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Abstract. In this paper we give an introduction to nonstandard analysis,
starting with an ultrapower construction of the hyperreals. We then demon-

strate how theorems in standard analysis “transfer over” to nonstandard anal-

ysis, and how theorems in standard analysis can be proven using theorems in
nonstandard analysis.

1. Introduction

For many centuries, early mathematicians and physicists would solve problems
by considering infinitesimally small pieces of a shape, or movement along a path
by an infinitesimal amount. Archimedes derived the formula for the area of a circle
by thinking of a circle as a polygon with infinitely many infinitesimal sides [1]. In
particular, the construction of calculus was first motivated by this intuitive notion
of infinitesimal change. G.W. Leibniz’s derivation of calculus made extensive use of
“infinitesimal” numbers, which were both nonzero but small enough to add to any
real number without changing it noticeably. Although intuitively clear, infinitesi-
mals were ultimately rejected as mathematically unsound, and were replaced with
the common ε-δ method of computing limits and derivatives. However, in 1960
Abraham Robinson developed nonstandard analysis, in which the reals are rigor-
ously extended to include infinitesimal numbers and infinite numbers; this new
extended field is called the field of hyperreal numbers. The goal was to create a
system of analysis that was more intuitively appealing than standard analysis but
without losing any of the rigor of standard analysis.

In this paper, we will explore the construction and various uses of nonstandard
analysis. In section 2 we will introduce the notion of an ultrafilter, which will allow
us to do a typical ultrapower construction of the hyperreal numbers. We then
demonstrate that these hyperreals do in fact satisfy the axioms of a totally ordered
field, and consider the relationship between the field of real numbers and the field
of hyperreals.

In section 4 we introduce the main theorem of nonstandard analysis, the transfer
principle, which allows us to transfer first-order sentences back and forth between
the reals and the hyperreals. This is an incredibly powerful tool, and most of the
rest of the paper will be spent exploring the many uses of the transfer principle.
We will show how the transfer principle can be used to easily demonstrate that the
hyperreals satisfy all the properties we wish them to satisfy, and to give simple,
intuitively clear proofs of theorems in standard calculus which would be impossible
without resorting to calculations in the hyperreals. In the last section, we will
touch on how the transfer principle might be extended to include certain higher-
order sentences.
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2. Constructing the Hyperreals

The basic idea behind constructing the hyperreal numbers is to create a field
of real-valued sequences, in which every standard real number is embedded as the
corresponding constant sequence. We begin by considering the set of real-valued se-
quences, which we denote RN, under pointwise addition and multiplication. Clearly
if we add or multiply two real-valued sequences pointwise we get another real-valued
sequence, so RN is closed under pointwise addition and multiplication. Similarly,
for any real-valued sequence we can construct its additive inverse by taking the
additive inverse of each term in the sequence. Thus, under pointwise addition and
multiplication, RN forms a commutative ring with identity. It falls short, however,
of satisfying all the properties of a field. One problem we would run into is the
presence of zero-divisors. Consider, for example, the two sequences

a = 0, 1, 0, 1, . . . b = 1, 0, 1, 0 . . .

Neither of these sequences is equal to the zero sequence en = 0. However, pointwise
multiplication would give us

a · b = 0 · 1, 1 · 0, 0 · 1, 1 · 0, . . . = 0, 0, 0, 0, . . . = e

Thus we have two nonzero elements whose product is zero, which violates the field
axioms. To avoid this problem, we must first introduce the notion of a free ultrafilter
on N.

2.1. Free Ultrafilters.

Definition 2.1. (Free Ultrafilter) A filter U on a set J is a subset of P(J), the
power set of J , satisfying the following properties:

(1) Proper filter: ∅ /∈ U ,
(2) Finite intersection property: If A,B ∈ U , then A ∩B ∈ U ,
(3) Superset property: If A ∈ U and A ⊆ B, then B ∈ U .

U is said to be an ultrafilter if it also satisfies:
(4) Maximality: For all A ⊆ J , either A ∈ U or J\A ∈ U

U is said to be free ultrafilter if it also satisfies:
(5) Freeness: U contains no finite subsets of J .

Ultrafilters actually satisfy a slightly stronger property than 4; this property
states that, given any ultrafilter U on N and any finite collection of disjoint subsets
of N whose union is N, exactly one of these subsets must be in U . This result will
come in handy later in the paper, so we will prove it here.

Lemma 2.2. Let U be an ultrafilter on N, and let {A1, . . . , An} be a finite collection
of disjoint subsets such that

⋃n
j=1Aj = N. Then Ai ∈ U for exactly one i ∈

{1, . . . , n}.

Proof. First we will prove that U contains at least one such subset, then we will
prove that it can contain only one. Suppose, first, that U does not contain any of the
subsets A1, . . . , An. Then, by property 4, U must contain the complement of each
subset N\Ai. However, U must also contain the intersection of these complements,
which is

n⋂
j=1

(
Acj
)

=

 n⋃
j=1

Aj

c

= (N)c = ∅
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However, U cannot contain the empty set. Therefore U must contain at least one
of A1, . . . , An.

Now, suppose that U contains Ai and Aj for some i 6= j. Then U must also
contain Ai ∩ Aj . However, Ai and Aj are disjoint, so Ai ∩ Aj = ∅ and, again, U
cannot contain the empty set. Therefore U can contain only one of A1, . . . , An. �

It is not immediately obvious that such an object exists. In fact the only ul-
trafilters which can be explicitly constructed are not free. These are the fixed, or
principal ultrafilters, which are concentrated on a finite number of points. Such
an ultrafilter would take the form U = {S ∈ P(N)|x1, . . . , xn ∈ S}, for some finite
number of elements x1, . . . , xn ∈ N. But these principal ultrafilters are not very
interesting, and are not sufficient for our purposes. We specifically need a free, or
nonprincipal ultrafilter. And although we cannot explicitly construct one, we can
use Zorn’s Lemma to prove their existence. In fact we will prove something even
stronger: that any filter can be extended to a maximal filter, and that this maximal
filter satisfies the properties of an ultrafilter. Applying this extension to the right
filter will give us a free ultrafilter.

Lemma 2.3. (Ultrafilter Lemma) Let A be a set and F0 ⊂ P(A) be a filter on A.
Then F0 can be extended to an ultrafilter F on A.

Proof. There are two steps to this proof. First, we apply Zorn’s Lemma to demon-
strate the existence of a maximal filter on A containing F0. Then we demonstrate
that this maximal filter satisfies property 4 of ultrafilters.

• Consider the set Φ of filters on A which contain F0. This forms a partially
ordered set under the relation ⊆. Now, consider any chain F0 ⊂ F1 ⊂ F2 . . .
of filters in Φ. Our claim is that (

⋃∞
n=0 Fn) = G is a filter in Φ which is

an upper bound of the chain. Clearly if ∅ /∈ Fn for any n ≥ 0, then ∅ /∈ G.
Similarly, for any a ∈ G, a ∈ Fn for some n, so for any b ⊇ a, b ∈ Fn ⊂ G.
Therefore G satisfies the superset property. Lastly, suppose a, b ∈ G. Then
a ∈ Fm and b ∈ Fn for some m,n ≥ 0. Suppose without loss of generality
that m ≤ n. Then Fm ⊆ Fn, so a, b ∈ Fn, which by the finite intersection
property means that a ∩ b ∈ Fn ⊂ G. Therefore G satisfies the finite
intersection property as well. This means that G is both a filter in Φ and
an upper bound for {F0, F1, . . .}. So Φ satisfies the hypothesis of Zorn’s
Lemma, which means that Φ must contain some maximal element, which
we denote F .
• Pick any subset X ⊆ A, and suppose that F contains neither X nor A\X.

Then F must contain some some a ∈ F such that a ∩ X = φ. If not,
then F ∪ {X} would also be a filter, which violates the maximality of F .
Similarly, F must contain some set b such that b ∩ (A\X) 6= ∅. However,
by the finite intersection property we must have a ∩ b 6= ∅. But this is
impossible, as a exists entirely outside X and b exists entirely outside A\X.
Therefore F must contain either X or A\X.

�

The existence of a free ultrafilter (which contains no finite sets) follows immedi-
ately from this theorem, by simply taking the filter consisting of all cofinite sets and
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extending it to an ultrafilter. Since this filter contains no finite sets, and the result-
ing ultrafilter contains every set or its complement, it is clear that this ultrafilter
contains no finite sets, and thus satisfies freeness.

The last tool we need before we can rigorously construct the field of hyperreals
is an equivalence relation on the set of real-valued sequences.

Definition 2.4. (Equivalence Modulo an Ultrafilter) Given a free ultrafilter U on
N, and real-valued sequences a, b ∈ RN, we define the relation =U by a =U b if
{j ∈ N|aj = bj} ∈ U

We now show that this is an equivalence relation. For reflexivity, take any
sequence a. We have {j ∈ N|aj = aj} = N, and by properties 1 and 4 of a free
ultrafilter, N ∈ U . Therefore a =U a. Similarly, for any sequences a and b we have
{j ∈ N |aj = bj} = {j ∈ N|bj = aj}, so a =U b implies b =U a, which proves
commutativity. Now, suppose a =U b and b =U c. Then the sets {j ∈ N|aj = bj}
and {j ∈ N|bj = cj} are both elements of U . But the set on which aj = bj and
bj = cj is {j ∈ N|aj = bj & bj = cj} = {j ∈ N|aj = bj} ∩ {j ∈ N|bj = cj}, which
by property 2 of a free ultrafilter must also be an element of U . Therefore a =U b
and b =U c implies a =U c, which proves transitivity. We will use [a] to denote the
equivalence class of the sequence a.

