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Abstract. This paper introduces the idea of a Markov chain, a random pro-
cess which is independent of all states but its current one. We analyse some

basic properties of such processes, introduce the notion of a stationary distri-

bution, and examine methods of bounding the time it takes to become close
to such a distribution.
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1. Markov Chains on Finite State Spaces

This paper defines Markov chains, and shows some methods which can be used
to analyse them. We begin with some basic definitions and properties related to
Markov chains.

1.1. Markov Chains.

Definition 1.1. We say a sequence of random variables X0, X1, X2, ... with state
space Ω and transition matrix P is a Markov chain if it satisfies the following
Markov property : for all x, y ∈ Ω,

ℙ

(
Xt+1 = y∣

t∩
s=0

Xt

)
= ℙ(Xt+1∣Xt) = P (x, y).

Provided ℙ(
∩t
s=1) > 0.

Intuitively a Markov chain is a sequence of random variables, such that the next
step in the chain of variables is only dependent on the previous variable. Since
the xth row of the transition matrix P for a chain is the distribution of P (x, ⋅),
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2 BEAU DABBS

the probability of moving from x to another state in Ω, the matrix P is stochastic,
meaning all entries are non-negative, and each row sums to 1.

Now we define some basic properties of Markov chains, and then prove some basic
results which will be useful throughout the paper. First consider the following two
definitions.

Definition 1.2. We say a Markov chain with transition matrix P is irreducible if
for any two states x, y ∈ Ω there is some t > 0 such that P t(x, y) > 0, meaning
that there are no two states for which there is no probability of going from one to
the other in any number of steps.

Definition 1.3. Let T (x) = {t > 1 : P t(x, x) > 0} be the set of all times when it
is possible to have returned to x starting from x. We then define the period of a
state x to be the greatest common divisor of this set, gcd(T (x)).

Lemma 1.4. If P is irreducible, then gcd(T (x)) = gcd(T (y)) for all x, y ∈ Ω.

Proof. Let gx = gcd(T (x)) and gy = gcd(T (y)). Since P is irreducible, for any
x, y ∈ Ω there exist positive integers r and s such that P r(x, y) > 0 and P s(y, x) >
0. Let t = r + s, then for any a ∈ T (x) one has:

P a+t(y, y) ≥ P r(x, y) ⋅ P a(x, x) ⋅ P s(x, y) > 0

The first inequality follows since restricting the path from y to y can’t increase the
probability, and the second from our definition of r, s and a. Since Hence for all
a ∈ T (x) we have a + t ∈ T (y), so gy divides a + t. But since t ∈ T (y), gy also
divides t, implying that gy divides a. Thus gy is a common divisor of T (x) and
divides the greatest common divisor gx. A similar argument shows that gx also
divides gy, hence the two must be equal. □

This lemma allows us to define periodicity as a property of a Markov chain when
the chain is irreducible. We define the period of the chain to be gcd(T (x)) for any
state x ∈ Ω. We say a chain is aperiodic if its period is 1. Aperiodicity along with
irreducibility then gives us the following proposition.

Proposition 1.5. If P is aperiodic and irreducible, then there exists r > 0 such
that P r(x, y) > 0 for all x, y ∈ Ω.

The proof of this fact is left to the reader, but can also be found in [Levin, Peres, Wilmer].
The third property we will frequently consider is reversibility.

Definition 1.6. One says a distribution � on Ω is reversible with respect to the
transition matrix P if it satisfies the following detail balanced equations:

�(x)P (x, y) = P (y, x)�(y) ∀x, y ∈ Ω

Now let us give an example. Let G be graph with vertex set V and edge set E.
If x, y ∈ V are connect by an edge we write x ∼ y. We then take the degree of a
vertex x to be deg(x) = ∣{y : x ∼ y}∣. We then define the simple random walk on
G by letting:

P (x, y) =

{
1

deg(x) if x ∼ y
0 else

While we can consider a random walk on any graph for now consider to simple
examples:
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Example 1.7. Random Walk on the n-cycle.
Consider the walk on the n-cycle. We can consider this walk as a random walk

on ℤn by having:

P (i, j) =

⎧⎨⎩
1
2 if i+ 1 ≡ j ( mod n)
1
2 if i− 1 ≡ j ( mod n)

0 else

For any integer n, the walk on the n-cycle is irreducible, but not necessarily ape-
riodic. If n is an odd-integer, then the walk is aperiodic. Consider the walk that
starts at 0. T (0) as defined above contains both 2, the event that one takes one step
forward and one step back, or vice versa, and n, the event that one walks all the
way around the cycle. Then since n is odd, 1 = gcd(2, n) ∣ gcd(T (0)). But if n is
even note that the only way to get back to a starting point is to go an equal number
of steps forwards, and backwards, taking an even number of steps, or to have the
difference between the number of steps forwards and backwards be a multiple of n.
Hence T (0) = {2k + tn : k, t > 0}, and gcd(T (0)) = 2.

However one can construct a lazy random walk on a graph by using the transition
matrix Q = P/2 + I/2 instead. Hence at every step there is 1

2 probability that the

walk stays where it is, and a 1
2 chance that the walk follows the distribution of P .

Then one can see that Q(x, x) = 1/2, and hence 1 ∈ T (x) for all x ∈ ℤn, making
gcd(T (x)) = 1. As one can see, this argument was independent of the distribution
of P , so this method of making a lazy chain works more generally to make an
aperiodic version of any Markov chain.

