
GENERAL ABSTRACT NONSENSE

MARCELLO DELGADO

Abstract. In this paper, we seek to understand limits, a unifying notion that

brings together the ideas of pullbacks, products, and equalizers. To do this,

we will build up the basic framework of category theory, starting from the
definition of a category. With this done, we will define pullbacks, products,

and equalizers, and we will close this paper by showing two results: first,

that having products and equalizers is equivalent to having pullbacks and a
terminal object, and second, that having all finite limits is equivalent to having

products and equalizers of all cardinalities.
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1. The Basics

1.1. Definitions. Category theory grew out of a generalization of abstract algebra.
Thus, most of the definitions we will see are analogous to ones in algebra. We start
by defining a category.
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Definition 1.1 (Category). A category C consists of the following data
• A collection of objects A,B,C, denoted C0.
• A collection of arrows f, g, h, denoted C1
• For every arrow f ∈ C1, there exist objects dom(f), cod(f) ∈ C0, and we

write f : dom(f)→ cod(f).
• Given arrows f : A→ B, g : B → C, i.e. cod(f) = dom(g), there exists an

arrow g ◦ f ∈ C1 such that g ◦ f : A→ C.
• For all objects A, there exists an identity arrow IdA : A→ A

These data are required to satisfy the following two properties:
Associativity: For all arrows f : A → B, g : B → C, and h : C → D,
h ◦ (g ◦ f) = (h ◦ g) ◦ f , i.e. the following diagram commutes:

A
f //

g◦f ��@@@@@@@ B

g

��

h◦g

  @@@@@@@

C
h
// D

Unit: For all arrows f : A → B, f ◦ IdA = f = IdB ◦ f , i.e. the following
commutes:

A
IdA //

f   @@@@@@@

f

��

A

f

��
B

IdB

// B

Remark 1.2. We denote the collection of all arrows from an object A to an object
B in a category C as C(A,B).

Remark 1.3. Assuming that an object A has two identity arrows, by the unit
property we have that Id′A = Id′A ◦ IdA = IdA, which shows that the identity arrow
must be unique.

Definition 1.4 (Isomorphism). An arrow f : A→ B is an iso(morphism) if there
exists an arrow g : B → A such that g ◦ f = IdA and f ◦ g = IdB .

In algebra, we have structure-preserving maps, like group homomorphisms for
groups and linear transformations for vector spaces. Similarly, we have structure-
preserving maps for categories.

Definition 1.5 (Functor). A functor is a map F : C → D between categories C
and D that sends objects to objects (i.e. F0 : C0 → D0) and arrows to arrows (i.e.
F1 : C1 → D1) such that

• F (f : A→ B) = Ff : FA→ FB
• F (g ◦ f) = Fg ◦ Ff
• F (IdA) = IdFA

It’s not hard to see that for each category there is a canonical identity func-
tor, IdC which takes every arrow and object to itself and thus trivially satisfies the
structure-preserving properties of a functor. It’s helpful to seem some examples of
categories and functors at this point.
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Example 1.6.

(1) The category Sets is the category which has as its objects all sets and
Sets(X,Y ) = Y X . Composition of arrows is simply the composition of
functions, and the identity arrow for any set is simply its identity function.

(2) The category Grp is the category which has as its objects all groups and
Grp(G,H) is the collection of all group homomorphisms from G to H fora
any two groups.

(3) Two ubiquitous functors in category theory are the identity functor, de-
scribes above, and the forgetful functor, U . Generally, the forgetful functor
takes a category of structured sets and their functions (e.g homomorphisms)
to Sets and sends each object in that category to its underlying set and
each “homomorphism” to its underlying function of sets.

(4) The category Cat is the category where the objects are all locally small
categories and the arrows are all the functors between them.

(5) Consider a monoid M . Then M is an single object category where the
elements are arrows from the object to itself and the composition of arrows
is the product of the corresponding elements, i.e. mn = m◦n, and the unit
element uM is the identity arrow Id∗. Further, any monoid homomorphism
h : M → N is a functor between their respective categories.

(6) Similarly, since a group is a monoid with inverse elements, then a group
is equivalent to a single element category where every arrow is an isomor-
phism.

(7) A poset can also be considered a be considered a category where the ele-
ments of the poset are the objects of the category and there is a unique
arrow f : a→ b if a ≤ b. This should not be confused with Pos, the cate-
gory of posets where the objects are posets and the arrows are monotonic
functions.

(8) Let an ordered pair (A, a) be called a pointed set, where A is a set and
a ∈ A. Then we can consider a category of pointed sets, where the objects
are pointed sets and an arrow f : (A, a) → (B, b) is a function f : A → B
such that f(a) = b. We denote this category Sets∗

(9) For a collection of sets, Rel0, define an arrow f : A→ B as a relation from
A to B, i.e. such that f ⊆ A × B. The identity relation on a set A is
IdA = {〈a, a〉 ∈ A × A|a ∈ A}. Composition for relations f ⊂ A × B and
g ⊆ B×C is defined as g ◦ f = {〈a, c〉 ∈ A×C|∃ b ∈ B such that 〈a, b〉 ∈ f
and 〈b, c〉 ∈ g}. If we denote the collection of relations among sets in Rel0
as Rel1, then Rel0 and Rel1 form a category, Rel.

The notion of a category is rather flexible and can come in a wide variety of
flavors. Despite the very abstract feel of most categories, it can be shown that
any category is isomorphic to one in which the objects are sets and the arrows are
functions.

Theorem 1.7. Every category C is isomorphic to one in which the objects are sets
and the arrows are functions

The proof follows from something akin to the Cayley representation theorem
of groups. For a given category C, define a collection of sets C = { arrows f ∈
C1|cod(f) = C} for every C ∈ C0. Then for all arrows f : C → D, define a function
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f : C → D such that f(h) = f ◦ h. One can check that this collection of sets and
functions is a category, where IdC = IdC .

1.2. Constructions. Having established what categories are and seen some exam-
ples of them in nature, we can discuss some categories we can construct from ones
we already have.

Definition 1.8 (Dual Category). For a given category C, define the dual category
of C, denoted Cop, such that C0 = Cop0 and (f : A → B) ∈ Cop1 if and only if
(f : B → A) ∈ C1.

Intuitively, the dual category is exactly the same as C, except all the arrows have
been formally “turned around”. What this means is that for arrows f : X → Y
and g : Y → Z in C, g ◦ f = f ◦ g in Cop.

