
STOKES’ THEOREM ON MANIFOLDS

GIDEON DRESDNER

Abstract. The generalization of the Fundamental Theorem of Calculus to

higher dimensions requires fairly sophisticated geometric and algebraic ma-

chinery. In this paper I sought to understand this important theorem without
getting to sidetracked. I assume the reader has seen basic multivariable calcu-

lus.
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1. The Fundamental Theorem of Calculus

We begin by giving a quick statement and proof of the Fundamental Theorem
of Calculus to demonstrate how different the flavor is from the things that follow.

Lemma 1.0.1. Given a Riemann integrable f : [a, b]→ R,

(b− a) inf f ≤
∫ b

a

f(x)dx ≤ (b− a) sup f

Proof. Just consider the partition P = {a, b}. Then L(P, f) is precisely the left
hand side of the inequality and U(P, f) is the right hand side. �

Theorem 1.0.2. (Fundamental Theorem of Calculus)
If f ∈ C[a, b] then F (x) =

∫ x
a
f(t)dt is continuous and differentiable with the

derivative F ′(x) = f(x)

Proof. By definition, F ′(x0) is the unique linear map such that,

F (x0 + h) = F (x0) + F ′(x0)(h) +R(h)

where limh→0R(h)/h = 0. By the definition of F this is equivalent to,∫ x0+h

a

f(t)dt =
∫ x0

a

f(t)dt+ F ′(x0)(h) +R(h)
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Note that
∫ x0+h

a
f(t)dt−

∫ x0

a
f(t)dt =

∫ x0+h

x0
f(t)dt (This should be verified). This

gives, ∫ x0+h

x0
f(t)dt

h
= F ′(x0) +

R(h)
h

By the lemma we know that

h · inf
[x0,x0+h]

f ≤
∫ x0+h

x0

f(t)dt ≤ h · sup
[x0,x0+h]

f

This is equivalent to

inf
[x0,x0+h]

f ≤
∫ x0+h

x0
f(t)dt

h
≤ sup

[x0,x0+h]

f

But the middle term is F ′(x0) +R(h)/h so we have

inf
[x0,x0+h]

f ≤ F ′(x0) +
R(h)
h
≤ sup

[x0,x0+h]

f

By continuity, letting h→ 0 gives

f(x0) ≤ F ′(x0) + 0 ≤ f(x0)

QED. �

We will see that the correct understanding of the FTC considers the interval
[a, b] as a 1-dimensional manifold with boundary {a}− ∪ {b}+ and that the object
which is being integrated is a differential 1-form, the dual of a vector field.

2. Manifolds and Diffeomorphisms

Definition 2.0.1. A function f between open subsets U ⊂ Rk and V ⊂ Rl is
smooth if all of its partial derivatives exist and are continuous.

In general given two arbitrary subsets X ⊂ Rk and Y ⊂ Rl we can say that
f : X → Y is smooth if for every x ∈ X there exists an open set U 3 x and a
smooth mapping F : U → Y such that F coincides with f on U ∩X.

Definition 2.0.2. A diffeomorphism is a smooth invertible function whose inverse
is also smooth.

Definition 2.0.3. M ⊂ Rk is an m-dimensional manifold if every x ∈ M has a
neighborhood W 3 x such that W ∩M is diffeomorphic to an open subset of Rm.

The diffeomorphism f : Rm → W is call a coordinate system on M around the
point x. A diffeomorphism going the other direction g : W → Rm (you may as well
choose f−1) is call a parametricization of M around x.

Example 2.0.4. Unit sphere,

Sn = {(x1, . . . , xn) |
∑

x2
i = 1}

Given a point whose last coordinate is positive the diffeomorphism is

(x1, . . . , xn−1) 7→ (x1, . . . , xn−1,
√

1− x2
1 − . . .− x2

n−1)

Unsurprisingly if the last coordinate is negative than the the last coordinate be-
comes −

√
1− x2

1 − . . .− x2
n−1.
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Example 2.0.5. Rn. The diffeomorphism is the inclusion map.

Example 2.0.6. The Cartesian graph of any f : [0, 1]k → Rk where f is a diffeo-
morphism. Since f is a diffeomorphism it serves as a universal parametricization
for every point in the graph.

