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Abstract. Fourier analysis is not only a useful tool in mathematics, but has

applications in other fields as well. Specifically, it can be used to analyze sig-

nals and solve partial differential equations, two areas which are important to
physics and engineering. In this paper, I will give an introduction to Fourier

series and Fourier transforms, and apply these techniques to prove the Uncer-

tainty Principle.
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1. Lp spaces and the Riemann-Lebesgue lemma

Since the concept of Lp spaces of functions will be used throughout the paper,
here are a few standard theorems and a definition.

Definition 1.1. Let I be an interval of R and 0 < p < ∞. Then Lp(I) is the
space consisting of all functions f such that

∫
I
|f(x)|p dx < ∞, where dx refers to

the Lebesgue measure. We define the norm of f to be

‖f‖p = (
∫
I

|f(x)|p dx)1/p;

for this norm to be well-defined we must view two functions as equivalent if they
are equal almost everywhere.

Theorem 1.2. Lp(R) is a complete metric space for 1 ≤ p <∞.

Theorem 1.3. (Hölder’s Inequality) Let 1 < p, q <∞ be such that 1/p+ 1/q = 1.
If f ∈ Lp(I) and g ∈ Lq(I), then fg ∈ L1(I) and

∫
I
|f(t)g(t)| dt ≤ ‖f‖p ‖g‖q.

A proof of both can be found in [2]. Finally, the following lemma is useful for
several theorems later on.

Lemma 1.4. (Riemann-Lebesgue) For f ∈ L1(I), limλ→∞
∫
I
f(u) sin(λu)du = 0.
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The lemma and its proof are found in Vretblad’s Fourier Analysis and Its Ap-
plications. One first proves the statement for constant functions on an interval and
then approximates a generic f ∈ L1(I) by means of step functions.

2. Fourier series

The seminal idea of Fourier series is to express a given periodic function f as a
sum of terms cneinπt/L, where 2L is the period of the function and n ∈ Z. Each
of these terms has a period of the form 2L/n, a rational multiple of the period of
the given function, and complex amplitude cn. For motivation, suppose f(t) is a
periodic function which can be expressed as

(2.1) f(t) =
∞∑

n=−∞
cne

inπt/L.

To find the coefficients of this series, we multiply both sides by e−imπt/L and inte-
grate. If we assume the series is convergent, we can integrate over each term and
then sum the terms to obtain∫ L

−L
f(t)e−imπt/Ldt =

∫ L

−L

∞∑
n=−∞

cne
inπt/Le−imπt/Ldt

=
∞∑

n=−∞

∫ L

−L
cne

inπt/Le−imπt/Ldt.

For n 6= m,∫ L

−L
cne

i(n−m)πt/Ldt =
cnLe

i(n−m)πt/L

i(n−m)π
|L−L =

2cnL sin(π(n−m))
π(n−m)

= 0.

For n = m, ∫ L

−L
cme

0dt = 2Lcm.

Thus, the sum reduces to one term, and∫ L

−L
f(t)e−imπt/Ldt = 2Lcm.

Based on this example, we define the Fourier series of a periodic function, give
properties of the coefficients, and later on, examine its convergence.

Definition 2.2. The Fourier series of a function f with period 2L is the (possibly
divergent) series

∞∑
−∞

cne
inπt/L

where cn = 1
2L

∫ L
−L f(t)e−inπt/Ldt.

Theorem 2.3. If f ∈ L1([−L,L]), then the sequence of coefficients cn is bounded
and tends to zero as |n| → ∞.
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Proof. For the first statement,

|cn| =

∣∣∣∣∣ 1
2L

∫ L

−L
f(t)e−inπt/Ldt

∣∣∣∣∣ ≤ 1
2L

∫ L

−L
|f(t)|

∣∣∣e−inπt/L∣∣∣ dt =
1

2L

∫ L

−L
|f(t)| dt <∞

because f ∈ L1([−L,L]. For the second statement,

cn =
1

2L

∫ L

−L
f(t)(cos(nπt/L) + i sin(nπt/L))dt

=
1

2L

∫ L

−L
f(t) cos(nπt/L)dt+ i

1
2L

∫ L

−L
sin(nπt/L)dt.