A
f //

g◦f ��@@@@@@@ B

g

��

A B
foo

C C
f◦g

__@@@@@@@
g

OO

Definition 1.9 (Product Category). For categories C and D, we define C ×D, the
product category of C and D, as the category with the following data:

• (C × D)0 = {(C,D)|C ∈ C0, D ∈ D0}
• (C × D)1 = {(f, g) : (C,D)→ (C ′, D′)|f ∈ C(C,D), g ∈ D(C ′, D′)}
• composition is defined component-wise: (f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′)
• Id(C,D) = (IdC , IdD)

There are two canonical projection functors here:

C C × D
π1oo π2 // D

defined such that π1(C,D) = C and π1(f, g) = f , with π2 defined analogously.

Definition 1.10 (Arrow Cateogory). Given a category C, define C→ such that:
• C→0 = C1
• An arrow g = 〈g1, g2〉 : (f : A → B) → (f ′ : A′ → B′) in C→ is a pair

of arrows g1 : A → A′ and g2 : B → B′ such that g2 ◦ f = f ′ ◦ g1.
Diagrammatically:

A
g1 //

f

��

A′

f ′

��
B g2

// B

• Idf = 〈IdA, IdB〉 for f : A→ B.
• For arrows h = 〈h1, h2〉 and g = 〈g1, g2〉 g ◦ h = 〈g1 ◦ h1, g2 ◦ h2〉, which

Diagrammatically looks like:

A
h1 //

f

��

A′
g1 //

f ′

��

A′′

f ′′

��
B

h2 // B′
g2 // B′′
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This construction has two canonical functors as well: dom and cod.

Definition 1.11 (Slice Category). The slice category of a category C over an object
C in C, denoted C/C, is given by the following data:

• (C/C)0 is the collection of arrows in C with cod(f) = C.
• An arrow in C/C, f : (x : X → C) → (x′ : X ′ → C), is an arrow
f : X → X ′ in C such that x′f = x, that is, the following commutes:

X
f //

x
  BBBBBBBB X ′

x′

��
C

• The identity arrow for an object x : X → C is simply the arrow IdX , which
makes the above diagram commute trivially: xIdX = x.
• Let x, x′, and x′′ be objects in C/C, and let f ∈ C/C(x, x′) and g ∈
C/C(x′, x′′). Then we define composition so that the following commutes:

X
f //

x
  BBBBBBBB X ′

x′

��

g // X ′′

x′′}}{{{{{{{{

C

Thus, g ◦ f ∈ C/C(x, x′′) is the composite arrow g ◦ f : X → X ′′ in C such
that x′′(gf) = x.

1.3. Duality. The definition includes objects and arrows and four operations (dom,
cod, IdA, and g ◦ f) that satisfy the following:

dom(IdA) = cod(IdA) = A

f ◦ Iddom(f) = f = Idcod(f) ◦ f

dom(g ◦ f) = dom(f), cod(g ◦ f) = cod(g)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Note that the operation “g ◦ f” is only defined where dom(g) = cod(f). So
for any statement in category theory Σ, we can form the “dual statement” Σ∗ by
replacing g ◦ f with f ◦ g, cod for dom, and dom for cod (i.e. inverting all the
arrows and orders of composition. Σ∗ will also be a well-formed sentence. Thus,
supposing that a well-formed sentence Σ entails another well-formed sentence ∆,
by inversion of arrows we find that Σ∗ entails ∆∗. Knowing this, we can also see
that the axioms of category theory are self-dual, i.e. CT = CT∗. Combining these
two ideas, we arrive at what is known as the Duality Principle of category theory.

Proposition 1.12 (Duality). For any statement Σ in category theory that follows
by the axioms of category theory, the dual of that statement Σ∗, also follows from
the axioms.
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Proof. Suppose CT entails a statement Σ. Then as demonstrated above, CT∗

entails Σ∗. But since CT = CT∗, then CT entails Σ∗. �

Along these lines, since Cop is C with inverted arrows, then any true statement Σ
in C necessarily implies the truth of Σ∗ in Cop. Combining this with the observation
that (Cop)op = C, we arrive at a slightly more formal version of the duality principle.

Theorem 1.13 (Duality 2.0). If Σ is a well-formed sentence that holds in all
categories C, then so is/does Σ∗.

Proof. Suppose Σ is a statement in the language of category theory that holds in
all categories. Given a category C, Σ necessarily holds in Cop since it holds in all
categories. This implies that Σ∗ holds in (Cop)op. Since (Cop)op = C, then Σ∗

holds in C. So Σ∗ holds in all categories. �

Many times we will come across pairs of notions which are dual to each other, and
it will suffice to show something about just one of them because the dual statement
follows from the duality principle. As an example of this, we can add to our list
of constructed categories the coslice category of a category C under an object C,
denoted C/C. By reversing the arrows in the slice category C/C, we see that the
objects in C/C are the arrows in C whose domain is C. The rest follows starting
from this and keeping the duality principle in mind.

Remark 1.14. It is common practice to use the prefix co- for the dual of an ex-
isting notion, e.g. coslice is the dual of slice. Along these lines, we will encounter
coproducts, coequalizers, colimits, and pushouts.

1.4. Abstract Structures. There are several types of structure we can talk about
in the context of a category.

Definition 1.15 (Monomorphism and Epimorphism). An arrow f : A → B is a
mono(morphism), or is said to be monic, if for any set of parallel arrows g, h : X →

A such that fg = fh, i.e. X
g //
h
//A

f //B commutes, we have that g = h.

An arrow f : A→ B is an epi(morphism), or is said to be epic, if for any set of

parallel arrows i, j : B → Z such that if = jf , i.e. A
f //B

i //
j
//Z commutes,

we have that i = j.

Note that the notion of a monomorphism is dual to the notion of epimorphism.
Despite their abstract nature, these structures do have some very concrete examples
in nature.

Proposition 1.16. A function f : A→ B (arrow in Sets) is monic if and only if
it’s injective.

Proof. Suppose f is monic. Let a and a′ be distinct points of A. And let {∗} be any
singleton set. Then we have two functions a, a′ : {∗} → A such that a(∗) = a and
a′(∗) = a′. Since f is monic and since a 6= a′ then fa 6= fa′. Since f(a(∗)) = f(a)
and f(a′(∗)) = f(a′), then f(a) 6= f(a′).

Suppose f is 1-to-1 and g, h : C → A are parallel arrows into A such that
g 6= h. Then there exists c ∈ C such that g(c) 6= h(c). Since f is 1-to-1, then
f(g(c)) 6= f(h(c)), which implies that fg 6= fh. By contrapositive, fg = fh implies
g = h. �
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Proposition 1.17. A function f : A→ B is epic if and only if it’s onto.

