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Abstract. Here we present some fundamental theorems of Schrödinger oper-

ators and their spectral theory.
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1. Introduction and Overview

The Schrödinger operator, also known as the Hamiltonian operator, completely
determines the time evolution of a quantum system via the Schrödinger equation

i~∂tψ = Hψ,

where H is the Schrödinger operator and ψ is the wave function.
The Schrödinger operator is usually written as

(1.1) H = − ~2

2m
∆ + V (x),

where ∆ is the Laplacian and V (x) is a multiplication operator given by the poten-
tial field. In this exposition, we will, for simplicity, let m = 1/2 and ~ = 1 in (1.1).
The Schrödinger operator is then given by

(1.2) H = −∆ + V (x).

Multiplication operators are symmetric, and the negative of the Laplacian is self-
adjoint on the Sobolev space H2(Rn). However, since the collection of self-adjoint
operators is not an algebra, it is not necessarily true that (1.2) is self-adjoint or
even essentially self-adjoint on H. Therefore, due to the physical importance of
self-adjoint operators as observables, it is relevant to confirm that the Schrödinger
operator H is self-adjoint or essentially self-adjoint. This depends upon the poten-
tial V , which is determined by the specific quantum system. The first important
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problem of the study of Schrödinger operators, then, is to find specific and realistic
conditions for V under which H becomes self-adjoint or essentially self-adjoint.

The second big problem of Schrödinger operators is the determination of the
spectrum, given the potential V . This is particularly important since the collection
of eigenvalues describes the possible energy levels of the quantum system.

In this exposition, we will collect some of the most important techniques and
theorems for finding the spectrum of H, along with the conditions under which H
is (essentially) self-adjoint. I have tried to make this as self-contained as possible,
although there were a few results of functional analysis upon which I was unable
to further expound without considerably increasing the article’s length. However,
references [1], [2], and [4] do a particularly fine job of covering all necessary back-
ground material.

2. Sobolev Spaces and Elliptic Regularity

Often in quantum mechanics, the state space is some subset of L2(Rn). Recall
from the mathematical theory of quantum mechanics that an observable is a self-
adjoint linear operator on the state space. Since the Hamiltonian is given by (1.2),
a natural subset of L2(Rn) in which to work would be a space in which not only
the domain of H is in L2(Rn), but the image of H must also be in L2(Rn). This
means that the second derivatives should also be in L2(Rn) due to the Laplacian.
The following construction creates a natural space in which this should occur.

Definition 2.1. Let α = (α1, . . . , αn) be an n-tuple of integers. We say that α is
a multi-index, and we define |α| = a1 + · · · + an. A generalized derivative in Rn
of order k < n is defined to be the a derivative of the form ∂α = ∂α1

x1
∂α2
x2
· · · ∂α2

xn
,

where α = (α1, · · · , αn) is an n-tuple and |α| = k.

Using the notion of a generalized derivative, we can now define the Sobolev space
Hk(Rn), which plays a very important and natural role in the theory of Schrödinger
operators.

Definition 2.2. Let k ∈ N. Then we define

Hk(Rn) := {f ∈ L2(Rn) : ∂αf ∈ L2(Rn)∀|α| ≤ k}.

Since in mathematical physics, we often want a derivative up to a particular
order to be in L2(Rn) (as in the case of the Hamiltonian with k = 2), the Sobolev
spaces are rather vital to our exposition.

We introduce a scalar product in Hk(Rn) by setting

(f, g)k :=
∑
|α|<k

(∂αf, ∂αg),

where (·, ·) is the scalar product in L2(Rn). The corresponding norm is then

‖f‖k = (f, f)1/2
k =

∑
|α|≤k

∫
Rn

|∂αf(x)|2dx

1/2

.

Theorem 2.3. The scalar product (f, g)k makes Hk(Rn) into a separable Hilbert
space.
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Proof. We first prove completeness. Let {fm}∞m=1 be a Cauchy sequence in Hk(Rn).
Then all sequences {∂αfm}∞m=1 for |α| ≤ k are Cauchy in L2(Rn). By the com-
pleteness of L2(Rn), these all converge, that is,

lim
m→∞

∂αfm = gα

in L2(Rn). In particular, letting α = 0 gives us fm → g0. But this means that
∂αfm → ∂αg0 in D(Rn), the space of distributions in Rn. Hence, gα = ∂αg0, so
that g0 ∈ Hk(Rn). This shows that fm → g0 in Hk, which proves completeness.