Applying Lemma 1.4 to the real and imaginary parts of this expression, both parts
go to zero as n→ 0, so |cn| → 0 as well. �

Just given the definition, we do not know under what conditions the Fourier
series will actually converge, and more specifically converge to f(t). Before giving
a convergence theorem, we will need some more definitions.

Definition 2.4. A function f is piecewise continuous on an interval [a, b] if f is
continuous on [a,b] except possibly at a finite number of points, and, at those points,
limh→0 f(t+h) and limh→0 f(t−h) for h > 0 exist. If f is piecewise continuous on
all closed and bounded subintervals of R, then f is piecewise continuous on R.

Basically, a piecewise continuous function has only a finite number of finite jump
discontinuities on a bounded interval.

Definition 2.5. If sn =
∑n
k=1 ak is a series, let σN be the average of the partial

sums given by

σN =
1
N

N∑
k=1

sk.

Then we say sn sums to s in the sense of Cesàro, or s is the Cesàro sum of sn if
limN→∞ σN = s.

If a series is in the usual sense convergent to s, then it will converge in the Cesàro
sum to s as well. However, series that are ordinarily divergent may converge in this
new way. We now give the following definitions/lemmata.

Lemma 2.6. The Dirichlet kernel is the sum DN (u) := 1
2π

∑N
n=−N e

inu; we have
the identity

DN (u) =
sin(N + 1

2 )u
2πsin( 1

2u)
.

Lemma 2.7. The Fejèr kernel is FN (u) := 1
N+1

∑N
n=0Dn(u); we also have that

FN (u) =
1

2π(N + 1)
sin2( 1

2 (N + 1)u)
sin2( 1

2u)
.

The proofs of these lemmata are formal. In each case one transforms the kernel
into a sum from n = 0 to n = 2N and then derives the identity by means of
a geometric series. Next, we give several properties of functions in the sequence
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π
LFN (uπ/L). First, we can see from the form of the Fejèr kernel given by the lemma
that

(2.8)
π

L
FN (uπ/L) ≥ 0.

Then, since∫ L

−L

π

L
Dn(uπ/L)du =

∫ L

−L

1
2L

n∑
k=−n

eikπu/Ldu

=
∫ L

−L

1
2L

n∑
k=−n

cos(kπu/L) + i sin(kπu/L)du

=
∫ L

−L

1
2L

(1 + 2
n∑
k=1

cos(kπu/L))du = 1,

we have that

(2.9)
∫ L

−L

π

L
FN (uπ/L)du =

1
N + 1

N∑
n=0

∫ L

−L

π

L
Dn(uπ/L)du = 1.

Lastly, for any δ > 0,

0 ≤
∫ L

δ

π

L
FN (uπ/L)du =

1
2L(N + 1)

∫ L

δ

sin2( 1
2 (N + 1))uπL

sin2( 1
2
uπ
L )

≤ 1
2L(N + 1)

∫ L

δ

1
sin2( 1

2
uπ
L )

=
π − δ

2π sin2(1/2δ)
1

N + 1
.

This last expression approaches zero as N →∞, so

(2.10) lim
n→∞

∫ L

δ

π

L
FN (uπ/L)du = 0 = lim

n→∞

∫ −δ
−L

π

L
FN (uπ/L)du

by symmetry.

Theorem 2.11. If f has period 2L, is piecewise continuous on R, and is continuous
at t, then limN→∞ σN (t) = f(t), where σN (t) = 1

N+1

∑N
n=0

∑n
k=−n cke

ikπt/L.