Proof. Consider a surjective map f : X → Y , and let g, h : Y → Z be parallel
arrows such that gf = hf . Consider y ∈ Y . Since f is onto, there exists x ∈ X such
that f(x) = y. By construction, g(f(x)) = h(f(x)), which means that g(y) = h(y).
Since this holds for any y ∈ Y , g = h.

Let f : X → Y be epic. Suppose f is not onto. Then Range(f) ( Y . Let
g : Y → {0.1} be defined such that g(y) = 1 if y ∈ Range(f) and g(y) = 0
otherwise. Further, define h : Y → {0, 1} such that for all y, h(y) = 1. Then
gf = hf . However, h 6= g since for all y /∈ Range(f) g(y) = 0, and we know there
is at least one such y. This contradicts f being epic. Thus, f is onto. �

Proposition 1.18. In a fixed poset category P , every arrow p ≤ q is both monic
and epic.

Proof. By construction, a poset category has at most one arrow between any two
objects. Thus, any parallel arrows must be equal. This makes all arrows trivially
monic and epic. �

Proposition 1.19. Every iso is both monic and epic.

Proof. Let f : X → Y be an iso and suppose that g : Y → X is the arrow such that
g◦f = IdX and f ◦g = IdY . Let x, y : A→ X be parallel arrows such that fx = fy
and let i, j : X → B be parallel arrows such that ig = jg. Diagrammatically:

A
x //
y
// X

f //

IdX   AAAAAAA Y

g

��
X

i //
j
// B

If fx = fy then g(fx) = g(fy). Since gf = IdX then x = y, so f is monic.
Similarly, if ig = jg then (ig)f = (jg)f . Since gf = IdY then i = j, so g is monic.
Reversing the situation and applying the same logic will show that g is monic and
f is epic. Thus, every iso is both monic and epic. �

It should be noted that arrows that are both monic and epic are not necessarily
iso. Let (R,≤) denote R with the standard order topology, let (R,F) denote R
with the full topology, i.e. every subset of R is open, and consider both as objects
in the category Top of topological spaces and continuous functions. Then for any
topological space (X,A), any function f : (R,F) → (X,A) is continuous since for
any open subset V ⊆ X f−1(V ) ⊂ R is necessarily open.

Consider the function h : (R,F) → (R,≤) defined such that for all x ∈ R
h(x) = x. Since the underlying set function of this map is |h| = IdR, it’s fairly easy
to check that its both monic, epic, and bijective. However it is not an isomorphism.
In Top, an isomorphism is a continuous function with a continuous inverse, which
is exactly a homeomorphism. The inverse arrow of the underlying set function is
again |g| = IdR, and since |h| = IdR is iso and isos are both monic and epic then |g|
is unique. However, g : (R,≤)→ (R,F) is not continuous since for any x ∈ R, the
preimage of the open set {x} in (R,F), g−1(x) = x, is the same single point set,
which is not open under the order topology.
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Definition 1.20 (Initial and Terminal Objects). In a category C, an object is an an
initial object, denoted 0, if for all objects C there exists a unique arrow !C : 0→ C.
An object is a terminal object, denoted 1, if for all objects C there exists a unique
arrow !C : C → 1.

In Sets, the initial object is the empty set, and any singleton set is a terminal
object. The uniqueness of the initial (terminal) object is addressed by the following
proposition:

Proposition 1.21. Initial (terminal) objects are unique up to isomorphism.

Proof. Suppose a category C has two initial objects 0 and 0′. Then by the universal
mapping property of initial objects, there exist unique arrows ! : 0 → 0′ and
!′ : 0′ → 0. Thus, !◦!′ : 0′ → 0′ and !′◦! : 0 → 0. By the universal mapping
property of initial objects, !◦!′ = Id0′ and !′◦! = Id0. Thus, 0 and 0′ are isomorphic.
Since terminal objects are the dual notion of initial objects, an analogous proof with
arrows reversed shows that terminal objects are unique up to isomorphism. �

It is worth noting two things at this point. First, a category does not need
an initial or terminal object. Take for example the poset category (Z,≤) which
has neither terminal nor initial object. Second, along those same duality lines,
it’s worth noting that the initial (terminal) object of a category C is the terminal
(initial) object of Cop. Knowing this, the uniqueness up to isomorphism of terminal
objects in any category C follows from the uniqueness up to isomorphism of the
initial object in Cop.

In some categories, the initial and terminal object are the same

2. Studying Objects in a Category

2.1. Elements and Arrows. Arrows from terminal object provide some insight
into the structure of the objects of the category. In Sets, the terminal object is
any singleton set (which are clearly isomorphic to each other). Arrows a : 1 → A,
where a(·) = a ∈ A, are exactly the elements of the set A. In fact, we have in Sets
an isomorphism X ∼= Sets(1, X) for any set X. Further, we can generalize this
notion to any category with a terminal object.

Definition 2.1 (Points or Elements). In a category C with a terminal object 1,
arrows a : 1→ A are called the elements or points of A.

In Sets, the elements of A are enough to distinguish between parallel arrows.

Proposition 2.2. If f, g : A → B are parallel arrows in Sets, then f = g if and
only if for all elements a : 1→ A of A, fa = ga.

Proof. The forward direction is trivial. For the reverse direction, suppose that
f 6= g. Then there exists a ∈ A such that f(a) 6= g(a). Define a :!→ A by a(·) = a.
Then ga 6= fa. We’ve shown that if f 6= g then there exists an element of A such
that fa 6= ga, so the result follows by contrapositive. �

This argument also holds in Pos, but it does not hold in general. In Grp, the
terminal object, the single element group that consists of just an identity element,
is also initial. Thus, for all groups G, there exists only one arrow g : 1 → G, so
groups have only one point. This tells us that our notion of element or point is not
general enough to capture the information we would like to obtain. Thus, we must
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abstract further to generalized elements, which can be used to distinguish between
arrows in any category..

Definition 2.3 (Generalized Elements). Arbitrary arrows x : X → A (for any
domain X) are regarded as generalized or variable elements of A.

Think of these arrows of things in A that are ‘shaped” like an arbitrary X. In
Sets, arrows from the terminal object point out the parts of set that look like the
terminal object that is, they are exactly the elements, in the usual sense, of A.
Similarly, arrows from for a two point set {1, 2} → A are exactly the subsets of A
that have exactly two elements. A more illustrative example comes from looking
at generalized elements in categories of structured sets.