So =U defines an equivalence relation on the set of real-valued sequences, which
we call equivalence modulo U . But how will this fix the problems mentioned before?
Consider once again the sequences a = 0, 1, 0, 1, . . . and b = 1, 0, 1, 0, . . .. Multi-
plying pointwise still gives us the zero sequence. However, by property 4 of free
ultrafilters, an ultrafilter U must contain either the set of even numbers or the set
of odd numbers, but not both. Therefore one of the sequences a and b must be
equivalent to 1 modulo U , and the other must be equivalent to 0 modulo U .

2.2. An Ultrapower Construction of the Hyperreals. Consider RN, the set
of real-valued sequences. As previously observed, this set does not form a field; the
best we can do with RN is a ring. However, if we take the quotient of RN by the
equivalence relation described above, the resulting set of equivalence classes will
form a field. We must proceed carefully though, as it is not obvious that addition
and multiplication of these equivalence classes are well-defined. To prove this, we
must prove that if a1 =U a2 and b1 =U b2, then a1 + b1 =U a2 + b2. That is, if
we pick any elements from two different equivalence classes and add them together
pointwise, we should end up in the same equivalence class regardless of which
elements we originally chose. To do so, we shall introduce a notational convention,
borrowed from R. Goldblatt [1], which we will continue to use throughout this
paper. Let a and b be real-valued sequences. We denote their “agreement set,” that
is {j ∈ N|aj = bj} by [[a = b]]. Thus we have a =U b if and only if [[a = b]] ∈ U .

Lemma 2.5. Pointwise addition and multiplication are well-defined binary opera-
tions on the set of real-valued sequences under ultrafilter equivalence.

Proof. Suppose that a1 =U a2 and b1 =U b2. This means that [[a1 = a2]] ∈ U
and [[b1 = b2]] ∈ U , so by the finite intersection property we know that [[a1 =
a2]] ∩ [[b1 = b2]] = {j ∈ N |a1 = a2 & b1 = b2} ∈ U . But the set on which both
a1 and a2 agree and b1 and b2 agree is the same set on which a1 + b1 and a2 + b2
agree. That is, {j ∈ N |a1 = a2 & b1 = b2} = [[a1 + b1 = a2 + b2]] ∈ U . Therefore
a1 + b1 =U a2 + b2, so addition is well-defined. An analagous proof follows for
multiplication. �
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Formally, the hyperreal numbers are these equivalence classes of RN under ultra-
filter equivalence, which we denote ∗R. Now that we know our operations are well
defined, we have all the necessary tools to prove that ∗R is a field.

Theorem 2.6. The set ∗R with pointwise addition and multiplication is a field.

Proof. Commutativity, associativity, and distributivity follow directly from the cor-
responding properties of the real numbers. We will prove distributivity to illustrate
this, then move on to the existence and uniqueness of identies and inverses.

• Distributivity: Let a, b, c, d ∈∗R. By distributivity of real numbers, we have
[[aj(bj + cj) = dj ]] = [[ajbj + ajcj = dj ]]. Therefore if a(b + c) =U d, we
must also have ab+ ac =U d.
• Identities: Let 1 and 0 denote their corresponding constant sequences in ∗R.

We clearly have 1·a =U a and 0+a =U a for all a ∈∗ R. We need only prove
the uniqueness of these identities. Suppose there exists some e ∈∗R such
that for all a ∈ ∗R, ea =U a. Then we have [[ejaj = aj ]] ∈ U . But by the
uniqueness of the identity in R, we must have [[ejaj = aj ]] = [[ej = 1] ∈ U .
Therefore e =U1. A similar proof follows for the additive identity.

• Additive Inverse: For any hyperreal [a] ∈ ∗R, we can define its additive
inverse −[a] pointwise; i.e, if a = (an)n∈N, then −[a] = [−a] = [(−an)n∈N].
Uniqueness then follows from the laws of addition: suppose there exist
x, y ∈∗R such that x+ a =U a+ x =U 0 and y + a =U a+ y =U= 0. Then
by associativity we have y + (a + x) =U (y + a) + x. But a + x =U 0 and
y + a =U 0, so this implies that y =U x. Therefore additive identities are
unique modulo an ultrafilter.

• Multiplicative Inverse: The multiplicative inverse is slightly trickier than
the additive inverse. For any hyperreal a = [(an)n∈N], consider the set
X = [[aj = 0]]. If X ∈ U , then a =U 0, so it has no multiplicative inverse.
Otherwise, by property 4 of the ultrafilter, N\X must be an element of U ,
so we have a =U a′, where a′ is the real-valued sequence defined by

a′n =
{
an if n ∈ N\X
1 if n ∈ X

Since no term in the sequence (a′n)n∈N is 0, there is no problem defining
the inverse of the sequence pointwise. We therefore define a−1 by

a−1 = [((a′n)−1)n∈N]

We can then use commutativity and associativity of multiplication to prove
the uniqueness (modulo an ultrafilter) of these inverses, using the same
technique employed with the additive inverses.

�

Knowing that ∗R is a field is all well and good, but it is not yet enough to
understand how infinitesimal and infinite numbers can exist. We need further to
define an order on ∗R. We do so in a manner similar to our definition of equivalence.

Definition 2.7. (Inequality Modulo an Ultrafilter) Given two hyperreals a =
[(an)n∈N] and b = [(bn)n∈N], and an ultrafilter U on N, we define a relation ≤U
by a ≤U b if {j ∈ N|aj ≤ bj} ∈ U .
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The fact that this relation imposes an order on ∗R follows from property 2 of a
free ultrafilter (the proof of transitivity of ≤U is the same as the proof of transitivity
for =U ). To prove that ≤U totally orders ∗R, take any two hyperreals a, b ∈ ∗R, and
let X = {j ∈ N|aj ≤ bj}. By the maximality property either X or N\X must be an
element of U . If X ∈ U , then a ≤U b. If X /∈ U , then N\X = {j ∈ N|aj > bj} ∈ U ,
therefore bj ≤U aj . This implies that ≤U is a total ordering on ∗R.

2.3. Infinitesimal and Infinite Numbers. We now have our totally ordered field
∗R of hyperreal numbers, but we have yet to rigorously define or demonstrate the
existence of infinitesimal and infinite numbers. To do so, we will first introduce
notation for the “standard” hyperreal numbers, those constant sequences corre-
sponding to real numbers. We let σR denote the set of constant-valued sequences
in ∗R (similarly, σN denotes the set of constant sequences with natural number
values). Using this notation, we now define infinite and infinitesimal numbers.

Definition 2.8. (Infinite and Infinitesimal Numbers) A hyperreal number a ∈ ∗R
is said to be infinitesimal if a ≤U n for every n ∈ σN, and infinite if n ≤U a for
every n ∈ σN.

We now demonstrate the existence of an infinite number and an infinitesimal
number. Let ω be the hyperreal number defined by ωn = n, and let j be any
standard natural number j ∈ σN. Then ωn ≤ j for all n ≤ j, but ωn ≥ j for all
n > j. Therefore the set of indices on which ωn is less than j is finite. But as we
have already seen, any free ultrafilter U must contain all cofinite subsets of N, so
{n ∈ N|ωn > j} ∈ U . So for any standard natural number j, j ≤U ω, which makes
ω an infinite number.

Similarly, let us now consider the hyperreal number 1
ωn

= 1
n . This time, for

any standard natural number j, we know that 1
ωn

can only be greater than j for
a finite number of indices, which, as demonstrated above, means that 1

ω ≤U j for
any standard natural j. Therefore 1

ω is an infinitesimal number.

2.4. Properties of the Field ∗R. We might ask what other properties ∗R shares
with R, and what properties of R are lost in our construction of ∗R. In doing so, we
must be careful in distinguishing between standard and nonstandard, limited and
unlimited numbers. For the purpose of our discussion, the set of standard hyperreals
σR is the image of the embedding f : R → ∗R defined by f(a) = [〈a, a, a, a, . . .〉].
All other hyperreals are nonstandard. A hyperreal a is finite, or limited, if there
exists some p, q ∈ σR such that p ≤U a ≤U n, and unlimited (infinite) otherwise.

With our new vocabulary in mind, let us consider the Archimedean property of
R, which states that for every real number a, there exists some natural number
n such that a < n. Is this true of ∗R? Well, the statement “for every hyperreal
number a, there is some standard natural number n such that a < n” is clearly
false; just consider the infinite number ω we constructed in the previous section.
If, however, we allow n to range over all hypernaturals, that is, all sequences with
natural number values, then the statement is true: if we take some hyperreal a,
then for each term in the sequence we can find a natural number greater than that
term, and the hypernatural n we construct in this manner will be greater than a on
all of N, proving that a <U n. As we will see later, such considerations are essential
to determining which properties of the real numbers (and hence which theorems in
standard analysis) “transfer” over to the hyperreals and nonstandard analysis. In
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fact, once we have determined the criteria for a property to be transferable, we will
revisit the Archimedean property and discuss it in this context to illustrate how
such a transfer works.