Proof. (This is similar to a proof in Vretblad’s Fourier Analysis and Its Applica-
tions.) We start with the partial sum of the Fourier series

sn(t) =
n∑

k=−n

cke
ikπt/L =

n∑
k=−n

(
1

2L

∫ L

−L
f(u)e−ikπu/Ldu)eikπt/L

=
∫ L

−L

n∑
k=−n

(
1

2L
f(u)eikπ(t−u)/Ldu) =

π

L

∫ L

−L
f(u)Dn((t− u)π/L)du

=
1

2L

∫ L

−L
f(u)

sin((n+ 1
2 ) (t−u)π

L )

sin( 1
2

(t−u)π
L )

du = − 1
2L

∫ t−L

t+L

f(t− u)
sin((n+ 1

2 )uπL )
sin( 1

2
uπ
L )

du

=
π

L

∫ t+L

t−L
f(t− u)Dn(uπ/L)du =

π

L

∫ L

−L
f(t− u)Dn(uπ/L)du.
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Here, we substitute u for t − u and take the integral from −L to L instead since
the function is periodic. Now, we find

σN (t) =
1

N + 1

N∑
n=0

sn(t) =
π

L

1
N + 1

N∑
n=0

∫ L

−L
f(t− u)Dn(uπ/L)du

=
π

L

∫ L

−L
f(t− u)FN (uπ/L)du.

Now, there exists δ > 0 such that when |u| < δ, |f(t− u)− f(t)| < ε, since f is
continuous at t. Also, because f is piecewise continuous on the closed and bounded
interval [t− L, t+ L], we can take the intervals on which it is continuous and add
in the right and left hand limits as values at the respective endpoints to obtain a
closed and bounded interval on which f is continuous. Because such an interval
is compact, f takes a maximum value, and so, without the assignment of value at
the endpoints, f remains bounded on each smaller interval. Since a finite number
of these smaller intervals make up the entire interval, f is bounded on the whole
interval, |f(t− u)| < M for −L < u < L. From these observations and properties
2.8-2.10, we can find the limit of σN (t)− f(t) as N →∞. We start with

π

L

∫ L

−L
f(t− u)FN (uπ/L)du− f(t) =

π

L

∫ L

−L
f(t− u)FN (uπ/L)du

−f(t)
π

L

∫ L

−L
FN (uπ/L)du.

Taking the absolute value gives∣∣∣∣∣πL
∫ L

−L
FN (uπ/L)(f(t− u)− f(t))du

∣∣∣∣∣ ≤ π

L

∫ L

−L
FN (uπ/L) |f(t− u)− f(t)| du

=
π

L

∫ δ

−δ
FN (uπ/L) |f(t− u)− f(t)| du+

π

L

∫
δ<|u|<L

FN (uπ/L) |f(t− u)− f(t)| du.

For the first integral, since |(t− u)− t| = |u| < δ, we see ε πL
∫ δ
−δ FN (uπ/L)du = ε.

In the second integral, because |u| < L, we get M π
L

∫
δ<|u|<L FN (uπ/L)du, which

goes to zero as N →∞. So the entire integral goes to zero, meaning

lim
N→∞

σN (t) = lim
N→∞

π

L

∫ L

−L
f(t− u)FN (uπ/L)du = f(t).

�

In particular, if a function is continuous and its Fourier series is convergent in
the ordinary sense, we have the following.

Theorem 2.12. If f is continuous, F (t) =
∑∞
n=−∞ cne

inπt/L denotes its (formal)
Fourier series, and

∑∞
n=−∞ |cn| is convergent, then F converges to f everywhere.

Proof. f(t) is continuous, so limN→∞ σN (t) = f(t) for all t. Since∣∣∣einπt/L∣∣∣ = |cos(πnt/L) + i sin(πnt/L)| = 1,
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we get
∣∣∑∞

n=−∞ cne
inπt/L

∣∣ ≤∑∞n=−∞ |cn| <∞. Thus, the Fourier series converges
normally, and its sum must be equal to the Fejer sum f(t). �

So in fact, for certain functions the Fourier series
∑∞
−∞ cne

inπt/L = f(t).