For separability, we notice that the map f 7→ {∂αf}|α|≤s creates an isometric
embedding of Hk(Rn) into a direct sum of copies of L2(Rn). The separability of
Hk(Rn) then follows from the separability of L2(Rn). �

The definition of a Sobolev space is very direct for natural numbers. However,
it is convenient to extend the definition of Hk to the case where k ∈ R. We carry
this out by performing a Fourier transformation. Recall that the Fourier transform
is a unitary operator, and that it transforms ∂αf(x) to (iξ)αf̃(ξ), where f̃ denotes
the Fourier transform of f . Hence, the condition that f ∈ Hk(Rn) is equivalent to
the condition that ξαf̃(ξ) ∈ L2(Rn) for |α| ≤ k.

The above condition is in turn equivalent to the condition that∑
|α|≤k

|ξα|2|f̃(ξ)|2 ∈ L1(Rn).

Clearly, there exists a C > 0 independent of ξ such that the following holds:

(2.4) C−1(1 + |ξ|2)k ≤
∑
|α|≤k

|ξk|2 ≤ C(1 + |ξ|2)k.

Hence, that f ∈ Hk(Rn) is equivalent to the condition that

(1 + |ξ|2)k/2f̃(ξ) ∈ L2(Rn)

and the norm ‖f‖k may be written as

(2.5) ‖f‖k =
[∫

(1 + |ξ|2)k|f̃(ξ)|2dξ
]1/2

.

There is one more definition we must make before we define the Sobolev space
Hk(Rn), for k ∈ R. Recall that the Schwartz space S(Rn) is the function space of
of all C∞ functions on Rn such that all generalized derivatives, when multiplied by
any power of |x|, converge to 0 as |x| → ∞. More precisely,

S(Rn) = {f ∈ C∞(Rn) : sup
x∈Rn

|xα∂βf(x)| < +∞ for all multi-indices α, β}.

The Fourier transform is an automorphism of the Schwartz space S(Rn). The
following space is similar to the Schwartz space in the case of distributions, as the
Fourier transform acts on it in a similar fashion.

Definition 2.6. The space of tempered distributions S ′(Rn) is defined to be the
dual of the Schwartz space S(Rn). That is, a distribution S is a tempered distri-
bution if and only if limm→∞ supx∈Rn |xα∂βϕm(x)| = 0 for all multi-indices α, β
implies limm→∞ S(ϕm) = 0.
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Let F be the Fourier transform, and let S be a tempered distribution. Then
we define (FS)(ϕ) = S(Fϕ), so that FS must also be a tempered distribution. In
our definition of the Sobolev space, we want to be as general as possible while also
yielding to common sense, noting that not all distributions have Fourier transforms.
Tempered distributions provide a natural space, since the Fourier transform is a
continuous, linear, bijective operator from the space of tempered distributions to
itself.

Using the definition of tempered distributions, we can now make an appropriately
general definition for Hk(Rn), for k ∈ R.

Definition 2.7. Let k ∈ R. Then we define

Hk(Rn) := {f ∈ S ′(Rn) : (1 + |ξ|2)k/2f̃(ξ) ∈ L2(Rn)},
where S ′(Rn) is the collection of tempered distributions in Rn. The norm is just
(2.5) extended to all real numbers.

We now progress to a very famous result in analysis, the Sobolev embedding
theorem. We first define a very important space to be used in the theorem.

Definition 2.8. Let l ∈ N. Then we define
Clb(Rn) := {f ∈ Cl(Rn) : ‖∂αf‖∞ < +∞∀|α| ≤ k}.

In Clb(Rn), we define the norm to be

‖f‖(l) :=
∑
|α|≤k

‖∂αf‖∞.

Theorem 2.9 (Sobolev Embedding Theorem). Let k > n/2 + l. Then we have the
embedding Hk(Rn) ⊂ Clb(Rn), where the embedding operator is continuous.