1.2. Stationary Distributions.

Definition 1.8. We call a distribution � on the state space Ω of a Markov chain
stationary with respect to the transition matrix P if:

� = �P

Or equivalently

�(y) =
∑
x∈Ω

�(x)P (x, y) ∀x, y ∈ Ω

As an example, let G = (V,E) be a graph, and consider the distribution:

�(x) =
deg(x)

2 ⋅ ∣E∣
This distribution is stationary with respect to the simple random walk on G since:∑

x∈Ω

�(x)P (x, y) =
∑

{x∈Ω : x∼y}

deg(x)

2 ⋅ ∣E∣
1

deg(x)
=

deg(y)

2 ⋅ ∣E∣
= �(y)

Also note that this distribution is also reversible with respect to our transition
matrix since:

�(x)P (x, y) =
deg(x)

2∣E∣
⋅ 1

deg(x)
=

1

2∣E∣
=

deg(y)

2∣E∣
⋅ 1

deg(y)
= �(y)P (y, x)

if x ∼ y, and otherwise P (x, y) = 0 = P (y, x) so the equality holds trivially. In fact
the distribution being both reversible and stationary is not just a coincidence:

Proposition 1.9. If a distribution � on Ω is reversible with respect to the transition
matrix P on Ω, then � is a stationary with respect to P .
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Proof. For any x, y ∈ Ω:

∑
x∈Ω

�(x)P (x, y) =
∑
x∈Ω

�(y)P (y, x) = �(y) ⋅

(∑
x∈Ω

P (y, x)

)
= �(y)

The first equality follows from reversibility, and the second by using the fact that
P is a stochastic matrix. Hence by definition � is stationary. □

In general showing a distribution is reversible can be the simplest way to show
that a distribution is stationary, but it is not always possible, since there exist
Markov chains with stationary distributions that are not reversible. Yet whether
there exists a reversible distribution with respect to a transition matrix or not, one
might want to know if every transition matrix at least has a stationary distribution,
and this in fact turns out to be true. But before we show this let us introduce the
concept of a hitting time, and a stopping time.

Definition 1.10. We define the hitting time for x to be:

�x := min{t ≥ 0 : Xt = x}

and also define:

�+
x := min{t ≥ 1 : Xt = x}

to be the first positive time one visits x. If a chain begins at x then �+
x is also

called the first return time

As one might expect, for finite Markov chains, if the chain is irreducible, then
the expected time to hit any given point is finite. We state this as the following
lemma, but leave the proof to the reader.

Lemma 1.11. For any states x and y of an irreducible Markov chain, Ex(�+
y ) <∞

Definition 1.12. More generally we define a stopping time for (Xt) to be a
{0, 1, ...} ∪ {∞}-valued random variable such that for each time t, the event that
{� = t} is determined by X0, ...Xt.

Hence the hitting time can be seen to be one example of a stopping time. We
also define the Green′sfunction for a Markov chain with stopping time � to be,

G� (a, x) := Ea(number of visits to x before �) = Ea

( ∞∑
t=0

1Xt=x,�>t

)
.

Theorem 1.13. If � is a stopping time for a finite, irreducible Markov chain
satisfying ℙa{X� = a} = 1 and G� (a, x) is the Green’s function, then

G� (a, x)

Ea(�)
= �(x) for all x

where �(x) is the stationary distribution for P .



MARKOV CHAINS AND MIXING TIMES 5

Proof. We will show directly that G� (a, x) satisfies the stationary distribution prop-
erty directly. Consider∑

x∈Ω

G� (a, x)P (x, y) =
∑
x∈Ω

∞∑
t=1

ℙa(Xt = x, � > t)P (x, y)

=
∑
x∈Ω

∞∑
t=0

ℙa(Xt = x,Xt+1 = y, � > t)

Now if we switch the order of summations, and sum over x ∈ Ω we obtain∑
x∈Ω

G� (a, x)P (x, y) =

∞∑
t=0

ℙa(Xt+1 = y, � ≥ t+ 1)

=

∞∑
t=1

ℙa(Xt = y, � ≥ t)

=

∞∑
t=0

ℙa(Xt = y, � ≥ t)− ℙa(X0 = y, � ≥ 0)

=

∞∑
t=0

ℙa(Xt = y, � > t) +

∞∑
t=0

ℙa(Xt = y, � = t)− ℙa(X0 = y)

= G� (a, y) + ℙa(X� = y)− ℙa(X0 = y)

Now to complete the proof consider two cases.

(i) If y = a then by our assumptions

ℙa(X� = y) = ℙa(X0 = y) = 1

(ii) If y ∕= a then we have

ℙa(X� = y) = ℙa(X0 = y) = 0

In either case our last line is equal to G� (a, y), so we have shown that G� (a, ⋅) =
G� (a, ⋅)P . To normalize to a probability distribution note that

∑
x∈ΩG� (a, x) =

Ea(�) so for all x

G� (a, x)

Ea(�)
= �(x)

Is a stationary distribution on Ω □

Since G�+
x

(x, x) = 1 for all x we obtain the following corollary.

Corollary 1.14. If P is the transition matrix for an irreducible Markov chain,
then

�(x) =
1

Ex(�+
x )

is a stationary distribution for P .

It can further be shown that for an aperiodic Markov chain this stationary distri-
bution is unique, and that if a chain has period n then there are precisely n station-
ary distributions on Ω. For a proof of these two facts see [Levin, Peres, Wilmer].

Similar to the idea of a stationary distribution is that of a harmonic function.
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Definition 1.15. We say a function ℎ : Ω→ ℝ is harmonic at x if:

ℎ(x) =
∑
y∈Ω

P (x, y)ℎ(y)

Another way of writing this fact is by considering ℎ as a column vector we have
ℎ = Pℎ. If ℎ is harmonic for all x ∈ D ⊂ Ω then we say ℎ is harmonic on D.

We finish up this section with the following proposition, demonstrating one of
the most useful facts about harmonic functions. The proof here is left to the reader.

Lemma 1.16. Suppose that P is an irreducible transition matrix. A function ℎ
which is harmonic on Ω is a constant function.