Given a smooth map f : M → N between manifolds we want to define the
derivative dfx : TMx → TMf(x). To do this we need to the notion of tangent
space. We can think of the tangent space to a manifold M at x, denoted TMx as
the (unique) m-dimensional plane in Rk which best approximates M near x (but
translated to the origin). For an open set U ⊂ Rk we define the tangent space
TUx = Rk. Now we can define dfx for functions between open subset of Rk.

Definition 2.0.7. Given f : U ⊂ Rk → V ⊂ Rl we can define dfx as the unique
linear map T such that

f(x+ h) = f(x) + Th+R(h) and lim
h→0

R(h)
h

= 0

We call R(h) the residue of the linear map L. This is simply formalizing what we
mean by a linear approximation.

Remark 2.0.8. This is equivalent to the more conventional definition:

dfx(h) = lim
t→0

f(x+ th)− f(x)
t

Theorem 2.0.9 (Basic Properties of the Derivative).
(1) Chain Rule Diffeomorphisms f : V → U and g : U → W , d(g ◦ f)x =

dgf(x) ◦ dfx. In other words, a commutative diagram of diffeomorphisms

V
g◦f

  A
AA

AA
AA

A

f

��
U g

// W

induces a commutative diagram of linear maps

Rl
d(g◦f)v

!!C
CC

CC
CC

C

dfx

��
Rk

dgf(v)

// Rm

(2) If i : U → U ′ is the inclusion map then dix = id.
(3) If L : Rk → Rl is linear then dLx = L

Proof. (Chain Rule) Since f and g are differentiable we can write

f(a+ h) = f(a) + Lfh+Rf (h)

and
g(a+ h) = g(a) + Lgh+Rg(h)

where Rf (h) and Rg(h) satisfy limn→∞Rf (h)/h = limn→∞Rg(h)/h = 0. Consider
the following

= (g ◦ f)(a+ h) = g(f(a+ h)) = g(f(a) + Lfh+Rf (h))
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continue to expand

=g(f(a)) + Lg(Lfh+Rf (h)) +Rg(Lfh+Rf (h))

=g(f(a)) + (LgLf )h+ LgRf (h) +Rg(Lfh+Rf (h))

It is clear by definition that Lg = Dgf(a) and Lf = Dfa. So we have our
derivative. Our residue is everything to the right:

LgRf (h) +Rg(Lfh+Rf (h))

Since

lim
n→∞

Lfh+R(h)
h

= 0 =⇒ lim
n→∞

Rg(Lfh+Rf (h))
h

= 0

we have a residue satisfying limn→∞R(h)/h = 0. �

Parts (2) and (3) follow immediately from the conventional definition of the
derivative in the remark.

Remark 2.0.10 (Neat Quick Application). Suppose we have a diffeomorphism
f : U ⊂ Rk → V ⊂ Rl then k = l and in particular dfx : Rk → Rl is nonsingular.

Proof. Consider f−1 ◦ f = id. id = d(id) = d(f−1 ◦ f)x = df−1
f(x) ◦ dfx on Rk and

similarly dfx ◦ df−1
f(x) = id on Rl. Thus dfx has a two-sided inverse which implies

that k = l. �

Now we can define TMx. Take a parametricization g : U →M ⊂ Rk (g(u) = x).
g is a diffeomorphism and U is open so we have the linear map dgu : Rm → Rk.
We define

TMg(u) = dgu(Rm)
We need to show that this definition is independent of the choice of g. So suppose

we have another parametricization h : V → M ⊂ Rk (h(v) = x). Without loss of
generality we can choose U and V to be sufficiently small so that we can draw the
following diagram:

U
g

  A
AA

AA
AA

A

h−1◦g
��
V

h
// M

induces
Rm

dgu

!!C
CC

CC
CC

C

d(h−1◦g)u

��
Rm

dhv

// Rk

It follows that d(h−1◦g) is an isomorphism of vector spaces, and from this it follows
that dhv and dgu have the same range.