Example 2.4.
(1) Consider the three element group G = {uG, g, g−1}. Then arrows in Grp

G → H from G to other groups H are exactly the subgroups of G that
consist of an element, its inverse, and the identity element uH .

(2) In Pos, consider the poset P = {1 ≤ 2 ≤ 3}. Then the arrows p : P → A
are exactly the subsets of A consisting of three totally ordered elements.

The usefulness of generalized arrows comes from their ability to distinguish par-
allel arrows.

Proposition 2.5. In any category C, for all parallel arrows f, g : C → C ′, f = g
if and only if fx = gx for all generalized elements x : D → C.

Proof. The forward direction is easy. For the reverse direction, if for all generalized
elements x : D → C we have gx = fx, then we have g ◦ IdC = f ◦ IdC . Since
f ◦ IdC = f and g ◦ IdC = g, then f = g. �

Generalized elements are part of a class of tools used to elucidate the fine struc-
ture of a category. To do so, we need to loosen how strict our tools are. Isomorphic
pairs of arrows are a very strong and useful tool for establishing relations among
objects. However, isomorphisms require both compositions of the arrows to yield
an identity. If we require only that one composition yield identity, then we have a
more flexible notions: split monomorphism and split epimorphisms.

Proposition 2.6. If f : A → B has a left inverse g : B → A (equivalently, g has
a right inverse f) such that gf = IdA then f is monic and g is epic.

Proof. Since the statement that g is epic is dual to the one that f is monic, we’ll
omit its proof and claim that it follows from the duality principle. Consider parallel
arrows h, k : X → A such that fh = fk. Then we have g(fh) = g(hk) by
composition. By associativity, g(fh) = (gf)h = IdA ◦ h = h. Similarly, g(fk) = k.
Thus h = k, so f is monic. �

Definition 2.7 (Split Mono(Epi)). A split mono (epi) is an arrow with a left
(right) inverse. Given arrows e : X → A and s : A → X such that es = IdA, we
say that s is a section or splitting of e and that e is a retraction of s. A is called a
retract of X.

In a similar way that functors preserve isomorphisms, functors preserve split
monos and epis.
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Proposition 2.8. In Sets, every mono splits.

Proof. As shown previously, in Sets the monic arrows are exactly the injective
functions. Thus all monos in Sets are bijective on their images. For every x ∈
Im(f) there’s a unique y ∈ A such that f(y) = x by injectivity. So for f : A → B
that’s monic, define g : B → A by g(b) = a if a is the unique element of A such
that f(a) = b. Fix any y ∈ A and define g on b ∈ B \ =(f) by g(b) = y. Then
gf = IdA, which is equivalent to saying that f splits. �

Fact 2.9. The condition that every epi splits in Sets is the categorical equivalent
of the axiom of choice.

To see this, consider an epi e : E → X. As shown previously, s must be onto
since it is epic. Thus, for all x ∈ X, there is a nonempty set ex := e−1{x}. A
splitting of e is exactly a choice function on the family of sets (ex)x∈X ; that is, a
function s : X → E such that es = IdX . Conversely, given a family of nonempty
sets ex for every x ∈ X, taking E = {(x, y)|x ∈ X, y ∈ ex}, we can define the
function e : E → X such that (x, y) 7→ x. A splitting of e would thus be a choice
function on the family (ex)x∈X .

2.2. Projective Objects. Projective objects are another tool that let us establish
relations among the objects of a category by using something akin to a mapping
property.

Definition 2.10 (Projective Objects). An object P is said to be projective if for
any epi e : E → X and for any arrow f : P → X, there exists a not necessarily
unique arrow f : P → E such that e ◦ f = f . Diagrammatically:

P
f //

f   @
@

@
@ X

E

e

OO

We say that f lifts across e.

Let us consider what this rather abstract definition means in Sets.

Proposition 2.11. The axiom of choice implies that all sets are projective in Sets.

Proof. The axiom of choice is equivalent to saying that all epis split. So for a set
A, consider the arrow f : A → B and the epi e : E → B. Since epis split, there
exists an arrow s : B → E such that es = IdB . It follows that (es)f = IdB ◦ f = f .
And by composition, we have that the following commutes:

A
f //

fs ��@
@

@
@ B

s

��
E

e

OO

Letting f = fs, we’ve shown that A is projective. �

Proposition 2.12. In any category C, the retract of a projective object is also
projective.
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Proof. Let P be a projective object and let A be a retract of P , that is, there exists
a split epi e : P → A with a right inverse s : A → P (which has to be monic).
Consider any arrow f : A → B and any epi i : E → B. Then fe : P → B by
composition. Since P is projective, there exists fe : P → E such that i ◦ fe = fe,
and thus the following commutes:

P
e //

fe ''OOOOOOO A
s

oo
f // B

E

i

OO

By precomposition, we get that (fe)s = i◦fe◦s. Since (fe)s = f(es) = f ◦IdA = f ,
then f = i ◦ fe ◦ s and the following commutes showing that A is projective:

P
e //

fe ''OOOOOOO A
fes

��@
@

@
@s

oo
f // B

E

i

OO

�

2.3. Subobjects. Our final piece of machinery in elucidating the fine structure of
objects allows us to establish a sort of partial order among the objects by estab-
lishing certain objects as “subobjects” of each other.

Definition 2.13 (Subobject). A subobject of an object X in a category C is a mono
m : M → X. Given subobjects m and m′ of X, a morphism f : m → m′ is an
arrow such that the following commutes:

M
f //

m
!!CCCCCCCC M ′

m′

��
X

Thus, we can talk about SubC(X), the category of subobjects of X in C.

Remark 2.14. Note that such an arrow f is an arrow in C/X. In reality, SubC(X)
is a subcategory of C/X, and so composition and identity are exactly the same as
in C/X.

Since m′ is monic, there is at most one f from m to m′; thus SubC(X) is a
preorder category. We can use this to define an inclusion relation, where m ≤ m′ if
and only if there exists f : m→ m′. Two subobjects are then equivalent, denoted
m ≡ m′, if and only if m ≤ m′ and m′ ≤ m. This is equivalent to both triangles
commuting:

M
f //

m
!!CCCCCCCC M ′

m′

��

f ′
oo

X

It’s worth noting that our diagram shows that m = mf ′f . Since m is monic, this
implies that f ′f = IdM ′ . By the same argument, we see that ff ′ = IdM , which
implies that M ∼= M ′. Thus, equivalent subobjects have isomorphic domains.
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Proposition 2.15. Let m and m′ be subobjects of X. Then an arrow f : m→ m′

is also monic, so f is a subobject of M ′.