3. Fourier transforms

Fourier series are limited in that they only apply to periodic functions. We want
to find how to represent a function as the period 2L → ∞. First, we have an
intuitive deduction, starting with the Fourier series

∞∑
n=−∞

cne
inπt/L =

∞∑
n=−∞

(
1

2L

∫ L

−L
f(u)e−inπu/L)einπt/L.

Since frequency is 2π divided by the period, and the period corresponding to n is
2L/n, the frequency is wn = nπ/L. Also, the spacing between n is ∆n = 1. The
sum can then be rewritten

∞∑
n=−∞

(
1

2L

∫ L

−L
f(u)e−iωnu)eiωnt∆n.

Since ∆ωn = ∆nπ/L = π/L = ∆ω and n→ ±∞ implies ωn → ±∞, we can replace
the sum with a sum over ωn and obtain

∞∑
ωn=−∞

(
1

2π

∫ L

−L
f(u)e−iωnu)eiωnt∆ω.

Because the goal is to find what happens for when L→∞, we now take this limit,
which means π/L = ∆ω → 0. Substituting ωn = ω, since ω is now a viewed as a
continous variable, the expression above looks like a Riemann sum in the variable
ω. Taking ∆ω → 0 gives∫ ∞

−∞

1
2π

(
∫ ∞
−∞

f(u)e−iωudu)eiωtdω.

This leads to the following definition and properties.

Definition 3.1. If f ∈ L1(R), the Fourier transform of f(t) is f̂(ω) =
∫
R
f(t)e−iωtdt.

Theorem 3.2. If f ∈ L1(R), then
∣∣∣f̂(ω)

∣∣∣ ≤ ∫R |f(t)| dt, f̂ is continuous on R,

and limω±∞ f̂(ω) = 0.

Proof. The proofs for the first and third statement are similar to the proofs for
Theorem 2.3. For the second statement, we have∣∣∣f̂(ω + h)− f̂(ω)

∣∣∣ =
∣∣∣∣∫

R

f(t)e−i(ω+h)tdt−
∫
R

f(t)e−iωtdt
∣∣∣∣ =

∣∣∣∣∫
R

f(t)e−iωt(e−iht−1)dt
∣∣∣∣

=
∣∣∣∣∫

R

f(t)
e−i(ω−h/2)t

eih/2t
(e−iht/2 − eiht/2)dt

∣∣∣∣
=
∣∣∣∣∫

R

f(t)
e−i(ω−h/2)t

eih/2t
2i sin(ht/2)dt

∣∣∣∣ ≤ ∫
R

|f(t)| |2 sin(ht/2)| dt.

Because f ∈ L1(R), for every ε > 0, we can find a finite interval [a, b] such that∫∞
a
|f(t)| dt+

∫ b
−∞ |f(t)| dt < ε. We can also find g(t), a step function approximating
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f(t) on [a,b], such that
∫ b
a
|f(t)− g(t)| dt < ε, since f is integrable. From the

integral above, we have∫
R

|f(t)| |2 sin(ht/2)| dt ≤ 2(
∫ b

a

|f(t)− g(t)| |sin(ht/2)| dt+
∫ b

a

|g(t)| |sin(ht/2)| dt

+
∫ ∞
a

|f(t)| |sin(ht/2)| dt+
∫ b

−∞
|f(t)| |sin(ht/2)| dt).

We see that

(3.3)
∫ b

a

|f(t)− g(t)| |sin(ht/2)| dt ≤
∫ b

a

|f(t)− g(t)| dt < ε,

and

(3.4)
∫ ∞
a

|f(t)| |sin(ht/2)| dt+
∫ b

−∞
|f(t)| |sin(ht/2)| dt < ε

Also, since g is a step function, we can take M such that |g(t)| ≤ M on [a, b]. We
get 2