2. Total Variation Metric and Mixing Times

Now that we have set up the framework for the study of Markov chains we
introduce a distance metric for probability distributions, and consider repeated
applications of a transition matrix to a distribution, and its effects. We start out
with some definitions, and then prove an important convergence theorem.

Definition 2.1. We define the total variation distance between two probability
distributions � and � on the same state space Ω to be:

∣∣�− �∣∣TV = max
A⊂Ω
∣�(A)− �(A)∣

That is, our distance metric is the largest difference in probability of any single
event under the each probability distribution. The following proposition shows a
very useful equivalence to this definition.

Proposition 2.2. Let � and � be two probability distributions on Ω. Then:

∣∣�− �∣∣TV =
1

2

∑
x∈Ω

∣�(x)− �(x)∣.

Proof. Let B = {x : �(x) ≥ �(x)} and let A ⊂ Ω be any event. Then

�(A)− �(A) ≤ �(A ∩B)− �(A ∩B) ≤ �(B)− �(B)

The first inequality follows since x ∈ BC ⇒ �(x) − �(x) < 0, so removing these
terms can only increase the difference in probabilities. The second inequality follows
since adding more elements from B also can’t decrease the difference.

Similarly one can say that:

�(A)− �(A) ≤ �(BC)− �(BC)

and in fact these two upper bounds are exactly the same since:

�(BC)− �(BC) = (1− �(B))− (1− �(B)) = �(B)− �(B)
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So taking A to be B or BC in the definition of total variation will give us the
maximum difference in probabilities, hence:

∣∣�− �∣∣TV =
1

2

[
�(B)− �(B) + �(BC)− �(BC)

]
=

1

2

[(∑
x∈B

�(x)− �(x)

)
+

( ∑
x∈BC

�(x)− �(x)

)]

=
1

2

[(∑
x∈B
∣�(x)− �(x)∣

)
+

( ∑
x∈BC

∣�(x)− �(x)∣

)]

=
1

2

∑
x∈Ω

∣�(x)− �(x)∣

Giving us the desired result. □

Also note that by the proof above one can also say that:

(2.3) ∣∣�− �∣∣TV =
∑
x∈B

[�(x)− �(x)] =
∑

�(x)≥�(x)

�(x)− �(x)

We already know that all irreducible Markov chains have a stationary distribu-
tion, a distribution such that repeated application of the Markov process results in
the same distribution, but we don’t know if this distribution will ever be reached,
unless the chain is started at such a distribution. The following convergence theo-
rem guarantees that repeated application of a transition matrix on any distribution
will tend to the stationary distribution. To be more precise:

Theorem 2.4. (Convergence Theorem) Suppose that P is irreducible and ape-
riodic with stationary distribution �. Then:

∣∣P t(x, ⋅)− �∣∣TV ≤ c�t

Proof. First recall that by proposition 1.5 there exists r > 0 such that P r contains
all strictly positive entries, since P is an irreducible transition matrix. We let Π
be the ∣Ω∣ × ∣Ω∣ matrix with each row being the stationary distribution �. For
sufficiently small � > 0 we have

P r(x, y) ≥ ��(y),

for all x, y ∈ Ω. Hence if we let � = 1− �, the equation:

P r = (1− �)Π + �Q

defines a matrix Q which is guaranteed to be stochastic.
One can further show that for any stochastic matrix M , the matrix MΠ = M

consider the entry in the xth row and yth column of MΠ:

(MΠ)(x, y) =
∑
z∈Ω

M(x, z)Π(z, y) =
∑
z∈Ω

M(x, z)�(z) = �(z)

and for any matrix which satisfies �M = � we have that ΠM = Π, since⎛⎝ �
⋅ ⋅ ⋅
�

⎞⎠M =

⎛⎝�M⋅ ⋅ ⋅
�M

⎞⎠ =

⎛⎝ �
⋅ ⋅ ⋅
�

⎞⎠
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Now we will prove by induction that for every k > 0:

P kr = (1− �k)Π + �kQk

The case for n = 1 is true by definition of our matrix Q. Now suppose that for
n > 0 we have Pnr = (1− �n)Π + �nQn, and consider the case for n+ 1:

P (n+1)r = ((1− �n)Π + �nQn)P r

= (1− �n)ΠP r + �nQnPn

= (1− �n)Π + �nQn [(1− �)Π + �Q)]

= (1− �n)Π + �n(1− �)Π + �n+1Qn+1 = (1− �n+1)Π + �n+1Qn+1

This completes the inductive step. Now for any k if we multiply by P j and rearrange
the terms we obtain:

P rk+j −Π = �k(QkP j −Π)

Since these matrices are equal, so are each of their rows. Summing the absolute
values of the x0 row on each side of the equation gives us:

∣∣P rk+j(x0, ⋅)− �∣∣TV = �k ⋅ ∣∣QkP j(x0, ⋅)− �∣∣TV ≤ �k

The last inequality holding since the greatest value the total variation distance can
take is 1. □

Because of this theorem the stationary distribution is also sometimes called the
equilibrium distribution. But, even though we now know P t tends to it stationary
distribution as t tends to infinity for any transition matrix, we have no indication
of how quick this process is, in general, or in specific cases. The rest of this paper
develops methods for analyzing the speed at which transition matrices converge
to their equilibrium distributions. We define here three measures of distance at a
given time t, and show a few relations between them.