Now we have come to the point where we can define the derivative in general
between any two smooth manifolds M and N . Consider a smooth map f : M ⊂
Rk → N ⊂ Rl. Since f is smooth (∀x ∈ M) There exists an neighborhood W 3 x
and a smooth function F : W → Rl such that F coincides with f on W ∩M (this
is the definition of smooth on arbitrary sets). We define

dfx = DFx
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Now we need to justify this definition by proving that dfx(v) ∈ TNf(x) and that dfx
is independent of the choice of F . Choose two parametrizations g : U → M ⊂ Rk
and h : V → N ⊂ Rl. Without loss of generality assume that f : g(U) → g(V ).
Thus we have a map h−1 ◦ F ◦ g : U → V . Let’s draw this in terms of diagrams:

U
h−1◦f◦g//

g

��

V

h

��
W

F // Rl

this gives (by the chain rule):

Rm
d(h−1◦f◦g)u//

dgu

��

Rn

dhv

��
Rk

dFx // Rl

This essentially completes the proof since DFx = dhv ◦ d(h−1 ◦ f ◦ g)u ◦ dg−1
u ,

and the same for going the other direction on the diagram.

Theorem 2.0.11. The basic three properties of derivatives of functions between
open subsets of Rk hold for those between manifolds. The proof consists in bringing
the problem back to the Rk.

Remark 2.0.12. Given a smooth manifold M , we can define a strange manifolds
in terms of its tangent spaces.

TM := {(x, v) | v ∈ TMx}

To see that this is a manifold suppose we take a point in it p = (x, v). M is a
manifold, and the tangent space TMx is a manifold also. To get a parameterizable
neighborhood of p, simply take the cross product of the neighborhoods of x and v.
Define a parameterization in the obvious way.

This will be important later in conceptualizing differential forms.

3. Boundaries

Definition 3.0.1. Hm = {(x1, . . . , xn) ∈ Rm | xm ≥ 0} this is called the closed half
space in Rm. We can also define ∂Hm = Rm−1×{0} = {x ∈ Hm | xm = 0} ⊂ Rm.
(Note that dimension respects Cartesian products so that ∂Hm has dimension
m− 1)

Definition 3.0.2. A set M ⊂ Rk is an m-dimensional smooth manifold with
boundary if each x ∈M has a neighborhood U 3 x such that U∩M is diffeomorphic
to Hm. ∂M is defined to be the set of all points that map to ∂Hm under such a
diffeomorphism.

As usual, we need to justify this definition, which means using arguments based
on our knowledge of Euclidean space. First of all there is the question of whether
it is well defined: ∂M is independent of the parametricization.

Given a manifold with boundary M , suppose it has a point x which is mapped to
∂Hm under one diffeomorphism and to Hm \ ∂Hm under another. Using a simple
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dimension argument this would mean that a neighborhood of x is diffeomorphic to
both Hm and ∂Hm. But they have different dimension - contradiction.

By the definitions it is clear that ∂M has dimension m − 1 and that M \ ∂M
has dimension m.

4. Orientation

Definition 4.0.1. We define the following equivalence relation on basi B1 and B2

of vector spaces:

B1 ∼ B2 if ∃A : B1 → B2 such that det(A) > 0

It is easy to check that this is an equivalence relation. The classes are called
orientations. Thus on finite dimensional vector spaces there are two orientations.
When we choose an orientation on a vector space we often say this by denoting one
class as positive (+1) and the other as negative (−1).

Remark 4.0.2. Given a basis B = {b1, . . . , bn} we can permute its elements with
an odd permutation σ: Bσ = {bσ(1), . . . , bσ(n)}. If B is in one orientation then Bσ
is in the other one, i.e. B 6∼ Bσ.

To see this note that Bσ = Podd ◦B where Podd is an permutation matrix of odd
degree. det(Podd) = −1, and since we are dealing with equivalence relations (i.e.
this mapping is unique) this implies that B 6∼ Bσ.

This satisfies our intuition for what an orientation should be: an arrangement
of a basis.

As for 0-dimensional vector spaces, points, we can define the orientation as the
symbol +1 or −1.

With this basic notion of orientation on vector spaces we can talk about orien-
tations on manifolds.

Definition 4.0.3. An orientation on a manifold M is an orientation on each one of
its tangent spaces TMx that “fit together”in the appropriate way: for every x ∈M
there exists a neighborhood U 3 x and an orientation preserving diffeomorphism
to Rm (or Hm). Orientation preserving means exactly what you would think. If
µx is an orientation on TMx then the isomorphism dfx maps µx into the standard
orientation on Rm. This is to say that

[dhx(v1, . . . , vm)] = [e1, . . . , em]

(where [·] denotes the equivalence class containing ·)

There are a couple things to be said here about orientations and boundaries. If
x ∈ ∂M then there are three types of vectors in TMx:

(1) vectors in T (∂M)x. By definition these are the vectors that are tangent to
the boundary.