∫ b
a
|g(t)| |sin(ht/2)| dt < 2M

∫ b
a
|ht/2| dt = M

∫ b
a
|ht| dt, and

(3.5) lim
h→0

2
∫ b

a

|g(t)| |sin(ht/2)| dt = 0

Thus, limh→0

∣∣∣f̂(ω + h)− f̂(ω)
∣∣∣ = 0. �

The transform function is similar to finding the Fourier coefficients as both in-
volve integrating f(t)e−iωt to find the component of frequency ω. The difference
is that whereas before we could find a sum of components of discrete frequencies
which converged to f , in this case f has components in the entire continuous spec-
trum of frequencies, so we find a function corresponding to f , which gives these
components. As with the Fourier series, we now look for a way to get back our
original function f(t) from f̂(ω).

Theorem 3.6. If f ∈ L1(R), is continuous, and has a piecewise continuous deriv-
ative, then f(t) = limA→∞

1
2π

∫ A
−A f̂(ω)eiωtdω for all t.

Proof. (This is based on a proof in Vretblad’s Fourier Analysis and Its Applica-
tions.) Similarly to the case of Fourier series, we first consider the finite integral
1
2π

∫ A
−A f̂(ω)eit0ωdω as a function of positive real number A

s(t0, A) =
1

2π

∫ A

−A
f̂(ω)eit0ωdω =

1
2π

∫ A

−A
(
∫ ∞
−∞

f(t)e−iωtdt)eit0ωdω

=
1

2π

∫ ∞
−∞

f(t)
eiA(t0−t) − e−iA(t0−t)

i(t0 − t)
dt =

1
π

∫ ∞
−∞

f(t)
sin(A(t0 − t))

t0 − t
dt

=
1
π

∫ ∞
−∞

f(t0 − u)
sin(Au)

u
du.

Here, we have switched the order of integration and substituted u = t0 − t. We
next use a form of the Dirichlet integral∫ ∞

0

sin(Au)
u

du =
π

2
.
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This integral is found by using the function f(B,A) =
∫∞
0
e−Bu sin(Au)

u du. Dif-
ferentiating this with respect to B under the integral and writing sin(Au) as the
imaginary part of eiAu, we get =( dfdB ) = =(

∫∞
0
−e−BueiAudu), an integral of an

exponential which can then be evaluated. Computing the integral on the right,
simplifying, and taking the imaginary part gives an expression for df

dB . Finally,
integrating this expression with respect to B and setting B = 0 gives the equation
above. Knowing the Dirichlet integral, we obtain

2
π

∫ ∞
0

f(t0 − u)
sin(Au)

u
du− f(t0) =

2
π

∫ ∞
0

(f(t0 − u)− f(t0))
sin(Au)

u
du

=
2
π

∫ X

0

(f(t0 − u)− f(t0))
sin(Au)

u
du

+
2
π

∫ ∞
X

f(t0 − u)
sin(Au)

u
du

− 2
π

∫ ∞
X

f(t0)
sin(Au)

u
du

where for any given ε > 0, we choose X such that 2
π

∫∞
X
|f(t0 − u)| du < ε. This

is possible because 2
π

∫∞
−∞ |f(t0 − u)| du <∞, so f must go to zero at ±∞. Then,

looking back at the second integral in the three integral sum, we get

(3.7)
∣∣∣∣ 2π
∫ ∞
X

f(t0 − u)
sin(Au)

u
du

∣∣∣∣ ≤ 2
π

∫ ∞
X

|f(t0 − u)| du < ε.

The first inequality is because for X > 1, we have that
∣∣∣ sin(Au)

u

∣∣∣ ≤ 1 for X < u <∞.
The third term becomes∣∣∣∣− 2

π

∫ ∞
X

f(t0)
sin(Au)

u
du

∣∣∣∣ ≤ 2
π
|f(t0)|

∫ ∞
AX

∣∣∣∣ sin(v)
v

∣∣∣∣ dv ≤ 2
π
|f(t0)|

∫ ∞
AX

∣∣∣∣1v
∣∣∣∣ dv

when we substitute v = Au. This last integral approaches zero as A→∞. Thus,

(3.8) lim
A→∞

∣∣∣∣− 2
π

∫ ∞
X

f(t0)
sin(Au)

u
du

∣∣∣∣ = 0.