Proof. We first show that

(2.10) ‖f‖(l) ≤ C‖f‖k,

for f ∈ S(Rn), where C is independent of f . The Fourier transform and the Inverse
Fourier Transform Theorem imply that

∂αf(x) = (2π)−n/2
∫

(iξ)αeix·ξ f̃(ξ)dξ,

so that

|∂αf(x)| ≤ (2π)−n/2
∫
|ξαf̃(ξ)|dξ.

Therefore, using the C from (2.4), we obtain

‖u‖(l) ≤ C
∫

(1 + |ξ|2)l/2|f̃(ξ)|dξ.

Separating the integrand by using (1 + |ξ|2)k/2 brings us the following, after we
apply the Cauchy-Schwartz inequality.

‖f‖(l) ≤ C
∫

(1 + |ξ|2)(l−k)/2(1 + |ξ|2)k/2|f̃(ξ)|dξ ≤

C

(∫
(1 + |ξ|2)(l−k)dξ

)1/2(∫
(1 + |ξ|2)k/2|f̃(ξ)|2dξ

)1/2

.



MULTIDIMENSIONAL SCHRÖDINGER OPERATORS AND SPECTRAL THEORY 5

The first of the two factors is finite, due to the convergence of the integral. The
integral converges since 2(l−k) < −n, so that the integrand decreases as |ξ| → +∞
faster than |ξ|−n−ε for some sufficiently small ε > 0. The second factor is ‖f‖k by
Definition 2.7. Therefore, Equation (2.10) holds as long as k > l + n/2.

We now show that S(Rn) is dense in Hk(Rn) for any k ∈ R. Consider the
operator Λk that multiplies the Fourier transform f̃(ξ) by (1 + |ξ|2)k/2. This is an
isometric isomorphism of Hk(Rn) onto L2(Rn) which takes S(Rn) isomorphically
onto S(Rn). Hence, S(Rn) is dense in Hk(Rn) since S(Rn) is dense in L2(Rn).

Let g ∈ Hk(Rn), fm ∈ S(Rn), and fm → g in Hk(Rn). Then from Equation
(2.10), fm → g1 in Clb(Rn). But then g and g1 coincide as distributions, so they
should coincide almost everywhere. By continuity, (2.10) holds for any f ∈ Hk(Rn),
proving the continuity of the embedding. �

We now introduce the space Hk
loc(Rn), which plays an important role in local

elliptic regularity and the proof of Sear’s Theorem.

Definition 2.11. Let k ∈ R. Then we define

Hk
loc(Rn) := {f ∈ D(Rn) such that ϕf ∈ Hs(Rn)∀ϕ ∈ C∞0 (Rn)},

where D(Rn) is the space of distributions on Rn.

In fact, similar to the space Hk(Rn), this is a generalization of the case k ∈ N.
When k ∈ N, the following definition is suitable.

Definition 2.12. Let k ∈ N. Then Hk(Rn) is defined to be the set of f ∈ D(Rn)
such that Pf ∈ L2

loc(Rn) for any differential operator P on Rn of order ≤ s with
smooth coefficients.

There is one particular major result we should cover before progressing to the
subject of self-adjointness. Consider the following partial differential equation:

(2.13) −∆f + cf = g(x),

defined on a domain Ω ⊂ Rn, with c ∈ R. Let g ∈ H−1
loc (Ω). The function f ∈

H1
loc(Ω) is called a weak solution of (2.13) if∫

Ω

(∇f(x)∇ϕ(x) + cf(x)ϕ(x))dx = 〈g, ϕ〉

for every ϕ ∈ C∞0 (Ω). This definition leads us to the following important result.

Theorem 2.14. Let f ∈ H1
loc(Ω) be a weak solution of (2.13), with g ∈ Hk

loc(Ω),
where k ∈ N. Then f ∈ Hk+2

loc (Ω).

In particular, for g ∈ L2
loc(Ω), we may conclude that f ∈ H2

loc(Ω). We refer the
reader to [3] for the proof of this theorem and for a more complete development of
elliptic regularity in general.