Even though we are so far ill-equipped to discuss such properties of ∗R thor-
oughly, we can still consider other properties relating to the structure of ∗R, and
see exactly where and how all of the information in R is hidden in ∗R. To do so, we
first introduce the following notation: we let O denote the subset of ∗R containing
all the finite numbers. That is, O = {a ∈ ∗R|p ≤U a ≤U q for some p, q ∈ σR}. We
then define a subset ϑ of O containing all infinitesimal numbers.

It should be clear intuitively that O is an ordered subring of ∗R: the sum of two
finite numbers is finite, the product of two finite numbers is finite, and the additive
inverse of a finite number is finite. The order is simply inherited from the order
on ∗R. Perhaps less clear is the fact that ϑ is a proper ideal of O. We will not
prove this here, but it should not be hard for the reader to convince him or herself
that the sum of two infinitesimals is infinitesimal, the product of two infinitesimals
is an infinitesimal, the additive inverse of an infinitesimal is infinitesimal, and the
multiplicative inverse of an infinitesimal is never infinitesimal (nor for that matter
is it finite).

In fact, ϑ is a maximal proper ideal of O. It is maximal because ϑ consists of
all the nonregular elements of O (those finite numbers without finite multiplicative
inverses). Since a proper ideal cannot contain any regular elements of the ring, ϑ
must be maximal. Furthermore, suppose we have b ∈ ϑ. Then b is infinitesimal,
so 0 ≤U a ≤U b implies that a is also infinitesimal, and a ∈ ϑ. Because ϑ satisfies
this property, it is called an order ideal of O. We will now use these facts to prove
that O/ϑ is in fact order isomorphic to R. To do so, we will use a few elementary
results from basic algebra on rings and fields without proof, which we list here.

Lemma 2.9. Let A be a commutative ring with identity, and let I be a proper ideal
of A.

(1) The quotient ring A/I is a field if and only if I is a maximal proper ideal
of A.

(2) If A is ordered and I is an order ideal, then A/I is a totally ordered ring

We will also use without proof the fact that a totally ordered field is isomorphic
to a subfield of R if and only if it is Archimedean, which can be proven using
arithmetic on Dedekind cuts.

Theorem 2.10. The quotient ring O/ϑ is order isomorphic to R.

Proof. As we just demonstrated, ϑ is a maximal proper ideal of O, so by lemma 2.9,
part 1, O/ϑ is a field. Furthermore, since ϑ is an order ideal, O/ϑ is a totally ordered
field by lemma 2.9 part 2. All that’s left to show is that O/ϑ is Archimedean, and
hence isomorphic to a subfield of R, and that O/ϑ contains a copy of R. Since
R contains no proper subfields isomorphic to itself, this will prove that O/ϑ is
isomorphic to all of R. To prove that O/ϑ is Archimedean, observe that it contains
a copy of the standard natural numbers, namely {n+ ϑ|n ∈ σN}. Since O consists
only of the finite hyperreals, we know that for any a ∈ O, there exists some n ∈ σR
such that |a| ≤U n (we define |a| = max{a,−a}). But the canonical homomorphism
of O into O/ϑ preserves order, so this means that |a+ ϑ| ≤ |n+ ϑ| in the quotient
ring. Therefore O/ϑ is Archimedean.
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Now, take any a 6= b ∈ σR, which is contained in O. Since b− a is finite but not
infinitesimal, we have a+ ϑ 6= b+ ϑ. So the image of the canonical homomorphism
of O into O/ϑ, restricted to σR, is a natural copy of R. Therefore O/ϑ is a totally
ordered Archimedean field containing a natural copy of R, and is order isomorphic
to all of R. �

The isomorphism between O/ϑ and R suggests an equivalent order homomor-
phism from O into R with kernel ϑ. We define this to be the “standard part”
homomorphism st : O → R (this notation comes from K.D. Stroyan and W.A.J.
Luxemburg [2]. In some textbooks this function is called the “shadow” of a finite
hyperreal). This standard part homomorphism induces an equivalence relation on
O which we will use extensively in our definitions of calculus. We will introduce
that relation here:

Definition 2.11. (Infinitesimal Closeness) Two finite hyperreals a, b ∈ O are said
to be infinitesimally close, denoted a ≈ b, if and only if a− b ∈ ϑ.

We will check that this is an equivalence relation. For any finite hyperreal a, we
have a − a = 0 ∈ ϑ (note that 0 is the only standard infinitesimal number). It is
also clear that a − b = b − a, so a ≈ b implies b ≈ a. Lastly, if a ≈ b and b ≈ c,
then a− b ∈ ϑ and b− c ∈ ϑ, and the sum of two infinitesimals is infinitesimal, so
a− c = (a− b) + (b− c) ∈ ϑ. Therefore a ≈ c.

Theorem 2.10, along with the notion of this “standard part” homomorphism,
imply a very useful result which we will need in later sections of this paper. We
state and prove this result here:

Corollary 2.12. Every finite hyperreal a ∈ O is infinitesimally close to a unique
real c ∈ σR.

Proof. Let st : O → R denote the canonical homomorphism from O into R with
kernel ϑ, resulting from the isomorphism demonstrated in the proof of theorem 2.10,
and let g : R → σR denote the standard embedding of R in ∗R. Then for any real
number x ∈ R, the preimage under st of x is the set of hyperreals infinitesimally
close to g(x); that is, st−1(x) = {b ∈ O|b ≈ g(x)}. But the preimage of all of R is
all of O, so we have

O = st−1(R) =
⋃
x∈R

st−1(x)

So, for any a ∈ O, we must have a ∈ st−1(x) for some x ∈ R. But this means that
a ≈ g(x), and g(x) ∈ σR. Therefore a is infinitesimally close to some real number.

To prove the uniqueness of this real number, suppose a ≈ c and a ≈ c′, where
c, c′ ∈ σR. Then by transitivity we have c ≈ c′, which by definition means that
c − c′ ∈ o. But if c and c′ are both real numbers, we must also have c − c′ ∈ σR.
Therefore c− c′ ∈ (ϑ ∩ σR) = {0}, so c = c′. �

3. Some Basic Calculus with Hyperreals

We now have the tools necessary to extend sequences and functions to the hy-
perreals, and to do some basic calculus on the hyperreals. We will not, however, go
too deep, for as we will see in the next section, the logical construction of a non-
standard model for analysis will allow us to “transfer” all of the necessary theorems
from analysis into nonstandard analysis, without having to explicitly prove them
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using hyperreal calculus. We include this section simply to get the reader more
comfortable working with the hyperreal system.

We can extend real-valued functions to hyperreal-valued functions in the fol-
lowing way: let f : R → R be a function. Then for every real-valued sequence
a ∈ RN, we let f(a) = 〈f(a1), f(a2), . . .〉. We then define the extended function
∗f : ∗R → ∗R by ∗f([a]) = [f(a)] for any hyperreal number [a] ∈ ∗R, where [a]
represents the equivalence class of some real-valued sequence a ∈ RN.

This extension, however, is insufficient when we consider functions whose domain
is a proper subset of R. That is, if we have a function f : A → R, where A ⊂ R,
and we wish to extend f to the hyperreals, we have to define the extension of its
domain A to a subset ∗A of the hyperreals. We define the extension A∗ of a subset
A ⊂ R to be the set

∗A = {[r] ∈ ∗R|rn ∈ A for all n ∈ N}
So ∗A is the set of equivalence classes of sequences whose values range over the
elements of A. This allows us to extend a function f : A → R to a function
∗f : ∗A→ ∗R in the same manner as above.

Now that we can extend real-valued functions to hyperreal-valued functions,
let’s look at some desireable properties of these functions (we will simply be giving
definitions of these properties here; in later sections, once we have the transfer prin-
ciple, we will prove that these definitions are equivalent to the familiar definitions
we know for calculus).

Definition 3.1. (Infinitesimal Continuity) A function ∗f : ∗A→ ∗R is continuous
at a point a ∈ ∗A if for every infinitesimal ε ∈ ϑ, we have ∗f(a + ε) ≈ ∗f(a). The
function f is said to be continuous if f is continuous at a for all a ∈ ∗A.

Let’s see what a continuous hyperreal function looks like. Consider, for example,
the function ∗f : ∗R → ∗R defined by ∗f(x) = x2. Clearly this is the hyperreal
extension of the real-valued function f(x) = x2, which is continuous on all of R.
Now, take any finite hyperreal a ∈ O. For any infinitesimal ε ∈ ϑ, we have f(a+ε) =
a2 + 2aε + ε2. An infinitesimal times itself is infinitesimal, an infinitesimal times
a finite number is infinitesimal, and the sum of two infinitesimals is infinitesimal.
Therefore ∗f(a + ε) = a2 + 2aε + ε2 ≈ a2 = ∗f(a). So, by our definition, f is
continuous at a. But does this hold at infinite numbers? Consider as an example
(again borrowed from [2]) the infinite number ω and the infinitesimal change 1

ω .
We have ∗f(ω + 1

ω ) = ω2 + 2 + 1
ω2 ≈ ω2 + 2. Therefore ∗f(ω + 1

ω ) 6≈ ∗f(ω), so f is
not continuous at ω, or for that matter any infinite number.