Lastly, in the first integral, the expression limu→0
f(t0−u)−f(t)

−u = f ′(t0) is bounded

because f ′ is, and f(t0−u)−f(t)
−u is continuous and bounded on (0,X] because f is.

This means
∫X
0

∣∣∣ f(t0−u)−f(t)
−u

∣∣∣ du <∞ and applying Lemma 1.4,

(3.9) lim
A→∞

1
2π

∫ X

0

(
f(t0 − u)− f(t)

−u
) sin(Au)du = 0.

Thus, from statements 3.7-3.9, we get limA→∞
2
π

∫∞
0
f(t0−u) sin(Au)

u du−f(t0) = 0,
or

lim
A→∞

1
π

∫ ∞
0

f(t0 − u)
sin(Au)

u
du =

f(t0)
2

= lim
A→∞

1
π

∫ 0

−∞
f(t0 − u)

sin(Au)
u

du,

where the last equality holds by the same arguments, just changing the limits of
integration. Then,

lim
A→∞

s(t0, A) = lim
A→∞

1
π

∫ ∞
−∞

f(t0 − u)
sin(Au)

u
du = f(t0).

�
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In particular, if f̂ ∈ L1(R), then f(t) = 1
2π

∫∞
−∞ f̂(ω)eiωtdω. The next important

result is the Plancherel theorem. First are some helpful theorems.

Theorem 3.10. (Fubini) Assume that f : R ×R → R is measurable and E × F
is a measurable set on R. If f is nonnegative on E × F , then

∫
E×F f(x, y)dxdy =∫

E
dx
∫
F
f(x, y)dy =

∫
F
dy
∫
E
f(x, y)dx. If f is integrable on E × F , the function

x 7→ f(x, y) is integrable for almost every y, the function y 7→ f(x, y) is integrable
for almost every x, and the three integrals above are finite and equal. f is integrable
if and only if

∫
E
dx
∫
F
|f(x, y)| dy or

∫
F
dy
∫
E
|f(x, y)| dx is finite.

The theorem gives the conditions under which the the order of integration of a
double integral may be switched. The proof of it is too long to give here, but we
now apply it to get the following.

Theorem 3.11. If f and g are two functions in L1(R), then fĝ and f̂g are in
L1(R) and

∫∞
−∞ f(t)ĝ(t)dt =

∫∞
−∞ f̂(x)g(x)dx.

Proof. From Theorem 3.2, which says |ĝ(t)| < M for some 0 < M < ∞, we get
that

∫
R
|f(t)ĝ(t)| dt ≤ M

∫
R
|f(t)| dt < ∞. By the same reasoning, f̂g ∈ L1(R).

For the second part, we simply switch the order of integration since fĝ is integrable
to get∫ ∞
−∞

f(t)ĝ(t)dt =
∫ ∞
−∞

f(t)(
∫ ∞
−∞

e−ixtg(x)dx)dt =
∫ ∞
−∞

∫ ∞
−∞

e−ixtf(t)g(x)dtdx

=
∫ ∞
−∞

f̂(x)g(x)dx.

�

Finally, here is the main theorem.

Theorem 3.12. (Plancherel) For f in L1(R),
∫
R
|f(t)|2 dt = 1

2π

∫
R

∣∣∣f̂(ω)
∣∣∣2 dω.

Proof. Since |f(t)|2 = f(t)f(t), taking ĝ(t) = f(t) ∈ L1(R) and g(ω) = 1
2π

∫
R
f(t)eiωtdt

in the previous theorem, gives∫
R

|f(t)|2 dt =
∫
R

f̂(ω)(
∫
R

f(t)
eiωt

2π
dt)dw =

1
2π

∫
R

f(ω)f̂(ω)dω.

