / 67471—21552 . e27ri£w df

1 2
6.5 - - 7z /4t
(6.5) (@02
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In fact, this function that our solution dictates we convolve f with is a special
kernel called the heat kernel on the real line. The heat kernel on the real line and
its transform are formally denoted

1

—x? /4t y _ —4n?te?
(@rt)172° — MO =e

Ht (LC) =

As it turns out, the heat kernel is another good kernel, so its discovery signifies
the end of our search for a solution.
The final solution for our heat problem on the real line is therefore

(6.6) ant) = (F 1)) = s [ Sl e s
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