We can define differentiability in a similar fashion, which we will also prove is
equivalent to our standard definition of differentiability.

Definition 3.2. (Infinitesimal Differentiability) A function ∗f : ∗A→ ∗R is differ-
entiable at a point a ∈ ∗A if there exists a finite b ∈ ∗R such that for every ε ∈ ϑ,
we have

∗f(a+ ε)− ∗f(a)
ε

≈ b

In this case, b is the derivative of ∗f at a.

Now, let’s prove something familiar using these definitions, to convince ourselves
that the same theorems we are used to in standard calculus will hold in this non-
standard calculus. Let’s prove, for example, that differentiability implies continuity:
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Theorem 3.3. If a function ∗f : ∗A → ∗R is differentiable at a ∈ ∗A, then ∗f is
continuous at a.

Proof. Suppose ∗f is differentiable at a. Then for any infinitesimal ε we have
∗f(a+ ε)− ∗f(a) ≈ ε · b

for some b ∈ O. But any infinitesimal times a finite number also infinitessimal,
so ∗f(a + ε) − ∗f(a) ∈ o. Therefore ∗f(a + ε) ≈ ∗f(a), which means that ∗f is
continuous at a. �

This was a good exercise in convincing ourselves that this new calculus in at least
some way resembles the standard calculus with which we were familiar. However,
the proof itself differed very little from the usual proof one might give for this the-
orem in standard calculus. Let us now prove something slightly more complicated,
the chain rule, to illustrate how working with the hyperreals may simplify things.

Theorem 3.4. (Chain Rule) Let f : ∗R → ∗R and g : ∗R → ∗R be functions,
with g differentiable at a ∈ ∗R and f differentiable at f(g(a)). Then the function
f ◦ g : ∗R→ ∗R is differentiable at a, and (f ◦ g)′ (a) = f ′(g(a)) · g′(a).

Proof. Let x ≈ a, but with x 6= a. Consider the difference quotient

f(g(x))− f(g(a))
x− a

.

If g(x) = g(a), then this difference quotient is 0, which means that (f(g(a)))′ =
0 = f ′(g(a)) · g′(a), since g′(a) must also be zero. In the case that g(x) 6= g(a), we
can rewrite the difference quotient as follows:

f(g(x))− f(g(a))
x− a

=
f(g(x))− f(g(a))

g(x)− g(a)
· g(x)− g(a)

x− a

However, we just proved that if g is differentiable at a then it must be continuous
at a, and x ≈ a, so g(x) ≈ g(a). So the above expression is really just the product
of the difference quotients of f at g(a) and g at a. And since f is differentiable at
g(a) and g is differentiable at a, it follows that

f(g(x))− f(g(a))
x− a

≈ f ′(g(a)) · g′(a)

Therefore f ◦ g is differentiable at a and (f ◦ g)′(a) = f ′(g(a)) · g′(a). �

The above proof is deceptively simple. In fact, it is the exact proof that a slightly
misguided high school math student might give; we say “misguided” here because
it doesn’t quite work in the context of standard calculus, since dividing by x− a is
invalid, as x approaches a. In the nonstandard context, however, we are not taking
a limit, so x and a are static numbers (neither one is approaching the other) which
just happen to be very close to one another. There is no problem with dividing
an expression by x − a. So this proof, which in standard calculus is intuitively
appealing but invalid, is perfectly sound in nonstandard calculus.

In the next section, we will introduce the transfer principle, and use it not only
to prove facts about ∗R using R, but to prove facts about R using ∗R, which is the
main acheivement of nonstandard analysis.
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4. The Transfer Principle

In this section, we will construct a method of transforming formulae in R to
formulae in ∗R. We will then introduce the main theorem for this section, called
 Lóŝ Theorem, which will allow us to prove that a first-order formula in R is true if
and only if it is true in ∗R. Granted, this is perhaps more limited than we want:
there are plenty of theorems in analysis which cannot be formulated as first order
formulae. We will first explore how far we can get by staying within first-order
sentences (which is actually very far) before investigating a method of expanding
this “transfer” to higher-order statements.

4.1. The Formal Language and Relational Structure. If we want to talk
about transforming formulae, we must first specify the language in which we are
constructing these formulae. Our language will consist of:

• The usual variables x, y, z, . . .,
• the logical connectives

and
∧

or
∨

not ¬
implies →
if and only if ↔,

• quantifiers
for all ∀
there exists ∃,

• operation, relation, and function symbols, P , f , ∗, et cetera,
• parentheses and brackets (, ) and [, ].

We also have constants in our language, but it is unnecessary to mention them
in addition to the above list, since constants can be represented as nullary functions
(functions with no inputs and one output). For example, our language could contain
a nullary function which we call 1. If we were to interpret our language into a field
or multiplicative group, this 1 function would be mapped to the multiplicative
identity of the structure.

Furthermore, we must know exactly what structure we will be describing in this
language. For this, we introduce the concept of a relational structure.

Definition 4.1. (Relational Structure) A relational structure S = {S,R, F} con-
sists of a set S, a set R of finitary relations on S, and a set F of function relations
on S.

Note that an n-ary relation as described above is a set of ordered n-tuples sat-
isfying that relation (for example, the relation < on R is the set of ordered pairs
{(a, b)|a < b}). A unary relation P is simply a subset of the whole set S, so the
statement P (τ), where τ ∈ S simply says that τ belongs to the set P . For this
reason we will write these unary relations as τ ∈ P (i.e., the sentence (∀x ∈ P )(φ)
is really shorthand for (∀x)(P (x) → φ)). Similarly, a function f which accepts k
elements as an input and outputs l elements will be the set of ordered pairs of k-
tuples and l-tuples {((a1, . . . , ak), (b1, . . . , bl)) |f(a1, . . . , ak) = (b1, . . . , bl)}. So all
of these relations and functions are actually just sets of n-tuples satisfying those
relations or functions. A statement like P (τ1, . . . , τn), where P is a relation symbol,
simply means that the ordered n-tuple (τ1, . . . , τn) is an element of the set P of
ordered n-tuples.



12 ISAAC DAVIS

Writing all functions as ordered k + l-tuples can be very tedious, so whenever
there is no chance for confusion, the familiar operations and functions (addition,
multiplication, exponential function, etc.) will be written simply as a + b = c,
a · b = d, ea = b,, and so on, rather than the sentences +((a, b), (c)), ·((a, b), (d)),
and exp((a), (b)).

We will be interested in two relational structures in this paper. The first is
<, which consists of R, and all possible relations (equality, inequality, etc.) and
functions on R. The second we will denote ∗<, which consists of ∗R, and the
“extensions” of the relations and functions from <. Here, however, we must explain
what the extension of a relation is. Let P be an n-ary relation on R. For b1, . . . , bn ∈
RN, we define

∗P (b1, . . . , bn)↔ {j ∈ N|P (b1(j), . . . , bn(j)} ∈ U

For the purpose of discussing relational structures, functions can be extended in a
similar fashion. Namely, for a1, . . . , ak, b1, . . . , bl ∈ ∗R, we define

∗f(a1, . . . , ak) = (b1, . . . , bl)↔ {j ∈ N|f(a1(j), . . . , ak(j)) = (b1(j), . . . , bl(j))} ∈ U

We will define sentences in our language in the usual inductive fashion (note
that sentences are formulae with no free variables). Any variable or constant
(nullary function) is a term, and if τ1, . . . , τn are terms and f is an n-ary oper-
ation or function, then f(τ1, . . . , τn) is a term. The atomic sentences are of the
form P (τ1, . . . , τn), where P is an n-ary relation and τ1, . . . , τn are terms. We de-
fine all other sentences inductively. If φ and ψ are sentences, then the following are
also sentences:

• ¬φ
• φ

∧
ψ

• φ
∨
ψ

• φ→ ψ
• φ↔ ψ
• (∀x)(φ)
• (∃x)(φ)

Now that we have a general schematic for writing first-order sentences, we can
construct a method of transforming sentences in R to sentences in ∗R.

4.2. ∗-Transforms of First-Order Sentences. Given a sentence φ in R, how do
we transform it into a corresponding sentence ∗φ in ∗R in such a way that preserves
the “meaning”? We will define such a ∗-transform in the same inductive fashion we
employed to define formulae. We start with terms. If τ is a variable or constant,
its ∗-transform is just τ (we can think of the ∗-transform as simply mapping real
constants to the corresponding hyperreal constants in σR). If τ is a term of the form
f(τ1, . . . , τn), where f is an n-ary function, then ∗τ = ∗f(∗τ1, . . . , ∗τn). We define
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all other ∗-transforms of sentences explicitly on the construction of the sentence:
∗(P (τ1, . . . , τn)) := ∗P (∗τ1, . . . , ∗τn)

∗(¬φ) := ¬∗φ
∗
(
φ
∧
ψ
)

:= ∗φ
∧
∗ψ

∗
(
φ
∨
ψ
)

:= ∗φ
∨
∗ψ

∗ (φ→ ψ) := ∗φ→ ∗ψ
∗ (φ↔ ψ) := ∗φ↔ ∗ψ

∗(∀x ∈ A)(φ) := (∀x ∈ ∗A)(∗φ)
∗(∃x ∈ A)(φ) := (∃x ∈ ∗A)(∗φ)

Thus, constructing a ∗-transform of a sentence φ really just consists of putting a ∗
on every term in φ, putting a ∗ on any relation symbol in φ, and putting a ∗ on every
set in φ acting as a bound on a variable. Note that in our case the ∗-transforms of
the familiar relations = and ≤ are =U and ≤U , respectively.