The last equality follows because f̂(ω) =
∫
R
f(t)e−iωtdt =

∫
R
f(t)e−iωtdt. �

Up until this point, we have discussed Fourier transforms in the space L1 because
the defining integral

∫
R
f(t)e−iωtdt ≤

∫
R
|f(t)|dt < ∞ for f ∈ L1. However, there

are many reasons for expanding the concept to functions in L2, which are not
necessarily in L1. In particular, for this paper, the density functions used in the
next section exist on the space L2. In extending Fourier transforms to L2, the
main problem is that the definition of f̂(ω) might not converge. Thus, we instead
construct a sequence fn such that fn, f̂n ∈ L1 and fn → f in the L2 norm. Applying
Plancherel,∥∥∥f̂n − f̂m∥∥∥2

=
∫
R

∣∣∣f̂n(ω)− f̂m(ω)
∣∣∣2 dω = 2π

∫
R

|fn(t)− fm(t)|2 dt = 2π ‖fn(t)− fm(t)‖2 .
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Since fn is a Cauchy sequence in L2, as n,m → ∞, 2π ‖fn(t)− fm(t)‖2 → 0.
This implies that f̂n is a Cauchy sequence, and also convergent in L2, since L2 is
complete. We claim that the limit does not depend on the sequence fn but only
on f and define it to be f̂ . A more detailed explanation of the extension to L2

can be found in Gasquet’s Fourier Analysis and Applications. We note that the
properties, including Plancherel, still hold in L2.

4. The Uncertainty Principle

The idea of the Uncertainty Principle is that it is impossible for a function to
both vanish outside some finite interval and have only frequency components smaller
than some constant. We will use this to examine the relationship between the
probability density functions for position and momentum. Because of this, instead
of using variables t and ω for time and frequency, we write f(x) to represent a
function of position, and f̂(ξ) for the transform. The following definitions quantify
the spread of the function.

Definition 4.1. For f such that f , xf , and ξf̂ in L2, the dispersion of f is

∆f =

∫
R
x2 |f(x)|2 dx∫
R
|f(x)|2 dx

.

Since in the definitions of dispersion x2 is in the numerator, ∆f will be larger
if f is more spread out, and the same for ∆f̂ . The point is that ∆f can only be
made small only if ∆f̂ is made large, as stated in the next theorem.

Theorem 4.2. For f such that f , xf , and ξf̂ are in L2, ∆f∆f̂ ≥ 1/4.

Proof. We begin by finding f̂ ′. Integrating by parts gives

f̂ ′(ξ) =
∫
R

f ′(x)e−iξxdx = eiξxf(x)|∞−∞ −
∫
R

f(x)(−iξe−iξx)dx.

Since f ∈ L1, limx→±∞ f(x) = 0 and

(4.3) f̂ ′(ξ) = iξf̂(ξ)

Now, we consider the expression∫ b

a

xf(x)f ′(x)dx = x |f(x)|2 |ba −
∫ b

a

f(x)(f(x) + xf ′(x))dx

by integrating by parts. Because f(x)f(x) = |f(x)|2,∫ b

a

|f(x)|2 dx = x |f(x)|2 −
∫ b

a

xf(x)f ′(x)dx−
∫ b

a

xf(x)f ′(x)dx.

The integral on the left is real, so we can take the real part of the expression on
the right without changing the equality. Since

<(f(x)f ′(x)) = <(f(x))<(f ′(x)) + =(f(x))=(f ′(x)) = <(f(x)f ′(x)),

we have ∫ b

a

|f(x)|2 dx = x |f(x)|2 |ba − 2<(
∫ b

a

xf(x)f ′(x)dx).