Definitions 2.5. Let P be the transition matrix for a Markov chain on state space
Ω, with x, y ∈ Ω. (i)

d(t) := max
x∈Ω
∣∣P t(x, ⋅)− �∣∣TV

(ii)

d̄(t) := max
x,y∈Ω

∣∣P t(x, ⋅)− P t(y, ⋅)∣∣TV

(iii) separation distance.

sx(t) := max
y∈Ω

[
1− P t(x, y)

�(y)

]
s(t) := max

x∈Ω
sx(t)

Proposition 2.6.

d(t) ≤ d̄(t) ≤ 2d(t)



MARKOV CHAINS AND MIXING TIMES 9

Proof. The second inequality simply follows from the triangle inequality. Let x, y ∈
Ω, then

∣∣P t(x, ⋅)− P t(y, ⋅)∣∣TV =
∑
z∈Ω

∣P t(x, z)− �(z) + �(z)− P (y, z)∣

≤
∑
z∈Ω

∣P t(x, z)− �(z)∣+
∑
z∈Ω

∣P t(y, z)− �(z)∣ ≤ 2d(t)

Since this holds for all x and y it also holds for the max.
To prove the first inequality first note that for anyA ∈ Ω �(A) =

∑
y∈Ω P (y,A)�(y).

This gives us:

∣∣P t(x, ⋅)− �(x)∣∣TV = max
A⊂Ω
∣P t(x,A)− �(A)∣ = max

A⊂Ω
∣
∑
y∈Ω

�(y)(P t(x,A)− P t(y,A)∣

≤ max
A⊂Ω

∑
y∈Ω

�(y)∣P t(x,A)− P t(y,A)∣

≤
∑
y∈Ω

�(y) max
A∈Ω
∣P t(x,A)− P t(y,A)∣

=
∑
y∈Ω

�(y)∣∣P t(x, ⋅)− P t(y, ⋅)∣∣TV

≤ max
y∈Ω
∣∣P t(x, ⋅)− P t(y, ⋅)∣∣TV

□

Proposition 2.7. The separation distance sx(t) satisfies:

∣∣P t(x, ⋅)− �∣∣TV ≤ sx(t)

And thus d(t) ≤ s(t)

Proof.

∣∣P t(x, ⋅)− �∣∣TV =
∑

P t(x,y)<�(y)

�(y)− P t(x, y) =
∑

P t(x,y)<�(y)

�(y)

(
1− P t(x, y)

�(y)

)

≤ max
y∈Ω

(
1− P t(x, y)

�(y)

)
= sx(t)

□

Definition 2.8. We define the mixing time for a distance 0 < � < 1to be:

tmix(�) = min{t : d(t) < �}
And we also let tmix = tmix( 1

4 )

3. Eigenvalues and Eigenfunctions

In this section we will define a new inner product which is useful when con-
sidering transition matrices of Markov. We begin by stating some basic results
about transition matrices, and our new inner product. The first result, is left to
the reader.

Lemma 3.1. Let P be the transition matrix of a finite Markov chain.

(i) If � is an eigenvalue of P , then ∣�∣ ≤ 1.
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(ii) If P is irreducible, the vector space of eigenfunctions corresponding to the
eigenvalue 1 is the one-dimensional space generated by the column vecter
1 := (1, 1, ..., 1)T .

(iii) If P is irreducible and aperiodic, then −1 is not an eigenvalue of P .

Proposition 3.2. For a lazy Markov chain with state space Ω, all the eigenvalues
of the transition matrix P̂ are non-negative.

Proof. Since P̄ is the transition matrix for a lazy Markov chain we can write P̄ =
P/2 + I/2 with P the transition matrix for some other Markov chain. � is an
eigenvalue of P̄ , with corresponding eigenfunction f iff

P̄ f − �If = 0

But this is equivalent to requiring

(P/2 + I/2)f − �If = P/2− (�− 1/2)If = 0

Hence we must have that P − (2�− 1)If = 0, and 2�− 1 be an eigenvalue for some
Markov chain. By lemma 3.1 this implies that

2�− 1 ≥ −1 ⇔ � ≥ 0

□

In addition to these basic properties, we further define a convenient inner product
when dealing with transition matrices. Let ⟨⋅, ⋅⟩ denote the usual inner product on
ℝΩ, ⟨f, g⟩ =

∑
x∈Ω f(x)g(x). We also define our own inner product denoted

⟨f, g⟩� =
∑
x∈Ω

�(x)f(x)g(x).

The following lemma exemplifies why this inner product useful.

Lemma 3.3. Let P be a reversible transition matrix w.r.t. �.

(i) The inner product space (ℝΩ, ⟨⋅, ⋅⟩�) has an orthonormal basis of real-valued

functions {fi}∣Ω∣i=1 corresponding to real eigenvalues {�i}.
(ii) The matrix P can be decomposed as

P t(x, y)

�(y)
=

∣Ω∣∑
j=1

fj(x)fj(y)�tj

(iii) The eigenfunction f1 corresponding to the eigenvalue 1 can be taken to be
the constant vector 1, in which case

P t(x, y)

�(y)
= 1 +

∣Ω∣∑
j=1

fj(x)fj(y)�tj

Proof. First we define a new matrix A by letting A(x, y) = �1/2(x)P (x, y)�−1/2,
for all x, y ∈ Ω. One can check that A is a symmetric matrix since P is reversible:

A(x, y) = �−1/2(x)[�(x)P (x, y)]�−1/2(y)

= �−1/2(x)[P (y, x)�(y)]�−1/2(y) = A(y, x)
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Then the spectral theorem for symmetric matrices guarantees an orthonormal eigen-

basis {'j}∣Ω∣j=1, with each 'j an eigenfunction with corresponding eigenvalue �j .

Now consider the eigenfunction
√
�.

(A
√
�)(y) =

∑
x∈Ω

A(x, y)�1/2(x)

=
∑
x∈Ω

�1/2(x)�1/2(x)P (x, y)�−1/2(y)

= �−1/2(y)
∑
x∈Ω

�(x)P (x, y) = �−1/2(y)�(y) =
√
�(y)

Hence
√
� is an eigenfunction of A with corresponding eigenvalue 1. We now define

D� to be the diagonal matrix with D�(x, x) = �(x) for each x ∈ Ω. Then we

can write our new matrix as A = D
1/2
� PD

−1/2
� . For each j we also let fj =

D
−1/2
� 'j . Then we can show that each fj is an eigenfunction for the matrix P with

corresponding �j .