As an example, consider once again the Archimedean property mentioned in the
first section. The first-order sentence expressing the Archimedean property of the
real numbers is the following:

(∀x ∈ R)(∃n ∈ N)(x < n)

As we mentioned before, this statement does not hold in ∗R if n is only allowed to
vary over the standard hypernaturals σN. However, the ∗-transform of this sentence
is

(∀x ∈ ∗R)(∃n ∈ ∗N)(x < n)

which is true in ∗R: as we demonstrated before, as long as n can take on the value
of any hypernatural number, we can always find an n such that x < n.

4.3.  Lóŝ’ Theorem and the Transfer Principle. Our hope in constructing this
∗-transform was that a sentence φ would be true if and only if ∗φ is true. This idea
is called the transfer principle, and this is the main result of nonstandard analysis.
It not only allows us to show that ∗R has all the properties of R, but it allows us
to prove theorems about R by first proving them in ∗R (which is often simpler and
more intuitively clear) and then transfering them back to R.

To prove the transfer principle, we will need a theorem from the famous Polish
logician Jerzy  Lóŝ about first order formulae on ultraproducts of structures that
share the same language. To discuss this, however, we will have to formally define
an ultraproduct, because although we implicity used one in our construction of
∗R, an ultraproduct is a more general mathematical structure, and we only used a
special case of an ultraproduct called a countable ultrapower.

Definition 4.2. (Ultraproduct) Let {Aα|α ∈ I} be a family of structures with the
same signature indexed by an infinite set I, and let U be a free ultrafilter on I. We
take the cartesian product of these structures over the set I modulo the ultrafilter
equivalence relation defined in the first section. The resulting set of equivalence
classes, which we denote

B =
∏
α∈I

Aα/U
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is the ultraproduct of the family Aα of structures with respect to the ultrafilter U .
If Aα = Aβ = A for all α, β ∈ I, then B is called an ultrapower of the structure A.

Note that, in general, the ultraproduct B that we obtain depends on the ultra-
filter we chose beforehand. Consider, for example, an ultraproduct of a family of
finite fields of increasing prime order. Some of the fields will have order congruent
to 1 mod 4, and others will have order congruent to 3 mod 4. We could therefore
choose one ultrafilter concentrated on the indices of fields with order congruent to 1
mod 4, and another ultrafilter concentrated on the indices of fields with order con-
gruent to 3 mod 4. These two ultraproducts, with respect to these two ultrafilters,
would not be isomorphic.

It would seem important for the purpose of nonstandard analysis to know that
all fields ∗R are isomorphic, regardless of which ultrafilter we choose. As it turns
out, this is an unknown result (it can only be proven assuming the continuum
hypothesis). However, as a result of this miracle of ultraproducts known as  Lóŝ’
Theorem, it is irrelevant whether or not the resulting fields are isomorphic. Instead
they are called elementary equivalent, which means that any first-order sentence
which holds in one will hold in all others.

We will now state this “miracle,” demonstrate how the transfer principle we need
is simply a special case, and prove this special case.

Theorem 4.3. ( Lóŝ’ Theorem) Let {Aα|α ∈ I} be a family of structures with the
same signature, and let B be an ultraproduct of these structures with respect to
some free ultrafilter U on I. Then for any first order formula φ(x1, . . . , xn), with
free variables x1, . . . , xn, and any [b1], . . . , [bn] ∈ B,

B |= φ([b1], . . . , [bn])↔ {α ∈ I|Aα |= φ(b1(α), . . . , bn(α)} ∈ U

The intuitive way to think about  Lóŝ’ Theorem is that a first-order formula holds
in the ultraproduct if and only if it holds for “almost all” of the original structures
Aα, where “almost all” is defined by the ultrafilter U .

Now, our transfer principle is only concerned with sentences, so we will not
have to worry about these free variables. Observe, however, that the ∗-transform
is defined inductively on the construction of a formula, and all formulae can be
broken down into combinations of atomic relations and terms, under conjunction,
negation, quantification, and so on. Furthermore, we defined the ∗-transform of an
atomic relation P to be true if P (r1(j), . . . , rn(j)) is true for “almost all” j ∈ N. So,
when we consider only atomic formulae, our definition coincides exactly with the
predictions of  Lóŝ’ Theorem. And because all other formulae are just combinations
of atomic formulae, it is easy to show that the transfer principle is carried through
to all other formulae. Our transfer principle is therefore a special case of  Lóŝ’
Theorem, which we will prove here.

Lemma 4.4. (Transfer Principle) A sentence φ is true if and only if ∗φ is true.

Proof. We will prove this by induction on sentences. For the base case, suppose the
atomic formula P (τ1, . . . , τn) is true for chosen values of τ1, . . . , τn. The ∗-transform
of this sentence is ∗P (∗τ1, . . . , ∗τn), which by definition is true if and only if the set
of indices j such that P (∗τ1(j), . . . , ∗τn(j)) is in our ultrafilter. But the ∗-transforms
of constants in R are just the corresponding constant sequences, so by the very def-
inition of ∗τ it follows that the set of indices j such that P (∗τ1(j), . . . , ∗τn(j)) is all
of N, which must be in our ultrafilter. Therefore P (τ1, . . . , τn)→ ∗(P (τ1, . . . , τn)).
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Conversely, suppose ¬P (τ1, . . . , τn). Then, by the same argument, set of indices j
such that P (∗τ1(j), . . . , ∗τn(j)) is the empty set, which cannot be in our ultrafilter.
Therefore ¬P (τ1, . . . , τn)→ ¬∗(P (τ1, . . . , τn)), so P (τ1, . . . , τn)↔ ∗(P (τ1, . . . , τn)).

Now, for the induction step, let φ and ψ be sentences, and suppose φ↔ ∗φ and
ψ ↔ ∗ψ. We will prove that the same property holds for all sentences which can
be constructed out of φ and ψ.

• Consider the sentence φ
∧
ψ, and its ∗-transform ∗(φ

∧
ψ) = ∗φ

∧ ∗ψ. If
φ
∧
ψ is true, then both φ and ψ are true, which by induction means that

∗φ and ∗ψ are true. Therefore ∗φ
∧ ∗ψ is true, so φ

∧
ψ →∗ (φ

∧
ψ). Con-

versely, if φ
∧
ψ is false, then one or both of φ and ψ is false, which means

that one or both of ∗φ and ∗ψ is false, so ∗φ
∧ ∗ψ must be false. Therefore

¬(φ
∧
ψ)→ ¬∗(φ

∧
ψ), so φ

∧
ψ ↔∗ (φ

∧
ψ).

• Consider the sentence φ
∨
ψ, and its ∗-transform ∗(φ

∨
ψ) = ∗φ

∨ ∗ψ. If
φ
∨
ψ is true, then at least one of φ and ψ is true, which by induction

means that at least one of ∗φ and ∗ψ is true. Therefore ∗φ
∨ ∗ψ is true,

so φ
∨
ψ →∗ (φ

∨
ψ). Conversely, if φ

∨
ψ is false, then both φ and ψ are

false, which means that both ∗φ and ∗ψ are false, so ∗φ
∨ ∗ψ must be false.

Therefore ¬(φ
∨
ψ)→ ¬∗(φ

∨
ψ), so φ

∨
ψ ↔ ∗(φ

∨
ψ).

• Consider the sentence ¬φ and its ∗-transform ∗(¬φ) = ¬∗φ. If ¬φ is true,
then φ is false, which by induction means that ∗φ is false. Therefore ∗(¬φ)
is true, so ¬φ → ∗(¬φ). Conversely, if ¬φ is false, then φ is true, so ∗φ is
true, therefore ∗(¬φ) is false. So ¬(¬φ)→ ¬∗(¬φ). Therefore ¬φ↔ ¬∗φ.
• Consider the sentence φ → ψ. This is equivalent to ¬(φ

∧
¬ψ), so by

combining the previous three parts of this proof, we get ¬(φ
∧
¬ψ) ↔

∗ (¬(φ
∧
¬ψ)), which is the same as (φ→ ψ)↔ ∗ (φ→ ψ)

• Consider the sentence φ↔ ψ. This is equivalent to (φ→ ψ)
∧

(ψ → φ), so
by the previous four parts of this proof, we can conclude (φ↔ ψ)↔ ∗(φ↔
ψ).
• For the quantifiers, observe that (∃x)(φ) is equivalent to ¬(∀x)(¬φ). Be-

cause of this, we will prove the transfer principle for both quantifiers to-
gether, by proving the existential transfer from R to ∗R, the universal trans-
fer from ∗R to R, and combining the results and the above fact to complete
the proof.