Taking a → −∞, and b → ∞, the first term on the right approaches zero. If
limx→∞ x |f(x)|2 were not zero, f(x) would have to decrease slower than x1/2.
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This is not possible because
∫∞
−∞ |f(x)|2 dx < ∞, meaning f decreases as fast as

1/x. Thus, we get ∫ ∞
−∞
|f(x)|2 dx = −2<(

∫ ∞
−∞

xf(x)f ′(x)dx)

Applying Theorem 1.3 for p = q = 2,
(4.4)

(
∫ ∞
−∞
|f(x)|2 dx)2 ≤ 4(

∫ ∞
−∞

∣∣∣xf(x)f ′(x)
∣∣∣ dx)2 ≤ 4

∫ ∞
−∞

x2 |f(x)|2 dx
∫ ∞
−∞
|f ′(x)|2 dx.

Plancherel and equation 4.3 give

(4.5)
∫ ∞
−∞
|f ′(x)|2 =

1
2π

∫ ∞
−∞

∣∣∣f̂ ′(ξ)∣∣∣2 dξ =
1

2π

∫ ∞
−∞

ξ2
∣∣∣f̂(ξ)

∣∣∣2 dξ.
Substituting this back into equation 4.4 and applying Plancherel to the left side,

1
2π

∫ ∞
−∞
|f(x)|2 dx

∫ ∞
−∞

∣∣∣f̂(ξ)
∣∣∣2 dξ ≤ 4

2π

∫ ∞
−∞

x2 |f(x)|2 dx
∫ ∞
−∞

ξ2
∣∣∣f̂(ξ)

∣∣∣2 dξ.
Reorganizing the terms gives the theorem. �

An application of this theorem is the wave function which describes the position
of a particle. We begin with the Schrodinger equation.

(4.6) i~
δψ

δt
=
−~2

2m
δ2ψ

δx2
+ v(x)ψ(x, t)

Assuming the particle is in free space, when v(x) = 0, the solution to this differential
equation is

(4.7) ψ(x, t) =
1√
2π~

∫
R

φ(p)ei(px−Et)/~dp

where ψ, φ are in L2, and ‖ψ‖ = 1 and ‖φ‖ = 1. To see this, we take ‖ψ‖ = 1 and
define

(4.8) ψ̃(p) =
1

2π~
ψ̂(p/~)

By the Inversion theorem, we have

(4.9) ψ(x) =
1

2π

∫
R

ψ(p/~)ei
p
~xd(p/~) =

1
2π~

∫
R

√
2π~ψ̃(p)ei

p
~xdp

Comparing this equation with 4.7, we take ψ̃(p) = φ(p)e−iEt/~ and

(4.10) |φ(p)|2 =
∣∣∣ψ̃(p)

∣∣∣ =
1

2π~

∣∣∣ψ̂(p/~)
∣∣∣2

Applying Plancherel theorem,

‖φ‖ = (
1

2π~

∫
R

∣∣∣ψ̂(p/~)
∣∣∣2 dp)1/2 = (

1
2π

∫
R

∣∣∣ψ̂(p/~)
∣∣∣2 d(p/~))1/2 = (

∫
R

|ψ(x)|2 dx)1/2 = 1

Thus, |ψ(x, t)|2 is interpreted as the probability density function for position, mean-
ing that the probability that the particle is in any interval [a, b] is

∫ b
a
|ψ(x, t)|2 dx.

|φ(p)|2 then represents the probability density for momentum. Using Theorem 4.2,
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we find that the dispersions of ψ and φ cannot both be small. Using equation 4.10,
we have

(4.11) ∆ψ̂ =

∫
R

(p/~)2
∣∣∣ψ̂(p/~)

∣∣∣2 d(p/~)∫
R

∣∣∣ψ̂(p/~)
∣∣∣2 d(p/~)

=
2π~

~
∫
R

(p/~)2 |φ(p)|2 dp
2π~

~
∫
R
|φ(p)|2 dp

=
1
~2

∆φ.

Since ∆ψ∆ψ̂ ≥ 1/4,

(4.12) ∆ψ∆φ ≥ ~2/4

This means that the spread of probability distributions of position and momentum
are inversely related. So, if we want to know the position of a particle with greater
certainty, we have to give up some certainty in knowing the momentum.
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