Proof. Consider subobjects m and m′ of X such that m ≤ m′, that is, there exists
f : m → m′ such that m′f = m. Suppose there are parallel arrows i, j : Z → M
such that fi = fj. Then by composition, m′fi = m′fj. Since m′f = m, then
mi = mj. Finally, since m is monic, then i = j. Thus, f is monic and is a
subobject of M ′ by composition. This can be read off the following diagram:

Z
i //
j
// M

f //

m
!!CCCCCCCC M ′

m′

��
X

�

For generalized elements z : Z → X of X, we can define a local membership
relation, z ∈X m, between generalized elements and subobjects m : M → X by the
following: z ∈X m if and only if there exists f : Z →M such that

Z
f //___

z
  AAAAAAAA M

m

��
X

commutes. Since m is monic, then f must be unique.

Fact 2.16. It is an entirely surprising result that SubSets(X) = P (X). Despite
the appearance of what appears to be a terrible pun, you can see the truth of this
statement by seeing that any monic function into a set X is an injective “inclu-
sion” arrow. Consider any two subobjects z : Z → X and z′ : Z ′ → X. Then
z ≤ z′ means that there’s a monic (injective) arrow f : Z → Z ′ that commutes
appropriately. If we have both z ≤ z′ and z′ ≤ z, then by our definition we have
z ≡ z′. But this allows us to see just how clever the definition of this relation is,
because if we have z ≤ z′ and z′ ≤ z, then we have injective arrows f : Z → Z ′ and
f ′ : Z ′ → Z, which by the Schroeder-Bernstein Theorem gives us that |Z| = |Z ′|,
which is equivalent to saying that the respective sets are isomorphic in Sets

3. The Three Faces of Limits

In this section, we will introduce the notions of products, pullbacks, and equaliz-
ers, which we will go on to show later as being specific examples of a more abstract
notion: limits.

3.1. Products. We know from set theory that we can take the cartesian products
of sets: for any sets A and B, let A × B = {(a, b)|a ∈ A, b ∈ B}. And from
this product, we have two obvious projection functions, π1 : A × B → A and
π2 : A× B → B, where (a, b) π17−→ a and (a, b) π27−→ b. Thus, for any c ∈ A× B, we



GENERAL ABSTRACT NONSENSE 13

have c = (π1c, π2c). This is equivalent to the following diagram commuting:

1
a

{{xxxxxxxxx
b

##FFFFFFFFF

(a,b)

��
A A×B

π1oo π2 // B

This example works with elements of A and B. But if we abstract to generalized
elements, we arrive at a definition of products in any category.

Definition 3.1 (Products). In any category C, a product diagram for the objects
A and B consists of an object P and arrows p1 : P → A and p2 : P → B,

A P
p1oo p2 //B , that satisfies the following universal mapping property:

Given any diagram of the form A X
x1oo x2 //B , there exists a unique arrow

u : X → P making the following diagram commute:

X
x1

~~~~~~~~~
x2

  @@@@@@@@

u

���
�
�

A P
p1oo p2 // B

That is, x1 = p1u and x2 = p2u.

Example 3.2. In Sets, the cartesian product A×B of sets A and B along with the
standard projection functions π1 and π2 satisfies the universal mapping property
of products.

Proof. Consider a set X and functions f1 : X → A and f2 : X → B. Then define
the function f = (f1, f2) : X → A×B such that p

f7−→ (f1(p), f2(p)). Then clearly
f1 = π1f and f2 = π2f . Suppose there exists u = (u1, u2) : X → A × B that also
commutes appropriately. Then f1 = π1u = u1, and a similar argument shows that
f2 = u2. Thus, u = (f1, f2) = f . �

Proposition 3.3. Products are unique up to isomorphism.

Proof. Suppose for objectsA andB you have two product diagrams: A P
p1oo p2 //B

and A Q
q1oo q2 //B . Then by universal mapping property, there exists i : P → Q

such that p1 = q1i and p2 = q2i. Analogously, there exists j : Q → P such that
q1 = p1j and q2 = p2j. Then by precomposition, q1i = p1ji and q2i = p2ji. Since
p1 = q1i and p2 = q2i, then we have p1 = p1ji and p2 = p2ji. A similar precom-
position argument will shows that q1 = q1ij and q2 = q2ij. Diagrammatically, the
following diagram commutes:

P
p1

��~~~~~~~
p2

��@@@@@@@

i

���
�
�
�
�
�
�

A B

Q

q1

__??????? q2

??�������

j

OO�
�
�
�
�
�
�

Since p1 = p1ji and p2 = p2ji, it follows from the uniqueness of identity arrows
that ji = IdQ, and analogously that ij = IdP . Thus, P ∼= Q. �
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Proposition 3.4. A×B ∼= B ×A.

Proof. Follows from previous proposition. �

As a general rule, given X, x1, and x2 as in the above diagram we write 〈x1, x2〉
for u : X → A× B. We can also talk about arrows out of products, which can be
written essentially as functions of two variables, and as such cannot be reduced.
For example, 〈f1, f2〉 : A×B → X.

Remark 3.5. As a general rule, products of structured sets can be constructed
as products of the underlying sets with operations defined component wise. For
example, the product of two groups G and H, G×H, has as its underlying set the
cartesian product of the underlying sets of G and H. Further,

〈g, h〉 · 〈g′, h′〉 = 〈gg′, hh′〉
uG×H = 〈uG, uH〉
〈a, b〉−1 = 〈a−1, b−1〉

We wont go into detail again about the construction of the product category C×D,
though one can check that it satisfies the universal mapping property required by
the definition.

Definition 3.6 (Binary Products). A category C is said to have binary products
if for every pair of objects A and B there exists an object A × B and a pair of
projection arrows p1 : A×B → A and p2 : A×B → B that satisfies the universal
mapping property of product diagrams.

Let’s examine then what an arrow from a product to a product looks like. Con-
sider two arrows f : A→ B and f ′ : A′ → B′ in a category C with binary products.
Suppose that the following diagram commutes:

A

f

��

A×A′
p2 //p1oo A′

f ′

��
B B ×B′

q1oo q2 // B′

Then there exists a map which we denote f × f ′ : A× A′ → B × B′ such that we
say that both squares below commute:

A

f

��

A×A′
p2 //p1oo

f×f ′

���
�
� A′

f ′

��
B B ×B′

q1oo q2 // B′

Remark 3.7. It should be noted that a category that has binary products will
necessarily have a terminal object. Imagine taking the “nullary” product, that is,
a product of no objects. This product clearly has no projection arrows since there
are no codomains to define those arrows on. Let us denote this product P . Thus for
any other object C, we trivially have no arrows to the nonexistent objects that we
used to define this product, so by the universal mapping property of products there
exists a unique arrow ! : C → P that makes all these nonexistent arrows commute
trivially. It’s clear then that P must be a terminal object since every element will
trivially have arrows to the nonexistent objects that we took the product of to
define P and so all objects must have a unique arrow to P .
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Proposition 3.8. C × 1 ∼= C.

Proof. Consider the product diagram C C × 1
p1oo p2 //1, where we necessarily

have that p2 =!C×1, the unique arrow from C × 1 to the terminal object. Then
for the pair of arrows IdC : C → C and !C : C → 1, there exists a unique arrow
u : C → C × 1 such that IdC = p1u and !C =!C×1u. That is, the following
commutes:

C
IdC

||yyyyyyyyy
!C

""EEEEEEEEE

u

���
�
�

C C × 1
p1oo !C×1 // 1

By composition, we have !C×1up1 : C × 1 → 1. By uniqueness, !C×1up1 =!C×1.
Thus, up1 = IdC×1. Since we have up1 = IdC×1 and p1u = IdC , the result follows.

�

A similar, but much less exciting, proof also shows us that products are associa-
tive up to isomorphism.

3.2. Equalizers. In Sets, given any two functions f, g : A → B, we can consider
the subset E = {a ∈ A|f(a) = g(a)}. Then defining an inclusion function e : E →
A, we have made it so that fe = ge by restricting f and g to the subset of A on
which they are equal. It is worth noting that an inclusion function is monic and
thus that E is a subobject of A, since we will want our generalization to retain
these properties.

Definition 3.9 (Equalizer). In any category C, given parallel arrows f, g : A→ B,
an equalizer of f and g consists of an object E and an arrow e : E → A such that
fe = ge, that is, the following commutes:

E
e // A

f //
g
// B

Further, they satisfy the following universal mapping property:
Given any z : Z → A such that fz = gz, there exists a unique arrow u : Z → E

such that eu = z. Diagrammatically, the following commutes:

E
e // A

f //
g
// B

Z

u

OO�
�
� z

??~~~~~~~

As promised, e is monic, which is equivalent to saying that it (or E) is a subobject
of A.

Proposition 3.10. Equalizer arrows are monic.

Proof. Given the equalizer diagram E
e //A

f //
g
//B , suppose we have parallel

arrows z1, z2 : Z → E such that ez1 = ez2. By precomposition, fez1 = gez1 : Z →
A. Thus, by the universal mapping property of equalizers, there exists a unique
arrow u : Z → E such that eu = ez1. Thus, u = z1. But since ez1 = ez2, then
u = z2. Therefore, z1 = z2, so e is monic. �
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3.3. Pullbacks. Much like an equalizer, pullbacks attempt to “equalize” arrows
through the use of generalized elements. In the case of equalizers, the two arrows
share both a domain and a codomain. In the case of pullbacks, they only share a
codomain.

Definition 3.11 (Pullback). Given a corner of arrows f : A→ C and g : B → C,
a pullback of f and g is a pair of arrows p1 : P → A and p2 : P → B such that
fp1 = gp2, and are universal in this property:

Given any pair of arrows z1 : Z → A and z2 : Z → B such that fz1 = gz2, there
exists a unique arrow u : Z → P such that z1 = p1u and z2 = p2u. Diagrammati-
cally,

Z
z2

""
z1

��

u

��@
@

@
@

P

p1

��

p2
// B

g

��
A

f
// C

Remark 3.12. We usually denote the pullback object using product notation, as in
A×C B.

In a manner almost identical to all the previous examples with universal mapping
properties, we can demonstrate that pullbacks are unique up to isomorphism. Thus,
we will omit the proof and just state the result.

Proposition 3.13. Pullbacks are unique up to isomorphism.

As stated earlier, pullbacks and equalizers are very similar notions in motiva-