– Let A be a subset of R, and consider the sentence (∃x ∈ A)(φ) and
its ∗-transform (∃x ∈ ∗A)(∗φ). If φ does not contain x as a free
variable, then (∃x ∈ A)(φ) is true whenever φ itself is true, so the
transfer principle clearly holds. If φ contains x as a free variable, then
if (∃x ∈ A)(φ) is true, there is some constant s ∈ A such that φ(s) is
true, therefore ∗(φ(s)) = ∗φ(∗s) = ∗φ(s) is true. But if s ∈ A, then the
∗-transform of s maps to the equivalence class of the constant sequence
s, s, s, s, . . ., which by the definition of subset extension is contained in
∗A. Therefore (∃x ∈ A)(φ)→ (∃x ∈ ∗A)(∗φ).

– Let ∗A be the extension of some subset A of R, and consider the
sentence (∀x ∈ ∗A)(∗ψ), where ∗ψ is the ∗-transform of some first order
sentence ψ in R. Then extended set ∗A contains the ∗-transforms of
all elements of the original set A as constant sequences. And because
ψ(x) is true for all elements x of ∗A, ψ(x) is true in particular for
those elements x which are ∗-transforms of elements of A. But for
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these elements, ∗ψ(x)→ ψ(x), so this implies (∀x ∈ ∗A)(∗ψ)→ (∀x ∈
A)(ψ).

– Consider the previous result applied to the sentence ¬φ. Then (∀x ∈
∗A)(¬∗φ) → (∀x ∈ A)(¬φ). We’ve already shown that if ∗ψ → ψ,
then ¬∗ψ → ¬ψ. Applying this to the above sentence gives us ¬(∀x ∈
∗A)(¬∗φ) → ¬(∀x ∈ A)(¬φ). However, ¬(∀x ∈ A)(¬φ) is equivalent
to (∃x ∈ A)(φ). Therefore we have (∃x ∈ ∗A)(∗φ) → (∃x ∈ A)(φ).
Combining this with the previous result on the existential quantifier
proves (∃x ∈ ∗A)(∗φ)↔ (∃x ∈ A)(φ)

– Consider the previous results applied to the sentence ¬φ. Then we have
(∃x ∈ A)(¬φ) → (∃x ∈ ∗A)(¬∗φ). This implies ¬(∃x ∈ A)(¬φ) →
¬(∃x ∈ ∗A)(∗¬φ). But ¬(∃x ∈ A)(¬φ) is equivalent to (∀x ∈ A)(φ),
so this proves that (∀x ∈ A)(φ) → (∀x ∈ ∗A)(∗φ). Combining this
with our previous result on the universal quantifier gives us (∀x ∈
A)(φ)↔ (∀x ∈ ∗A)(∗φ)

�

4.4. Using the Transfer Principle. Once we familiarize ourselves with the trans-
fer principle, we will see that it is mostly unnecessary to do any ultrafilter calcula-
tions on ∗R, or even think of ∗R in terms of its ultrapower construction. Consider,
for example, our proof that ∗R is a field. To do so, we considered each element of
∗R as a sequence in RN, and rigorously tested and confirmed each field property.
But observe that the axioms of a totally ordered field are all first order definable:

• Associativity:
(∀x)(∀y)(∀z)(x+ (y + z) = (x+ y) + z)
(∀x)(∀y(∀z)(x · (yz) = (xy) · (z))

• Commutativity:
(∀x)(∀y)(x+ y = y + x)
(∀x)(∀y)(x · y = y · x)

• Distributivity
(∀x)(∀y)(∀z)(x · (y + z) = x · y + x · z)

• Existence of Identities
(∃x) ((0 = x)

∧
(∀y)(x+ y = y))

(∃x) ((1 = x)
∧

((∀y)(x · y = y))
• Existence of Inverses

(∀x)(∃y)(x+ y = 0))
(∀x)(x 6= 0→ ∃y)(x · y = 1)

• Total Ordering
(∀x)(∀y)(((x ≤ y)

∧
(y ≤ x))→ (x = y))

(∀x)(∀y)(∀z)(((x ≤ y)
∧

(y ≤ z))→ (x ≤ z))
(∀x)(∀y)((x ≤ y)

∨
(y ≤ x))

So, instead of explicitly proving distributivity, constructing inverses, and so on,
we can simply take the ∗-transforms of the above list of first-order sentences, which
we now know to be true by the transfer principle. We have thus proven that ∗R is
a totally ordered field without ever considering ∗R as an ultrapower of R, nor even
doing a single ultrafilter calculation.

This method of transferring properties from R to ∗R is very useful for proving
that the familiar theorems of standard analysis hold in a nonstandard setting. But
remember that the transfer principle goes both ways: we can prove theorems about
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R by first proving some fact about ∗R, formulating this fact as the ∗-transform
of some first-order sentence in R, and “un-transforming” the sentence in ∗R to
get the desired result in R. This is the great strength of nonstandard analysis,
because very often a proof will be more intuitive and easier to construct in ∗R.
To illustrate this, let’s prove something strong about R, but for which the proof
using nonstandard techniques is much more intuitively clear. A good example is the
Cauchy completeness of R, which states that every Cauchy sequence converges. We
will now use corollary 2.12, which states that every finite hyperreal is infinitesimally
close to a unique real number, to give a very intuitively clear proof of the Cauchy
completeness of R.

Theorem 4.5. Every Cauchy sequence in R converges.

Proof. Let s : N→ R be a real-valued Cauchy sequence. Observe that the property
of being Cauchy is first-order defineable:

(∀ε ∈ R+)(∃N ∈ N)(∀m,n ∈ N)(m,n ≥ N → |sn − sm| < ε)

Since s is Cauchy this sentence is true, which means that its ∗-transform,

(∀ε ∈ ∗R+)(∃N ∈ ∗N)(∀m,n ∈ ∗N)(m,n ≥U N → |∗sn − ∗sm| <U ε)

is also true (we define the ∗-extension of a sequence the same way we defined the
∗-extension of a function whose domain is a proper subset of R). We know that
there exists some k ∈ σN such that for all n,m ∈ ∗N, |∗sn − ∗sm| <U 1. Now, let
N ∈ ∗N\σN be any infinite hypernatural. Clearly, N, k ≥U k, so by the ∗-transform
of the fact that s is Cauchy, we have

|∗sk − ∗sN | <U 1

Since ∗sk is finite (because k is a standard natural number), this implies that ∗sN
is a finite hyperreal, and by lemma 2.12 must be infinitesimally close to a unique
real number L ∈ σR. Our claim is that the sequence s converges to L (note that
while s converges to L, ∗s converges to the constant sequence corresponding to L).
To prove this, take any ε > 0. We know that there exists some jε ∈ N such that
for all m,n ≥ jε, |sn − sm| < ε. But by transfer this gives us |∗sn − ∗sN | <U ε
whenever n ≥U jε, since we always have N ≥U jε for infinite N . So, let n be any
standard hypernatural greater than jε. Then we have

|∗sn − L| = |(∗sn − ∗sN ) + (∗sN − L)|
|∗sn − L| ≤U |∗sn − ∗sN |+ |∗sN − L|
|∗sn − L| <U ε+ δ

Here, δ is some infinitesimal number, since ∗sN ≈ L. However, |∗sn−L| must be a
standard real number, and since δ is infinitesimal, this implies that |∗sn − L| <U ε
(since a real number x can’t be less than a real number a plus an infinitesimal δ
unless it is also less than a itself). Thus we have proven that, given any positive ε,
there exists a jε such that the sentence

(∀n ∈ ∗N)[(n ≥U jε)→ (|∗sn − L| <U ε)]

is true. If we “de-transform” each such sentence back to R, we have proven that sn
converges to L. �
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Thus, by employing the transfer principle, we were able to prove something
important about R using a relation which holds only in ∗R. In the next section,
we will use the transfer principle extensively to discuss various formulations of
continuity, differentiability, and convergence, and to prove the main theorems of
single-variable calculus.

5. Continuity, Differentiability and Convergence

In this section, we will consider various definitions of continuity, differentiabil-
ity, and convergence and prove their equivalence. We will then use these new
definitions to prove some of the main theorems of single-variable calculus: the
intermediate value theorem, critical point theorem, extreme value theorem, and
Bolzano-Weierstrass theorem.

5.1. Continuity. In the first section of this paper, we gave a definition of “infinites-
imal continuity” which we claimed was equivalent to the standard ε-δ definition of
continuity. Now that we have the transfer principle, we can prove their equivalence.
First, however, we will introduce some notation. We will refer to ε-δ continuity at
a point c ∈ R as SC(c) (for standard continuity). Formally, a function f : R → R
satisfies SC(c) if and only if the sentence

(∀ε ∈ R+)(∃δ ∈ R+)[(∀x ∈ R)(|x− c| < δ → |f(x)− f(c)| < ε)]

is true. Similarly, we will refer to infinitesimal continuity at a point c ∈ ∗R as
IC(c) (this SC/IC notation comes from [2]). Recall that a function ∗f : ∗R→ ∗R
satisfies IC(c) if and only if ∗f(c + ε) ≈ ∗f(c) for all infinitesimal ε ∈ ϑ. We will
now prove the equivalence of these definitions of continuity.