(2) “outward vectors”which form an open half space bounded by T (∂M)x.
(3) “inward vectors”which form the complementary half space to the “outward

vectors”
An orientation µ on M induces an orientation on ∂M in the following way:

choose (v1, . . . , vm) ∈ µx such that v2, . . . , vm ∈ T (∂M)x and v1 is an outward
vector. Then [v2, . . . , vm] is an orientation for T (∂M)x.

Now that we have all the preliminaries we need about manifolds we move on to
talk about differential forms on manifolds.
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5. Forms

Definition 5.0.1. (Tangent Bundle) We define the following notation:

T kM = {(x, v1, . . . , vk) | vi ∈ TMx}
and T 0M = M

A differential k-form on M then is a mapping

ω : T kM → R
.

But there are many such mappings, specifically there are many identifiable types
of such mappings. They could be anything: discontinuous, not linear, and so on.
So we have to be more specific.

First of all it should certainly be smooth, because that is the type of objects we
are currently dealing with.

A differential k-form ω : T kM → R is in a sense acting on two completely
different objects at the same time: the manifold M itself and the tangent space
TMx. To understand what ω actually looks like we should break it up into its
constituent parts.

Definition 5.0.2. (More specific than before) A differential k-form is smooth on
M and multilinear on TxM .

Smooth is a concept we are familiar with, multilinear is one which we are not,
and we are going to try and avoid. Instead we define a canonical 1-form

Definition 5.0.3. We define a bunch of differential 1-forms in a canonical way
(with respect to the usual basis) and call them dxi:

dxi(p)(v1e1 + . . .+ vmem) = vi

where p ∈M and ei ∈ TMp for each i. So what this notation does is simply separate
out the point in the manifold from the tangent vectors to that point, because the
rather abstract definition we gave covers up the fact that these two things, points
on the manifold and vectors in the tangent space are radically different objects.

Next we define an orientation preserving way of combining dxi called the wedge
product.

Definition 5.0.4. The wedge product of dxi and dxj denoted dxi ∧ dxj is defined
in the following way:

dxi ∧ dxj(p)(v1, v2) = dx1(v1) · dx2(v2)

which satisfies the skew-symmetric property: dxi ∧ dxj = −dxj ∧ dxi.

Note that this is in some sense orientation preserving since if you decide to flip
the positive orientation from say [e1, e2] to [e2, e1] then a wedge combination of dxi
will switch signs also.

Remark 5.0.5. Important There is a lot of material not being treated here which
involves the algebra of differential forms and multilinear forms. This can be done
on many levels and is not within the scope of this paper. Without going into the
details we will state that, by choosing the usual basis we can write every differential
k-form in the form:

fdx1 ∧ · · · ∧ dxk
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where f : M → R so that (fdx1 ∧ · · · ∧ dxk)(p)(v1, . . . , vk) = f(p) · (dx1 ∧ · · · ∧
dxk)(v1, . . . , vk) = f(p)dx1(v1) · · · dxk(vk)

Just to reiterate: Functions f : M → R are 0-forms.
Mappings of the form

∑
fdxi are 1-forms where f is are the 0-forms.

Mappings of the form
∑
fdxi ∧ dxj +

∑
gdxi are the 2-forms.

And so on, we can define m-forms on a manifold of dimension m. Note that all
m+ 1-forms on an m-dimensional manifold are 0.

Forms are going to be the objects that we want to integrate over manifolds. The
reason for this is because they behave well with respect to pullbacks, a convenient
way of encoding the composition of a parametricization and a form, which will give
a beautiful and coordinate-free way of expressing the change of variables formula
for integrals.

Definition 5.0.6. A linear map f : M → N induces a pullback map f∗ : (k-forms
on N)→ (k-forms on M) in the following way:

f∗ω(x)(v1, . . . , vm) = ω(f(x))(dfx(v1), . . . , dfx(vm))

While differential forms and pullbacks behave well with respect to the differential
operator d, their most important purpose (in this paper) is to provide the machinery
for an invariant notion of integration on manifolds.