Pfj = PD−1/2
� 'j = D−1/2

�

(
D1/2
� PD−1/2

�

)
'j = D−1/2

� A'j = �jD
−1/2'j = �jfj

Further since the 'j form an orthonormal basis with respect to the normal inner
product, for each i, j we have

⟨'i, 'j⟩ = ⟨D1/2
� fi, D

1/2
� fj⟩ = ⟨fi, fj⟩�

Hence the fj form an orthonormal basis with respect to ⟨⋅, ⋅⟩�.
Let �y be the function

�y(x) =

{
1 if y = x

0 if y ∕= x

Then using basis decomposition we can rewrite.

(3.4) �y =

∣Ω∣∑
j=1

⟨�y, fj⟩fj =

∣Ω∣∑
j=1

fj(y)�(y)fj

Then using the fact that P tfj = �tjfj for each j we can write

P t(x, y) = (P t�y)(x) =

∣Ω∣∑
j=1

fj(y)�(y)P tfj(x) =

∣Ω∣∑
j=1

fj(y)�(y)�tjfj(x),

completing the proof of (ii). (iii) follows from our earlier consideration of the
eigenfunction

√
� of A. Since D−1/2

√
�(x) = 1 is an eigenfunction for P with

corresponding eigenvalue 1. □

When talking about the eigenvalues for transition matrices, we’ll label them from
largest to smallest

1 = �1 > �2 ≥ ⋅ ⋅ ⋅ ≥ �∣Ω∣
Also define the largest eigenvalue in absolute value to be:

�∗ = max{∣�∣ : � an eigenvalue of P, � ∕= 1}

then ∗ = 1 − �∗ is called the absolute spectral gap, and if P is aperiodic and
irreducible, then lemma 3.1 implies that ∗ > 0.
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We then define the relaxation time, trel to be

trel :=
1

∗

With this value it is possible to get upper, and lower, bounds on the mixing time
for a Markov chain. We first consider an upper bound on the mixing time.

Theorem 3.5. Let P be the transition matrix of a reversible, irreducible chain with
state space Ω, and let �min := minx∈Ω �(x). Then

tmix(�) ≤ log

(
1

��min

)
trel.

Proof. Using lemma 3.3 (iii) and the Cauchy-Schwarz inequality we can write

(3.6)

∣∣∣∣P t(x, y)

�(y)
− 1

∣∣∣∣ ≤ ∣Ω∣∑
j=2

∣fj(x)fj(y)�t∗∣ ≤ �t∗

⎛⎝ ∣Ω∣∑
j=2

f2
j (x)

∣Ω∣∑
j=2

f2
j (y)

⎞⎠ 1
2

Then using equation 3.4 and the orthonormality of {fj} one obtains

�(x) = ⟨�x, �x⟩ =

〈 ∣Ω∣∑
j=1

fj(x)�(x)fj ,

∣Ω∣∑
i=1

fi(x)�(x)fi

〉

=

∣Ω∣∑
j=1

∣Ω∣∑
i=1

fj(x)fi(x)�2(x) ⟨fj , fi⟩ = �2(x)

∣Ω∣∑
j=1

f2
j (x)

Hence we can say that
∑∣Ω∣
j=2 f

2
j (x) ≤ �(x)−1. Using this fact and equation 3.6 we

obtain ∣∣∣∣P t(x, y)

�(y)
− 1

∣∣∣∣ ≤ �t∗√
�(x)�(y)

≤ �t∗
�min

=
(1− ∗)t

�min
≤ e−∗t

�min

Then by proposition 2.7 d(t) ≤ �−1
mine

−�∗t. Hence by our definition of tmix(�) we
obtain the desired result. □

Theorem 3.7. For a reversible, irreducible, and aperiodic Markov chain,

tmix(�) ≥ (trel − 1) log

(
1

2�

)
.

Proof. Begin by considering any eigenfunction f of P with eigenvalue � ∕= 1, then
by orthonormality we have that ⟨f,1⟩� =

∑
x∈Ω f(x)�(x) = 0. So letting ∣∣f ∣∣∞ =

maxx∈Ω ∣f(x)∣, we can write

∣�tf(x)∣ = ∣P tf(x)∣ =

∣∣∣∣∣∣
∑
y∈Ω

P t(x, y)f(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈Ω

P t(x, y)f(y)− f(y)�(y)

∣∣∣∣∣∣
≤ ∣∣f ∣∣∞

∑
y∈Ω

∣∣P t(x, y)− �(y)
∣∣ = ∣∣f ∣∣∞2d(t)
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Then if we take x to be such that f(x) = ∣∣f ∣∣∞ we can obtain the bound ∣�∣t ≤
2d(t). If we use the definition of tmix we can say that

∣�∣tmix(�) ≤ 2� ⇔ 1

2�
≤
(

1

∣�∣t

)tmix(�)

Considering the logarithm of each side of this inequality we obtain

log

(
1

�

)
≤ tmix(�) log

(
1

∣�∣

)
≤ tmix(�)

(
1− 1

∣�∣

)
Now if we minimize the right hand side over all choices of � we obtain

tmix(�) ≥ �∗
1− �∗

log

(
1

2�

)
= (trel − 1) log

(
1

2�

)
.

□

Again we can use these methods to consider the random walk on the n-cycle.
We’ll consider the walk as a walk on the nth roots of unity as a multiplicative
group.

Example 3.8. Let �n = e2�i/n, and let Wn = {�n, �2
n, ..., �

n−1
n , 1} be the set of the

nth roots of unity. These points can be seen as a regular n-gon inscribed in the
unit circle, and since �nn = 1, for all j, k one can say:

�jn�
k
n = �j+k mod n

n .