Theorem 5.1. A function f : R→ R satisfies SC(c) for some point c ∈ R if and
only if its extension ∗f : ∗R→ ∗R satisfies IC(c).

Proof. Suppose first that f satisfies SC(c). Then for any positive ε ∈ R+, there
exists a δ ∈ R+ such that

(∀x ∈ R)(|x− c| < δ → |f(x)− f(c)| < ε)

is true. Taking the ∗-transform of this sentence gives us

(∀x ∈ ∗R)(|x− c| <U δ → |∗f(x)− ∗f(c)| <U ε)
But if we pick any x ≈ c, then we must have |x − c| <U δ, since δ ∈ σR, which
means that |∗f(x)− ∗f(c)| <U ε for every ε ∈ σR+. Therefore |∗f(x)− ∗f(c)| must
be infinitesimal, so x ≈ c implies ∗f(x) ≈ ∗f(c). Therefore ∗f satisfies IC(c).

Conversely, suppose that ∗f satisfies IC(c), and pick any real ε ∈ R+. Then if
δ is some infinitesimal number, |x − c| <U δ implies x ≈ c, so ∗f(x) ≈ ∗f(c) by
IC(c). But since ε is real, this implies that |∗f(x) − ∗f(c)| <U ε. So, given this ε,
the sentence

(∃δ ∈ ∗R+)(|x− c| <U δ → |∗f(x)− ∗f(c)| <U ε)
is true. But this is the ∗-transform of

(∃δ ∈ R+)(|x− c| < δ → |f(x)− f(c)| < ε)

which must therefore also be true. Thus, for any positive real ε, we have demon-
strated the existence of a positive real δ such that |x− c| < δ → |f(x)− f(c)| < ε.
This means that f satisfies SC(c). �
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We will now use this to give a very intuitively appealing proof of the inter-
mediate value theorem, by dividing the interval into infinitely many infinitesimal
subintervals.

Theorem 5.2. (Intermediate Value Theorem) Let f : [a, b]→ R be continuous, and
suppose f(a) < f(b). Then for any f(a) < c < f(b), there exists some x ∈ [a, b]
such that f(x) = c.

Proof. For all n ∈ N, consider a partition of the interval [a, b] into n subintervals
of equal width. Thus each subinterval is of the form

[pk−1, pk] =
[
a+

k(b− a)
n

, a+
(k + 1)(b− a)

n

]
for 0 ≤ k ≤ n − 1. Consider the set of points pk such that f(pk) < c. This
set is finite and nonempty, so for each n we can let sn be the maximal element
of {pk|f(pk) < c}. Then, treating s : N → [a, b] as a function embedded in our
relational structure, we have the sentence

(∀n ∈ N)[(a ≤ sn ≤ b)
∧

(f(sn) < c ≤ f(sn + (b− a)/n))]

We can then take the ∗-transform of this sentence and evaluate the function ∗s at
some infinite hypernatural N ∈ ∗N\σN. Then a ≤U sN ≤U b, so sN is limited, and
is therefore infinitesimally close to a unique real number L. However, N is infinite,
so b−a

N is infinitesimal, which means that sN ≈ sN + b−a
N . And by theorem 5.1, this

means that ∗f(sN + (b − a)/N) ≈ ∗f(sN ) ≈ f(L), since f is continuous. But by
transfer we still have

f(sN ) <U c ≤U f
(
sN +

b− a
N

)
Since c is sandwiched between f(sN ) and f(sN+(b−a)/N), and f(sN+(b−a)/N) ≈
f(sN ) ≈ f(L), we must have c ≈ f(L). But c and f(L) are both real, which means
that c = f(L). Therefore L ∈ [a, b] satisfies f(L) = c. �

Partitioning the interval into subintervals of equal size is a powerful trick in
nonstandard calculus, since transferring the partition to ∗R allows us to construct
a partition consisting of infinitely many infinitesimally small subintervals. We will
now use the same trick to prove the extreme value theorem.

Theorem 5.3. (Extreme Value Theorem) If a function f : [a, b]→ R is continuous,
then f attains both a maximum and a minimum on [a, b].

Proof. As in the proof of the intermediate value theorem, for any n ∈ N, partition
the interval [a, b] into n subintervals of the form

[pk, pk+1] =
[
a+

k(b− a)
n

, a+
(k + 1)(b− a)

n

]
for 0 ≤ k ≤ n−1. The set {f(pk)|0 ≤ k ≤ n} is finite and nonempty, so it has some
maximum element M . We therefore let sn denote the element of {pk|0 ≤ k ≤ n}
such that f(sn) = M . So, treating s : N → [a, b] as a function embedded in our
relational structure, we have the sentence

(∀n ∈ N)
[
(a ≤ sn ≤ b)

∧
((∀k ∈ N)(k ≤ n→ f(a+ k(b− a)/n) ≤ f(sn)))

]



20 ISAAC DAVIS

We can then take the ∗-transform of this sentence and evaluate the function ∗s at
some infinite hypernatural N ∈ ∗N\σN. By transfer, we have a ≤U sN ≤U b, so sN
is limited and hence infinitesimally close to a unique real number d ∈ σR. Since f
is continuous, it follows that ∗f(sN ) ≈ ∗f(d).

Now, we claim that the infinite partition

P =
{
a+

K(b− a)
N

|K ∈ ∗N and K ≤U N
}

contains points infinitesimally close to all real numbers in ∗[a, b]. To prove this, first
observe that, in the standard context, for any x ∈ [a, b] the definition of partition
gives us

(∀n ∈ N)(∃k ∈ N)
[
(k ≤ n)

∧(
a+

k(b− a)
n

≤ x ≤ a+
(k + 1)(b− a)

n

)]
If we take the ∗-transform of this sentence and consider our infinitesimal partition
into N subintervals, there must exist some hypernatural K ∈ ∗N such that K <U N
and

x ∈
[
a+

K(b− a)
N

, a+
(K + 1)(b− a)

N

]
Since this interval has infinitesimal width (b− a)/N , it follows that x ≈ a+K(b−
a)/N , which is in the infinite partition described above. And again, applying the
continuity of f gives us

∗f(x) ≈ ∗f
(
a+

K(b− a)
N

)
However, by transfer we must also have

∗f

(
a+

K(b− a)
N

)
≤U ∗f(sN ) ≈ d

so combining these two expressions gives us

∗f(x) ≈ ∗f
(
a+

K(b− a)
N

)
≤U ∗f(sN ) ≈ f(d)

Since ∗f(x) and f(d) are real, it follows that for all x ∈ [a, b], f(x) ≤ f(d). Therefore
f attains a maximum at d ∈ [a, b]. A similar proof follows for the minimum of f
on [a, b]. �

5.2. Differentiability. The standard definition of differentiability is as follows:
the function f : R→ R is differentiable at a ∈ R if the limit

lim
h→0

f(a+ h)− f(a)
h

exists. If f is differentiable, we call f ′(a) its derivative at a. This property, since it
is defined by the existence of a limit, is first-order defineable:

(∀ε ∈ R+)(∃δ ∈ R+)
[
(∀h ∈ R)

(
|h| < δ →

∣∣∣∣f(a+ h)− f(a)
h

− f ′(a)
∣∣∣∣ < ε

)]
We can now use this first-order definition of the derivative to prove the equivalence
of our alternate definition of derivative with the standard definition given above.



AN INTRODUCTION TO NONSTANDARD ANALYSIS 21

Theorem 5.4. The function f : R → R is differentiable at a ∈ R with derivative
f ′(a) if and only if its extension function ∗f : ∗R→ ∗R satisfies

∗f(a+ h)− ∗f(a)
ε

≈ f ′(a)

for every infinitesimal value of h.

Proof. Suppose that f is differentiable at a with derivative f ′(a), and suppose we
fix some positive ε and the corresponding δ which satisfies the condition of the
limit. Then we have the sentence

(∀h ∈ R)
(
|h| < δ →

∣∣∣∣f(a+ h)− f(a)
h

− f ′(a)
∣∣∣∣ < ε

)
Taking the ∗-transform of this sentence gives us

(∀h ∈ ∗R)
(
|h| <U δ →

∣∣∣∣∗f(a+ h)− ∗f(a)
h

− f ′(a)
∣∣∣∣ <U ε)

Since δ is a standard real, any infinitesimal value of h satisfies |h| <U δ, therefore∣∣∣∣∗f(a+ h)− ∗f(a)
h

− f ′(a)
∣∣∣∣ <U ε

for every infinitesimal value of h. But this holds for all real values of ε. So whenever
h is an infinitesimal, we have

∗f(a+ h)− ∗f(a)
h

≈ f ′(a)

Conversely, suppose ∗f satisfies the above property for every infinitesimal value
of h. Then for any positive real value of ε, the sentence

(∃δ ∈ ∗R+)
[
(∀h ∈ ∗R)

(
|h| <U δ →

∣∣∣∣∗f(a+ h)− ∗f(a)
h

− f ′(a)
∣∣∣∣ <U ε)]

is true. But this is the ∗-transform of the sentence

(∃δ ∈ R)
(

(|h| < δ →
∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ < ε

)
which must therefore also be true. Thus, for every positive real ε we have demon-
strated the existence of a corresponding δ satisfying the condition of the limit.
Therefore

lim
h→0

f(a+ h)− f(a)
h

= f ′(a)

so f is differentiable at a with derivative f ′(a). �

The equivalence of these two definitions of derivate allows us to introduce a
powerful notation (again borrowed from [1]), which had been used for centuries
before the development of nonstandard analysis due to its intuitive appeal. Let
f : R→ R be a function and let ∗f : ∗R→ ∗R be its extension. For any real x and
any infinitesimal ∆x, we let

∆f(x,∆x) = ∗f(x+ ∆x)− ∗f(x)
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In general we will omit the (x,∆x) and write only ∆f , whenever there is no chance
for confusion. The strength of this notation is that, by theorem 5.4, a function f
is differentiable at a ∈ R if and only if

∆f
∆x
≈ f ′(a)

To demonstrate the power of this notation, we will now use it to give a very simple
proof of an important theorem in single-variable calculus, the critical point theorem.