3. Self-Adjointness

We recall the definitions of a symmetric and self-adjoint operator. A symmetric
operator is an operator A the elements of the domain of which satisfy 〈Af, g〉 =
〈f,A∗g〉 for all f, g ∈ D(A), where A∗ denotes the adjoint of A. A self-adjoint
operator A is a symmetric operator that also satisfies D(A) = D(A∗). Note that
in general, we have the inclusion D(A) ⊂ D(A∗), so to prove that a symmetric
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operator is self-adjoint, we need only prove the converse inclusion. An essentially
self-adjoint operator is a symmetric operator with a unique self-adjoint extension.

Definition 3.1. We define an observable to be a densely-defined self-adjoint oper-
ator on a Hilbert space H.

Notation 3.2. We will use the symbolH to represent the Hilbert space correspond-
ing to the given quantum system. All Hilbert spaces are taken to be separable.

Definition 3.3. Let A and B be observables on a Hilbert space H. Then B is
said to be smaller than A in the sense of Kato (written B <K A) if D(A) ⊂ D(B),
and there exist a, b ∈ R, a < 1, such that the following inequality holds for all
ψ ∈ D(A):

(3.4) ‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖.

An equivalent condition for B <K A is if there exist a, b ∈ R with a < 1 satisfying

‖Bψ‖2 ≤ a‖Aψ‖2 + b‖ψ‖2

for all ψ ∈ D(A).
The following theorem is one of the most important for confirming when the

operator H is self-adjoint. We start with a lemma.

Lemma 3.5. Let λ ∈ R, and let A be a closed, symmetric operator in a Hilbert
space H. The following are equivalent:

(1) A is self-adjoint
(2) ∃λ ∈ R s.t. ker(A∗ ± λiI) = {0}
(3) ∃λ ∈ R s.t. im(A± λiI) = H

Proof. First, note that im(A± iI) is a closed subspace of H. Since

(A± iλI)∗ = A∗ ∓ iλI,

we have
ker(A∗ ∓ iλI) = [im(A± iλI)]⊥,

so (2) and (3) must be equivalent. Clearly, (1) implies (3), since the spectrum of
any self-adjoint operator is real. It remains to show that (2) and (3) imply (1).
Since D(A) ⊂ D(A∗), we must show that D(A∗) ⊂ D(A). Let f ∈ D(A∗) and
ϕ = (A∗ + iI)f . By (3), there exists a g ∈ D(A) satisfying (A+ iI)g = ϕ. Since A
is symmetric, Ag = A∗g. Therefore,

(A∗ + iλI)f = ϕ = (A∗ + iλI)g,

so that

(A∗ + iλI)(f − g) = 0.

By (2), f = g and f ∈ D(A). Therefore, D(A) = D(A∗) and A is self-adjoint. �

This leads to another version of the same theorem.

Theorem 3.6. Let A be a closed, non-negative, symmetric operator. Then A is
self-adjoint if and only if there exists a λ > 0 such that

ker(A∗ + λI) = {0}.
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Corollary 3.7. Let A be a non-negative symmetric operator. Then A is essentially
self-adjoint if and only if there exists a λ > 0 such that

ker(A∗ ± λI) = {0}.

Having established Lemma 3.5, we may prove the Kato-Rellich Theorem, one
of the most important theorems in mathematical quantum physics for determining
self-adjointness.

Theorem 3.8 (Kato-Rellich Theorem). Let A be an observable, and let B a sym-
metric operator. If B <K A, then H = A+B with D(H) = D(A) is self-adjoint.

Proof. By Lemma 3.5, H is self-adjoint iff im(H ± ηI) = H for some η ∈ iR (which
further implies that this equation holds for all η ∈ C \ σ(H), where σ(H) is the
spectrum of H). Since A is self-adjoint, for each η ∈ iR, Rη = (A − ηI)−1 is a
bounded operator on H and imRη = D(A).

Now, H − ηI = (I +BRη)(A− ηI), so that im(H − ηI) = H iff im(I +BRη) =
H. The latter condition is true if there exists N ∈ R such that for all |η| > N ,
‖BRη‖ < 1, since then I +BRη is an invertible bounded operator.

To prove this, we first note that

‖Rηϕ‖ ≤
1
|η|
‖ϕ‖ and ‖ARηϕ‖ ≤ ‖ϕ‖.