So if we consider the random walk as a walk on this group, with transition matrix
P , then for any j, and any eigenfunction f of P we have

�f(�jn) = Pf(�kn) =
f(�k−1

n ) + f(�k+1
n )

2
.

So for 0 ≤ k ≤ n− 1 define 'k(�jn) := �jkn . Then we have

P'k(�jn) =
'k(�j−1

n ) + 'k(�j+1
n )

2
=
�jk−kn + �jk+k

n

2
= �jkn

(
�kn + �−kn

2

)
.

Hence for each k, 'k is an eigenfunction for our transition matrix, with corre-

sponding eigenvalue
�kn+�−k

n

2 = cos(2�k/n). Hence the largest eigenvalue, that isn’t
1 is

�2 = cos(2�/n) = 1− 4�2

n2
+O(n−4).

Hence the spectral gap  has order n−2 and trel has order n2, and by the previous
theorems, the mixing time is also of order n2.

4. Hitting and Covering Times

4.1. Hitting Time. We now return to the idea of a hitting time. Before we defined
the hitting time as the expected time to visit a point y from a starting point x.
When considering the hitting time for an entire Markov chain, we define the hitting
time as the maximum hitting time value between any two points in the chain’s state
space. More rigorously, for a chain with state space Ω we define:

tℎit = max
x,y∈Ω

Ex�y

Since this value is in a sense the worst case scenario of the time it takes the chain to
reach one state from another, it isn’t surprising that we can use this value to bound
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the time is takes the entire chain to settle down to its stationary distribution. We
study some properties of hitting times, and give an upper bound on the mixing time
in terms of the hitting time. But first we study the target time, whose definition
we first justify with the following lemma.

Lemma 4.1. (Random Target Lemma) For an irreducible Markov chain with
state space Ω, transition matrix P , and stationary distribution �. the quantity:∑

x∈Ω

Ea(�x)�(x)

does not depend on a ∈ Ω

Proof. For simplicity let ℎx(a) = Ea(�x). Then for all x ∕= a in Ω we have

ℎx(a) =
∑
y∈Ω

Ea(�x∣X1 = y)P (a, y)

=
∑
y∈Ω

(1 + Ey(�x))P (a, y) =
∑
y∈Ω

(1 + ℎx(y))P (a, y) = (Pℎx)(a) + 1

Hence we can say that

(Pℎx)(a) = ℎx(a)− 1

Now if x = a, then:

Ea(�+
a ) =

∑
y∈Ω

Ey(�+
a ∣X1 = y)P (a, y) =

∑
y∈Ω

(1 + ℎa(y))P (a, y) = 1 + (Pℎa)(a)

Now by equation corollary 1.14 we can say that

Pℎa(a) =
1

�(a)
− 1

now let ℎ(a) =
∑
x∈Ω ℎx(a)�(x). Then

Pℎ(a) =
∑
x∈Ω

Pℎx(a)�(x)

=
∑
x ∕=a

Pℎx(a)�(x) + Pℎa(a)�(a)

=
∑
x∈Ω

(ℎx(a)− 1)�(a)− (ℎa(a)− 1)�(a) +

(
1

�(a)
− 1

)
�(a)

= ℎ(a)− 1 + �(a) + (1− �(a)) = ℎ(a)

Note that the last line follows since ℎa(a) = 0. Hence we have shown that Pℎ(a) =
ℎ(a) for any a ∈ Ω so ℎ is a harmonic function and by lemma 1.16 this implies that
ℎ is a constant function, thus independent of the choice of a. □

So now we define the target time to be

t⊙ :=
∑
x∈Ω

Ea(�x)�(x) = E�(��)

By the random target lemma this definition is equivalent to considering a random
draw from Ω for the starting point, giving us:∑

x,y∈Ω

Ex(�y)�(x)�(y) = E�(��)
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Lemma 4.2. For an irreducible Markov chain with state space Ω and stationary
distribution �,

tℎit ≤ 2 max
w

E�(�w).

Proof. for any a, y ∈ Ω we have

Ea(�y) ≤ Ea(��) + E�(�y)

Since requiring the path to first pass through some point x selected according to
� can only increase the expected time for the path to be completed. Then by the
random target lemma we have:

Ea(��) = E�(��) ≤ max
w

E�(�w)

Combining these two equations we obtain the desired result. □

Now we find a relationship between hitting time and the mixing time.

Theorem 4.3. Consider a finite reversible chain with transition matrix P and
stationary distribution � on Ω.

(i) For all k ≥ 0 and x ∈ Ω we have

∣∣P k(x, ⋅)− �∣∣2TV ≤
1

4

[
P 2k(x, x)

�(x)
− 1

]
.

(ii) If the chain is lazy, that is it satisfies P (x, x) ≥ 1/2 for all x, then

tmix(1/4) ≤ 2 max
x∈Ω

E�(��) + 1

The first inequality above basically tells us that, for reversible chains, in order
to bound the total variation distance from stationarity, one only need make the
probability of returning to x close to its stationary probability. Also note that our
second inequality is able to relate tmix and tℎit since

E�(�x) =
∑
y∈Ω

Ey(�x)�(y) ≤ max
y∈Ω

Ey(�x) ≤ tℎit

Hence the theorem implies that

tmix(1/4) ≤ 2tℎit + 1

But before we are able to prove this theorem we need a few more results.

Proposition 4.4. Let P be the transition matrix for a reversible Markov chain on
a finite transition space Ω with stationary distribution �.