6. Integration and Stokes’ Theorem

Definition 6.0.1. The support of a differential form ω is the closure of the set of
all points where ω is nonzero:

supp ω = {x | f(x) 6= 0}

Suppose that a differential form ω = fdx1 ∧ . . . dxk in Rn is bounded. Without
loss of generality we can assume that the support of ω is exactly the n-cube In.
Then we define the integral of f as simply the standard multi-variable integral over
Ik: ∫

Rn

ω =
∫
Ik

fdx1 ∧ . . . ∧ dxk :=
∫ 1

0

· · ·
∫ 1

0

fdx1 . . . dxk

Say we want to integrate a differential k-form over something parametricizable
to the k-cube Ik. We write the parametricization as F : S ⊂ Rn → Ik (S for shape)
and denote the integral as

∫
F
ω. F can be thought of as a change of variables from

multivariable calculus. Let’s write ω in terms of the usual basis and some smooth
function f . Then,∫

F

ω =
∫
F

fdx1 ∧ · · · dxk =
∫
Ik

f ◦ F |detF ′|dx1 ∧ · · · ∧ dxk =
∫
Ik

F ∗ω

This we can use as a definition:
∫
F
ω =

∫
Ik F

∗ω. This is nothing more than
a coordinate free way of writing the change of variables formula. Note that the
determinant will keep the orientations and the +1/− 1s correct.

With the above definition we know how to integrate differential forms over these
little neighborhoods on the manifold. Now our task is to extend this to cover a
compact manifold.

Remark 6.0.2. For every x ∈M we have a coordinate chart f : V ⊂ Rm → U 3 x.
With a differential form ω on M we can define a new form ωx by simply making
the support of ω equal U . If M is compact then it is covered by a finite number of
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charts and every differential form ω can be written as the sum of ωi where each ωi is
defined as we just did for a finite number of i ∈M . Naturally, we want integration
to respect finite sums so we may define:∫

M

ω =
∫
M

∑
ωi :=

∑∫
M

ωi

(Note that there must be some normalization here to make this a true partition of
unity, namely instead of ωi what we really mean is

ωi∑
ωi

)

Theorem 6.0.3. Stokes’ Theorem on Manifolds. Given a differential m-form ω
whose support is the m-dimensional manifold M then∫

M

dω =
∫
∂M

ω

Proof. First we can verify for the m-cube, Im := [0, 1]m. Without loss of generality
write the differential (k − 1)-form ω as f(x)dx2 ∧ · · · ∧ dxm. Then,

dω =
∂f

∂x1
dx1 ∧ · · · ∧ dxm

But we know how to integrate ∂f
∂x1

dx1 by the Fundamental Theorem of Calculus,∫
Im

dω =
∫
Im

∂f

∂x1
dx1 ∧ dx2 ∧ · · · ∧ dxm =

∫
Im

∂f

∂x1
dx1dx2 · · · dxm

=
∫
Im−1

(
f
∣∣∣
x1=1

)
dx2 · · · dxm −

∫
Im−1

(
f
∣∣∣
x1=0

)
dx2 · · · dxm

So what we have is f evaluated on the “left face”and the “right face”of the m-cube,
with every other term getting canceled, which completes this portion of the proof.

The general case is proved by reducing it to the m-cube case by using a partition
of unity. Given a differential form ω on a compact differentiable manifold M we
can write it as a finite sum little differential forms ωi where each ωi is supported on
some coordinate system. Since ωi is supported by a coordinate system, and since
integration is independent of such coordinate systems we can write things just in
terms of cubes. ∫

M

dωi =
∫
In

dωi

by Stokes’ Theorem on cubes as we just have done,∫
In

dωi =
∫
∂In

ωi =
∫
M

ωi

the last equality is because it is coordinate independent (you use a parametricization
to get back to M). QED �

Acknowledgments. I am indebted to both of my mentors Ian Biringer and Hy-
omin Choi for their help, but especially to Hyomin Choi who helped me a lot.



10 GIDEON DRESDNER

References

[1] John M. Lee. Introduction to Smooth Manifolds. Springer 2000.
[2] John W. Milnor. Topology from the Differentiable Viewpoint. The University Press of Virginia

1965.

[3] Michael Spivak. Calculus on Manifolds. Perseus Books Publishing 1965.
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