tion. It is probably due to the cleverness of Saunders Mac Lane that the notions
themselves are also very closely related. The following lemma begins to establish
this relationship.

Lemma 3.14.
E

p2

%%
p1

��

e

##F
F

F
F

F

A×B
π1

��

π2
// B

g

��
A

f
// C

In a category C with products and equalizers, given a corner of arrows f : A → C
and g : B → C, consider the diagram where e : E → A×B is an equalizer for fπ1

and gπ2. If we define p1 = π1e and p2 = π2e, then E, p1, p2 is a pullback of f and
g.

Conversely, if E, p1, p2 is given as a pullback of f and g, then the arrow e
defined as e := (p1, p2) : E → A×B is an equalizer for fπ1 and gπ2.

We will quickly sketch both parts of the proof. For the former, suppose we have
arrows z1 : Z → A and z2 : Z → B such that fz1 = gz2. This defines an arrow
(z1, z2) : Z → A × B. Since E and e form an equalizer, there’s a unique arrow
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u : Z → E such that eu = z by the universal mapping property of equalizers.
Componentwise, this gives us ep1 = z1 and ep2 = z2, which yields the universal
mapping property of pullbacks.

For the second part, given the pullback, define e = (p1, p2) : E → A × B.
Supposing that there exists z : Z → A × B such that z(fπ1) = z(gπ2), we see
that such an arrow into a product is the same as two arrows z1 : Z → A and
z2 : Z → B. Further, we get that z1f = z2g since zπi = zi by definition. By the
universal mapping propertyof pullbacks, we get a unique arrow u : Z → E such
that componentwise we get zi = piu, which when put together gives us z = eu
since e = (p1, p2) by construction. This satisfies the universal mapping propertyof
equalizers.

This leads us to a very important corollary, which will be used later to collect
pullbacks, equalizers, and products under the single banner of limits. Before we do
that, we must first tie together what we have so far.

Corollary 3.15. If a category C has binary products and equalizers then it has
pullbacks.

Proof. Consider a corner of arrows f : A → C and g : B → C. Since C has
products, then there exists an object A × B with the canonical projection arrows
π1 and π2. Since C has equalizers, let e : E → A × B be an equalizer of fπ1 and
gπ2. By previous lemma, if we define p1 = π1e and p2 = π2e, then E, p1, p2 is a
pullback of f and g. �

3.4. Equivalences. Having defined products, pullbacks, and equalizers, we can
now prove our first big theorem showing the equivalence of these notions.

Theorem 3.16. A category C has binary products and equalizers if and only if it
has pullbacks and a terminal object.

Proof. Let C be a category with pullbacks and a terminal object.
The forward direction of this proof is exactly the corollary from the previous

section. The existence of the terminal object follows from the definition if having
binary products. Thus, we will restrict the given proof here to the reverse direction.

Consider objects A and B. Then there exist unique arrows !A : A → 1 and
!B : B → 1. Since we have pullbacks, there exist arrows p1 : A ×1 B → A and
p2 : A ×1 B → B such that p1!A = p2!A and are universal with this property.

Suppose we have the diagram A Z
z1oo z2 //B . By uniqueness of arrows to the

terminal object, !Az1 =!Z =!Bz2. Diagrammatically, we have that the following
commutes:

Z
z2

%%
z1

  

A×1 B

p1

��

p2
// B

!B

��
A

!A

// 1

By the universal mapping propertyof pullbacks, there exists a unique arrow u : Z →
A×1 B such that z1 = p1u and z2 = p2u. This means that A A×1 B

p1oo p2 //B
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is a product of A and B because it satisfies the universal mapping propertyof
products.

For parallel arrows f, g : A → B, consider the corner of arrows 〈f, g〉 : A →
B × B and 〈IdB , IdB〉 : B → B × B. Since we have pullbacks, there exist arrows
e : E → A and h : E → B such that 〈f, g〉e = 〈IdB , IdB〉h. This implies that
〈fe, ge〉 = 〈hIdB , hIdB〉 = 〈h, h〉. Thus, fe = h = ge. To show that E and e are
universal with this property, suppose we have an arrows z1 : Z → A and z2 : Z → B
such that 〈f, g〉z1 = 〈IdB , IdB〉z2. This gives us by the same argument as before
that fz1 = z2 = gz1. By the universal mapping propertyof pullbacks, there exists
a unique arrow u : Z → E such that z1 = eu and z2 = hu. From this we see that
this satisfies the universal mapping property of equalizers: for an arrow z1 : Z → A
such that fz1 = gz1 there exists unique u : Z → E such that z1 = eu. We can see
this from the following commutative diagram:

Z
z2

$$
z1

��

u

��@
@

@
@

E

e

��

h
// B

〈IdB ,IdB〉
��

A
〈f,g〉
// B ×B

�

4. Limits

In this final section, we will build up the framework for limits and then prove our
main theorem: that having limits is equivalent to having products and equalizers.

4.1. Basic Definitions. Here, we will present the definitions relevant to limits.

Definition 4.1 (Type-J Diagram). A type-J diagram in a category C is a functor
D : J → C.

Remark 4.2. Objects in the index category J will be denoted by lower case letters
i, j, k, . . ., and their images under D will be denoted respectively as Di, Dj , Dk, . . ..

Definition 4.3 (Cone). A cone to a diagram D consists of some object C ∈ C0
and a family of arrows (cj : C → Dj) ∈ C1 for each j ∈ J1 such that for all arrows
(α : i → j) ∈ J1 we have that cj = Dα ◦ ci. Equivalently, the following commutes
for all such α:

C
cj //

ci

��

Dj

Di

Dα

>>}}}}}}}}

Definition 4.4 (Morphism of Cones). A morphism of cones ϑ : (C, cj)→ (C ′, c′j)
is an an arrow ϑ : C → C ′ in C such that for all j ∈ J0 we have that cj = c′j ◦ ϑ.

We can now talk about the category of cones to a diagram D, Cone(D). Check-
ing that this is a category is somewhat tedious and rather trivial, so the proof will
be omitted. Having this, we can finally give a definition for limits.
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Definition 4.5 (Limit). A limit of a diagram D : J → C is a terminal object in
Cone(D). We call it a finite limit if J is a finite index category. We denote the
limit (LD, pj).

Remark 4.6. It is worth clarifying to prevent confusion that the limit of a diagram
has the following universal mapping property as terminal objects of Cone(D):

Given any cone (C, cj) to D, there exists a unique morphism of cones u :
(C, cj) → (LD, pj) such that for all j ∈ J0 we have that cj = pju, i.e. the fol-
lowing commutes:

C

u

���
�
�

cj // Dj

LD

pj

==||||||||

4.2. Plateau. Since the notion of a limit is somewhat abstract, it helps to clarify it
with a few examples. Specifically, we will show how products, pullbacks, equalizers,
and terminal objects are each special cases of limits.

Example 4.7 (Products as Limits). Take J = {1, 2} to be the discrete category
on two elements with no nonidentity arrows. A diagram D : J → C is a pair of
objects D1, D2 ∈ C0. A cone to D is an object C ∈ C0 with a pair of arrows:

D1 C
c1oo c2 //D2 . Let D1 LD

p1oo p2 //D2 be the terminal cone to D. Then
for any other cone (C, cj), there exists a unique morphism of cones u : (C, cj) →
(LD, pj) such that the following commutes:

C
c1

}}{{{{{{{{
c2

!!CCCCCCCC

u

���
�
�

D1 LD
p1oo p2 // D2

Thus, the limit exactly satisfies the universal mapping property of products.

Example 4.8 (Equalizers as Limits). Take J such that J0 = {1, 2} and the only