(i) For all t ≥ 0 and x ∈ Ω we have P 2t+2(x, x) ≤ P 2t(x, x).
(ii) If the chain PL is lazy, that is PL(x, x) ≥ 1/2 for all x, then for all t ≥ 0

and x ∈ Ω we have P t+1
L (x, x) ≤ P tL(x, x)

Proof. By proposition 3.3 we have the following representation:

P 2t(x, x)

�(y)
=

∣Ω∣∑
j=1

fj(x)fj(x)�2t
j
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but since ∣�j ∣ ≤ 1 for all j, we know that 0 ≤ �2
j ≤ 1. So for each term in the above

sum we have f2
j (x)�2t

j ≥ fj(x)fj(y)�2t+2
j hence we can say:

P 2t(x, x)

�(x)
≥
∣Ω∣∑
j=1

f2
j (x)�2t+2

j =
P 2t+2(x, x)

�(x)

The second inequality follows simply because the transition matrices for lazy Markov
chains have all non-negative eigenvalues.

P tL(x, x)

�(x)
=

∣Ω∣∑
j=1

f2
j (x)�tj ≥

∣Ω∣∑
j=1

f2
j (x)�t+1

j =
P t+1
L (x, x)

�(x)

□

We also require the following proposition which allows us to relate the expected
hitting time to the return probability of a state x.

Proposition 4.5. Consider a finite irreducible aperiodic chain with transition ma-
trix P , and stationary distribution � on Ω. Then for any x ∈ Ω,

�(x)E�(�x) =

∞∑
t=0

[P t(x, x)− �(x)].

Proof. Begin by defining �
(m)
x := min{t ≥ m : Xt = x} the first time x is visited

after step m. Also define �m := Pm(x, ⋅). By theorem 2.4 we know that �m → �
as m→∞. First note that we can simplify the Green’s function for this stopping
time by writing:

G
�
(m)
x

(x, x) =

∞∑
t=0

ℙ(Xt = x, � (m)
x > t) =

m−1∑
t=0

P k(x, x)

The summation can be stopped at m−1 because for all t ≥ m , Xt = x⇒ t ≥ � (m)
x .

Then by theorem 1.13 we can write:

m−1∑
t=0

P k(x, x) = �(x)Ex

(
� (m)
x

)
= �(x)[m+ E�m

(�x)].

Manipulating the equation we can write

m−1∑
t=0

[
P k(x, x)− �(x)

]
= �(x)E�m(� )

x.

By our earlier statement, if we let m go to infinity on both sides of the equality, we
obtain our result. □

With these two propositions, we can now proof the theorem.
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Proof. (i) By equation 2.3 we can write:

∣∣P k(x, ⋅)− �∣∣2TV =

⎛⎝1

2

∑
y∈Ω

P k(x, ⋅)− �(y)

⎞⎠2

=
1

4

⎛⎝∑
y∈Ω

[
�1/2(y)

] [
�1/2(y)

(
P k(x, y)

�(y)
− 1

)]⎞⎠2

Now using the Cauchy-Schwarz inequality we can write

∣∣P k(x, ⋅)− �∣∣2TV ≤
1

4

⎛⎝∑
y∈Ω

�(y)

⎞⎠⎛⎝∑
y∈Ω

�(y)

(
P k(x, y)

�(y)
− 1

)2
⎞⎠

=
1

4

∑
y∈Ω

�(y)

(
P k(x, y)

�(y)
− 1

)2

Expanding and using the fact that P is a reversible transition matrix, we can
write:

1

4

∑
y∈Ω

P k(x, y) ⋅ P k(x, y)

�(y)
− 2P k(x, y) + pi(y)

=
1

4

⎛⎝∑
y∈Ω

P k(x, y) ⋅ P k(y, x)

�(x)
− 2

∑
y∈Ω

P k(x, y) + 1

⎞⎠
=

1

4

[
P 2k(x, x)

�(x)
− 2 + 1

]
=

1

4

[
P 2k(x, x)

�(x)
− 1

]
(ii) By proposition 4.5 and the monotonicity property we proved in proposition

4.4 (ii), we can write

�(x)E�(�x) =

∞∑
t=0

[P t(x, x)−�(x)] ≥
2∑
t=0

m[P t(x, x)−�(x)] ≤ 2m[P 2m(x, x)−�(x)]

Now if we divide both sides by 8m�(x) we obtain

E�(�x)

8m
≥ 1

4
[
P 2m(x, x)

�(x)
− 1] ≥ ∣∣Pm(x, ⋅)− �∣∣2TV

Now if m ≥ 2E�(�x) then

1

4
≥ ∣∣Pm(x, ⋅)− �∣∣TV

So we must have tmix ≤ tℎit + 1. □

Now let us return to our example of the random walk on the n-cycle.

Example 4.6. Consider the lazy random walk on the n-cycle. Let P be the
transition matrix for the lazy random walk on the n-cycle. We consider the walk
as one on Zn as described in example 1.7. Using theorem 4.3 we can bound the
mixing time for the lazy walk by tℎit = maxx,y Ex(�y). Without loss of generality
we can consider end point to be 0 since for any two points x and y we can shift the
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points so that y = 0 without changing the underlying distribution.First note that
for each j ∈ {1, ...n− 1}:

Ej(�0) =
1

2
(1 + Ej(�0) + frac14(1 + Ej−1(�0)) +

1

4
(1 + Ej+1)

and for j = 0, E0(�0) = 0. By identifying n ≡ 0 mod n we have a system of
equations with fj = Ej(�0 for j = 0, ..., n such that f0 = fn = 0 and

fj = 2 +
1

2
(fj−1 + fj+1) j = 1, ..., n− 1

let Δj = fj − fj−1 for each j = 1, ..., n− 1. Then one can see that

2fj = 4 + fj−1 + fj+1

⇔Δj = fj − fj−1 = 4 + fj+1 − fj = 4 + Δj+1

Hence we have an arithmetic progression with
n∑
j=1

Δj =

n∑
j=1

(fj − fj−1) = fn − f0 = 0

Giving us,

0 =
n

2
⋅ (2Δ1 − 4(n− 1))

Thus

Δ1 = 2(n− 1)

and

fj = f0 +

j∑
k=1

Δk =
j

2
⋅ (2Δ1 − 4(j − 1)) = 2j(n− j)

for all 1 ≤ j ≤ n − 1. So for the lazy random walk we have Ej(�0) = 2j(n − j).
Hence we have

tℎit = max
j
Ej(�0) =

⌊
n2

2

⌋
So theorem 4.3 gives us

tmix ≤ n2 + 1.