Theorem 5.5. (Critical Point Theorem) Suppose f : (a, b) → R is differentiable.
If f achieves a maximum or minimum at some point c ∈ (a, b), then f ′(c) = 0.

Proof. Suppose f achieves a maximum at x ∈ R. Then for some fixed ε ∈ R+, the
sentence

(∀c ∈ R)(|c− x| < ε→ f(c) ≤ f(x))
is true. Taking its ∗-transform gives us

(∀c ∈ ∗R)(|c− x| <U ε→ ∗f(c) ≤U ∗f(x))

But ε is real, so for every infinitesimal ∆x, we must have |(x + ∆x) − x| <U ε.
Therefore

∗f(x+ ∆x) ≤U ∗f(x) ⇒ ∆f ≤U 0
for all infinitesimal ∆x. Now, consider a positive infinitesimal ∆x1 and a negative
infinitesimal ∆x2. Since f is differentiable at c, we must have ∆f

∆x ≈ f ′(x) for any
infinitesimal ∆x. Combining this with the above inequality gives us

f ′(x) ≈ ∆f
∆x1

≤U 0 ≤U
∆f
∆x2

≈ f ′(x)

Since f ′(x) is real, this implies f ′(x) = 0. �

These three theorems form a good basis for the rest of differential calculus, as
many other important theorems in calculus follow as corollaries of these theorems;
Rolle’s Theorem follows from the critical point theorem and the extreme value
theorem, the mean value theorem is a corollary of Rolle’s Theorem, and so on.
Because the proofs of these corollaries follow so directly and do not require any
further use of the transfer principle, we omit them in this paper.

5.3. Sequences and Convergence. In this last section, we give an alternate
definition of convergence for sequences and prove its equivalence with the standard
definition. We will then use a similar definition of limit point to give a simple proof
of the Bolzano-Weierstrass theorem in R. We begin by stating this new definition
of convergence.

Theorem 5.6. A sequence s : N→ R converges to some real number L if and only
if ∗sN ≈ L for all infinite hypernaturals N ∈ ∗N\σN.

Proof. Suppose first that s converges to L. For every ε > 0, there exists some
corresponding m ∈ N such that

(∀n ∈ N)(n > m→ |sn − L| < ε)

We can then take the ∗-transform of this sentence. For any infinite N , we clearly
have N >U m, so by transfer |∗sN −L| <U ε holds. But this holds for every real ε,
therefore sN ≈ L for any infinite N .
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Conversely, suppose that ∗sN ≈ L for any infinite hypernatural N , and fix some
real ε ∈ σR+. Then the sentence

(∃N ∈ ∗N)(∀n ∈ ∗N)(n >U N → |∗sn − L| < ε)

is true, since any infinite hypernatural N will satisfy the given property. But this
is the ∗-transform of the sentence

(∃N ∈ N)(∀n ∈ N)(n > N → |sn − L| < ε)

which by transfer must also be true. Since this holds for every ε ∈ R+, s converges
to L. �

To prove the Bolzano-Weierstrass, we will first need the first-order definition of
a limit point. Recall that L ∈ R is a limit point of a sequence s : N → R if every
ε-neighborhood of L contains infinitely many points of s. We can express this by
the sentence

(∀ε ∈ R+)(∀m ∈ N)(∃n ∈ N)
(
n > m

∧
|sn − L| < ε

)
We will now use this to prove a theorem of which Bolzano-Weierstrass is an imme-
diate corollary.

Theorem 5.7. Let s : N→ R be a real valued sequence, and let L be a real number.
Then L is a limit point of s if and only if ∗sN ≈ L for some infinite N ∈ ∗N\σN.

Proof. Suppose first that ∗sN ≈ L for some infinite N . Then for every standard
ε ∈ σR+ and m ∈ σN, there exists an n ∈ ∗N such that n >U m and |∗sn−L| <U ε-
namely, our chosen infinite N . Therefore the sentence

(∃n ∈ ∗N)
(
n >U m

∧
|∗sn − L| <U ε

)
is true. But this is the ∗-transform of

(∃n ∈ N)
(
n > m

∧
|sn − L| < ε

)
which by transfer is also true. Thus for every positive ε and natural number m we
have demonstrated the existence of a natural number n > m such that |sn−L| < ε.
Therefore L is a limit point of s.

Conversely, suppose that L is a limit point of s, so the sentence

(∀ε ∈ R+)(∀m ∈ N)(∃n ∈ N)
(
n > m

∧
|sn − L| < ε

)
is true. We can take the ∗-transform of this sentence and consider some infinite
m ∈ ∗N\σN and some infinitesimal ε ∈ ϑ. By the transfer principle, there must
exist some N ∈ ∗N such that N > m and |∗sN − L| <U ε. Since m is infinite, N
must also be infinite, and since ε is infinitesimal, it follows that

∗sN ≈ L
for an infinite hypernatural N . �

To see why the Bolzano-Weierstrass theorem follows immediately from this, ob-
serve that, if a sequence s is bounded, then ∗sN must be finite, even for infinite
values of N . But by lemma 2.12, this means that for every infinte hypernatural N ,
∗sN ≈ L for a unique value of L. Thus, we have

Corollary 5.8. (Bolzano-Weierstrass Theorem) Every bounded, real-valued se-
quence has a limit point.
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6. Conclusion

To conclude, we will briefly consider how one might extend the transfer principle
to higher order sentences. As we saw, we were able to do quite a bit dealing only
with first-order sentences. Some important properties, however, are not first-order
defineable. Consider, for example, the property of Dedekind completeness, which
states that every bounded, nonempty subset of R has a least upper bound. We
cannot yet transfer this property to ∗R, as it is not possible to formulate a first-
order sentence with a variable ranging over P(R), the power set of R.

We will need to work on a structure even larger than our relational structure-
in fact one that contains our relational structure. Our structure must contain all
of analysis, from the natural numbers to the reals, complex numbers, functions,
relations, Euclidean spaces- anything that can be described in real analysis. We
will construct this structure as follows. Let X0 = N denote the base set. We then
inductively define Xn = P(Xn−1); that is, each set is the power set of the previous
set. Our superstructure will be the collection

X =
∞⋃
n=0

Xn

along with notions of equality and membership among its elements (set elements
of X are called entities, while elements of the base set X0 are called individuals).
The important characteristic of the superstructure is that it contains the set theory
of its own elements [2]. Although we will not prove these properties here, it is not
difficult to show that if x, x1, . . . , xn are entities of X , then

• y is an entity whenever y ∈ x,
• y is an entity whenever y ⊆ x,
• P(x) is an entity,
• {x1, . . . , xn} is an entity,
• (x1, . . . , xn) is an entity.

It is not necessarily obvious that X does in fact contain all of analysis. We cannot
explicitly prove that “every object in analysis” is contained in X here, but we can
motivate it with the following observations. First, X contains the natural numbers
as the base set. It also contains all ordered pairs of natural numbers, from which
we can form the integers. It contains all ordered pairs of integers, from which we
can form the rationals. It must also contain all subsets of the rationals, from which
we can form Dedekind cuts to construct the reals, and we can take ordered pairs
of reals to form the complex numbers. We can also form functions and relations as
ordered n-tuples of reals. For this reason, the superstructure can be thought of as
a “standard” model of analysis [2].

The idea behind a higher-order transfer is to embed this standard model X in a
larger superstructure Y. We call this embedding the ∗-transform (which looks very
familiar), and our wish is for the ∗-transform to preserve all finitary set operations-
union, intersection, complementation, etc. An embedding satisfying these prop-
erties is called a superstructure monomorphism. And, much in the same way we
formed ∗-transforms of first order sentences by first taking atomic formulae in <
and extending them to ∗<, we can create a method of transforming higher order
sentences whose variables range over entities in X to equivalent sentences in Y. The
full version of the transfer principle then states that a sentence φ in X with bounded
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formalization (i.e. with variables ranging over entities in X ) is true if and only if
its ∗-transform ∗φ in Y is true. This is the full version of the transfer principle, and
it is extraordinarily powerful in nonstandard analysis. With higher order transfer
at our disposal, we can do nonstandard complex analysis, nonstandard fourier se-
ries, nonstandard p-adic analysis- anything contained in the superstructure X can
be extended to a nonstandard version, and this nonstandard version can be used
extensively to prove theorems in the standard version, as we saw in this paper.
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