nonidentity arrows are the parallel arrows α, β : 1 → 2. A typeJ diagram then
looks like:

D1

Dα //
Dβ
// D2

Then any cone to D looks like

D1

Dα //
Dβ
// D2

C

c1

OO

c2

=={{{{{{{{

where both triangles commute. Note that this means that Dα ◦ c1 = c2 = Dβ ◦ c1,
beginning to look like an equalizer. Thus, when we take the limit, we get the
necessary universal property. The limit then is the terminal cone (LD, pj) with the
property that for any other cone (C, cj) there exists a unique morphism of cones
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u : (C, cj)→ (LD, pj) such that the following commutes:

D1

Dα //
Dβ
// D2

C

c1

OO

c2

=={{{{{{{{
u
//___ LD

p2

OO
p1 CCC

aaCCC

There is an arrow p1 : LD → D1 such that Dα◦p1 = Dβ ◦p1 since both must equal
p2. Further, for any arrow c1 : C → D1 such that Dα ◦ c1 = Dβ ◦ c1 there exists
a unique u : C → LD such that c1 = p1u. Thus the limit satisfies the universal
mapping propertyof equalizers.

Example 4.9 (Pullbacks as Limits). Take J to be the finite category with objects
J0 = {i, j, k} and with the only nonidentity arrows being the corner of arrows
α : i → k and β : j → k. Then the type-J diagram (first figure) and any cone to
it (second figure) look like the following:

Dj

Dβ

��

C

ci

��

ck

  BBBBBBBB
cj // Dj

Dβ

��
Di

Dα // Dk Di
Dα // Dk

Note from the figure of the cone to D that we have that Dβ ◦ cj = ck = Dα ◦ ci by
commutation. So let’s consider a limit (LD, pj) of the diagram.

LD

pi

��

pk

!!BBBBBBBB
pj // Dj

Dβ

��
Di

Dα // Dk

Then for any other cone (C, cj), there exists a unique u : (C, cj) → (LD, pj) such
that the following commutes:

C

u

  A
A

A
A cj

��

ci

""

ck

))

LD

pi

��

pk

!!BBBBBBBB
pj // Dj

Dβ

��
Di

Dα
// Dk

Thus for any pair of arrows ci : C → Di and cj : C → Dj such that Dα◦ci = Dβ◦cj ,
which follows from both equaling ck, there exists a unique arrow u : C → LD by
the universal mapping property of limits such that ci = piu and cj = pju. Thus,
the limit satisfies the universal mapping propertyof pullbacks and is a pullback of
α and β.

Example 4.10 (Terminal Objects as Limits). Take J to be the empty category.
Then a cone to a type-J diagram D consists of just a single object in C. Let LD
be the limit of this diagram. Then for every cone to D, which is every object C
in C, there exists a unique arrow u : C → LD, which makes the limit satisfy the
universal mapping propertyof terminal objects.



GENERAL ABSTRACT NONSENSE 21

4.3. Climax. Here we state and prove the theorem we’ve been working towards.
One final definition is missing.

Definition 4.11 (All Finite Limits). A category C has all finite limits if every finite
diagram D : J → C has a limit in C.

And the theorem itself:

Theorem 4.12. A category has all finite limits if and only if it has all binary
products and equalizers.

We should note three things things at this point. As we showed earlier, having
all binary products and equalizers is equivalent to having pullbacks and a terminal
object, so a quick corollary of this theorem would be

Corollary 4.13. A category has all finite limits if and only if it has pullbacks and
a terminal object.

Second, courtesy of the duality principle, once this theorem is proven we will
have its dual statement and the dual of the previous corollary:

Corollary 4.14. A category has all finite colimits if and only if it has all binary
coproducts and coequalizers.

Corollary 4.15. A category has all finite colimits if and only if it has pushouts
and an initial object.

Here, a colimit is the dual notion of a limit. To sketch it out, the colimit is the
initial object is the category of cocones (dual of cones) to a diagram D. Third, since
we’ve already shown how using finite limits we can construct products, equalizers,
pullbacks, and terminal objects, we will omit the forward direction of the proof of
the theorem and restrict ourselves to the reverse direction.

Proof. Consider a finite diagram D : J → C, and consider the products∏
i∈J0

Di

∏
(α:i→j)∈J1

Dj

Define two arrows φ, ψ :
∏
iDi →

∏
αDj by taking taking their composites with

the projections πα from the second product to be

πα ◦ φ = φα = πcod(α)

πα ◦ ψ = ψα = Dα ◦ πdom(α)

or equivalently, the following diagrams commute:∏
i∈J0

Di
ψ //

πdom(α)

��

ψα

%%KKKKKKKKKKK

∏
(α:i→j)∈J1

Dj

πα

��

∏
i∈J0

Di
φ //

φα=πcod(α)

KKKKK

%%K
K

K
K

K

∏
(α:i→j)∈J1

Dj

πα

��
Ddom(α)

Dα
// Dcod(α) Dcod(α)

Then, we take the equalizer

E
e //

∏
i∈J0

Di

φ //
ψ
//
∏

(α:i→j)∈J1
Dj
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If for all j ∈ J0 we define ej = πje, we want to show that (E, ej) is the limit of the
diagram D.

Letting c : C →
∏
iDi, we can write that c = 〈ci〉 where ci = πic for all i ∈ J0,

noting that (C, ci) is a cone to D if and only if φc = ψc.
To see this, suppose we have a cone, then for all (α : i → j) ∈ J1 we should

have Dα ◦ ci = cj . Since ci = πic and cj = πjc, and since i = cod(α) and
j = cod(α), then we have Dαπdom(α)c = πcod(α)c, which is the same as ψαc = φα
for all α. Conversely, suppose that we have ψc = φc. Then for all any α, we have
Dαπdom(α)c = πcod(α)c. We know that cdom(α) = πdom(α)c and ccod(α) = πcod(α)c,
so it follows that for any α Dα ◦ cdom(α) = ccod(α), which satisfies the definition of
cones.

Since ψe = φe by construction, (E, ej) is a cone. Suppose we have another cone
(C, cj). Then as shown above, this gives us that ψc = φc. Then by the universal
mapping property of equalizers, there exists a unique arrow u : C → E such that
c = eu. Then by composition, we have πic = πieu, which gives us ci = eiu for all
i ∈ J0, which is exactly a morphism of cones. Since for all cones, we have a unique
morphism of cones to (E, ej), then it is the limit. �

4.4. Resolution. To close, we will discuss one final aspect of limits, specifically
their preservation and creation under functors.

Definition 4.16 (Preserving Limits and Continuous Functors). A functor FC → D
is said to preserve limits of type-J if whenever we have a limit (LD, pj) of a diagram
D : J → C, the cone (FLD, Fpj) is a limit for the diagram FD : J → D.
Symbolically, F (LD, pj) = (LFD, Fpj). We say that such a functor is continuous.

Definition 4.17 (Representable Functor). In a locally small category C and for
any fixed object A ∈ C0, we define the representable functor of A, denoted C(A,−) :
C → Sets, to be the functor defined such that for any object B, B 7−→ C(A,B),
and for any arrow f : X → Y , f 7−→ C(A, f) : C(A,X)→ C(A, Y ).

Proposition 4.18. Representable functors are continuous.

We will omit the proof, but we will mention that it suffices to show that repre-
sentable functors preserve products and equalizers. Finally, let us recall the forgetful
functor U : C → Sets. We will close this paper with one final proposition, which
we will also leave unproven.

Definition 4.19 (Creating Limits). A functor F : C → D is said to create limits of
type-J if for all diagrams D : J → C and any type-J limit (L, pj : L→ FCj) in D,
there exists a unique cone (L, pj : L → Cj) to D in C with FL = L and Fpj = pj
such that (L, pj : L→ Cj) is a type-J limit in C.

Proposition 4.20. The forget functor U : Grp→ Sets creates all limits.
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