Again we find the mixing time for the random walk on the n-cycle is of order n2,
as we did in the previous section with our relaxation time bound.

4.2. Covering Times. For any state x in a Markov chain we define the cover
time�cov to be the first time at which all states have been visited. If the state space
is Ω we say:

�cov = min{t : ∀y ∈ Ω,∃s ∈ [0, t] s.t. Xs = y}
We also define more generally a covering time for an entire Markov chain.

Definition 4.7. Consider a Markov chain with state space Ω, we define the covering
time to be

tcov = max
x∈Ω

Ex�cov

Obviously we have a simple lower bound for the covering time in terms of tℎit,
since the time to go from any one state to another is clearly less than the time it
takes to visit all points in the state space. We prove first an upper bound in terms
of tℎit, and then a tighter lower bound as well.
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Theorem 4.8. Let (Xt) be an irreducible finite Markov chain with n states. Then

tcov ≤ tℎit ⋅
(

1 +
1

2
+ ⋅ ⋅ ⋅+ 1

n

)
.

Proof. Without loss of generality we can consider the n states of our state space
to be 1, 2, ..., n. There are many possible ways to visit all of the states 1, ..., n,
and we let � ∈ Sn be a permutation of 1, 2, ..., n selected in a randomly from Sn
independent of the Markov chain. For the ordering � ∈ Sn we let Tk = min{t :
∃s1, ...sk ≤ t, s.t. Tsi = �(i)}, and we also let Lk = XTk

. It is clear that Ex[T1] =
Ex[��(1)] ≤ tℎit. Now we consider the value Ex[Tk − Tk−1]. This expectation is
positive only if �(k) is visited after �(1), ...�(k − 1). Otherwise the value will be
zero. Define Ak(r, s) to be the event {�(k− 1) = r, �(k) = s = Lk} for each r, and
s we have:

(4.9) Ex[Tk − Tk−1∣Ak(r, s)] = Er[�s] ≤ tℎit
Then if we let

Ak =
∪
r ∕=s

Ak(r, s)

Then Ak is precisely the event that Lk = �(k). Since each of �(1), ..., �(k) are
equally likely to be the last state visited ℙ(Ak) = 1/k. Also using equation 4.9 we
can say that

Ex[Tk − Tk−1∣Ak] =
∑
r ∕=s

Ex[Tk − Tk−1∣Ak(r, s)]ℙ(Ak(r, s)∣Ak)

≤
∑
r ∕=s

tℎitℙ(Ak(r, s)∣Ak) = tℎit

Hence we can write:

Ex[Tk − Tk−1] = Ex[Tk − Tk−1∣Ak]ℙ(Ak) + Ex[Tk − Tk−1∣ACk ]ℙ(ACk )// =
1

k
Ex[Tk − Tk−1∣Ak] =

1

k
tℎit

Now we consider Tn.

Ex[Tn] = Ex[(Tn − Tn−1) + (Tn−1 − Tn−2) + ⋅ ⋅ ⋅+ (T2 − T1) + T1]

= Ex[Tn − Tn−1] + ⋅ ⋅ ⋅+ Ex[T2 − T1] + Ex[T1]

≤ tℎit
(

1 +
1

2
+ ⋅ ⋅ ⋅+ 1

n

)
□

Now we use a similar method to construct a tighter lower bound on our covering
time. We also define �Acov to be the first time at which all states of A ⊂ Ω have
been visited.

Theorem 4.10. Let A ⊂ Ω. Set tAmin = mina,b∈A,a∕=bEa(�b). Then

tcov ≥ max
A⊂Ω

tAmin

(
1 +

1

2
+ ⋅ ⋅ ⋅+ 1

∣A∣ − 1

)
.

Proof. Fix a state x ∈ A, and let � be permutation chosen randomly from the
elements of A, and independent of the chain itself. Let Tk and Lk be defined as
above. Then ℙx(�(1) = x, T1 = 0) = 1/∣A∣, giving us

(4.11) Ex(T1) ≥ 1

∣A∣
⋅ 0 +

∣A∣ − 1

∣A∣
tAmin =

(
1− 1

∣A∣

)
tAmin
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Now for 2 ≤ k ≤ ∣A∣ and r, s ∈ A, we let

Bk(r, s) = {�(k − 1) = r, �(k) = s = Lk}
Then using an argument similar to the above theorem we obtain

(4.12) Ex(Tk − Tk−1∣Bk(r, s)) = Er(�s) ≥ tAmin.
Then letting

Bk =
∪
r ∕=s

Bk(r, s),

we find that Bk is the event that Lk = �(k), which has a probability of 1/k since
� was chosen uniformly from Sn. Putting this together with equation 4.12 gives us

Ex(Tk − Tk−1 = Ex(Tk − Tk−1∣Bk)
1

k
+ Ex(Tk − Tk−1∣BCk )

k − 1

k
≥ tAmin

1

k
Then putting these equations together with 4.11 we obtain

Ex(�Acov) = Ex(T∣A∣−T∣A∣−1)+⋅ ⋅ ⋅+Ex(T2−T1)+Ex(T1) ≥ t∣A∣min
(

1 +
1

2
+ ⋅ ⋅ ⋅+ 1

∣A∣ − 1

)
Then since for any A ⊂ Ω, and for every x ∈ A we have

�cov ≤ Ex(�cov) ≤ Ex(�Acov),

completing the proof. □
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