These follow from the equation

‖(A− ηI)ψ‖2 = ‖Aψ‖2 + |η|2‖ψ‖2

by setting ϕ = (A− ηI)ψ. Using Definition 3.3 with ϕ = Rηψ ∈ D(A), we have

‖BRηϕ‖ ≤ a‖ARηϕ‖+ b‖Rηϕ‖ ≤ (a+
b

|η|
)‖ϕ‖,

so that a < 1 implies that ‖BRη‖ < 1 for sufficiently large |η|.
The proof that im(H + ηI) = H is almost identical. �

If we let A = −∆ and B = V (x) in the Kato-Rellich Theorem, then as long as
V (x) <K −∆, H is self-adjoint. However, the inequality <K is somewhat foreign
and not terribly intuitive. As a result, the Kato-Rellich theorem is not particularly
useful to us by itself. On the other hand, we may derive some important theorems
as corollaries, which we will in turn use to prove some physically critical results.

Theorem 3.9. Let V ∈ (Lp + L∞)(Rn), where p = 2 if n ≤ 3 and p > n/2 if
n ≥ 4. Then H = −∆ + V is a self-adjoint operator and D(H) = Hp(Rn).

Proof. We may work within the confines of C∞0 (Rn) and use a density argument.
It is sufficient to show that V (x) <K −∆. We write V (x) = Vp(x) + V∞(x). If
n ≤ 3 and ψ ∈ D(−∆), then we have

‖V ψ‖ ≤ ‖V2ψ‖+ ‖V∞ψ‖ ≤ ‖V2‖‖ψ‖∞ + ‖V∞‖∞‖ψ‖.
We need to show that ‖V ψ‖ ≤ a‖−∆ψ‖+b‖ψ‖, and we may do so by deriving an

estimate for ‖ψ‖∞. Let h(p) := p2. Using the Fourier transform and the Cauchy-
Schwartz inequality, we have

(2π)3/2‖ψ‖∞ = sup
x∈R3

∣∣∣∣∫
R3
eipxψ̂(p)dp

∣∣∣∣ ≤ ‖ψ̂‖1 ≤ ‖(h+ 1)−1‖ ‖(h+ 1)ψ̂‖ ≤

C(‖hψ̂‖+ ‖ψ̂‖) = C(‖ −∆ψ‖+ ‖ψ‖).
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We replace ψ̂(p) by ψ̂r(p) := r3ψ̂(rp), where r > 0. Since ‖ψ̂r‖∞ = ‖ψ̂‖∞,
‖ψ̂r‖1 = ‖ψ̂‖1, ‖ψ̂r‖ = r3/2‖ψ̂‖, and ‖hψ̂r‖ = r−1/2‖hψ̂‖, we obtain

(2π)3/2‖ψ‖∞ ≤ r−1/2C(‖ −∆ψ‖+ r2‖ψ‖),
where r > 0 is arbitrary. Now, if we choose r such that a = r−1/2(2π)−3/2C‖V1‖ <
1, then we have shown that −∆ >K V , completing the proof for n ≤ 3.

If n ≥ 4, we similarly obtain by Hölder’s inequality:

‖V ψ‖ ≤ ‖Vpψ‖+ ‖V∞ψ‖ ≤ ‖Vp‖p‖ψ‖q + ‖V∞‖∞‖ψ‖,
where 1

p + 1
q = 1. In this case we can bound ‖ψ‖q in a similar way to how we

bounded ‖ψ‖∞. We will not prove this result, but instead refer the reader to [5].
Once this is proven, the proof will be complete. �

The above theorem is considerably more intuitive than the Kato-Rellich Theorem
itself, and we can easily observe some of its valuable consequences.

Example 3.10. The Hamiltonian of the hydrogen atom has potential

V (x) = − e
2

|x|
,

so that

H = −∆− e2

|x|
.

Let us prove that H is self-adjoint. Let B1 be the unit ball in R3. Then we write
V = χB1V + (1 − χB1)V . The former term is in L2(R3) and the latter term is in
L∞(R3), so that by the previous theorem, H is necessarily self-adjoint.

Before proceeding to the next theorem, a few definitions need to be made. The
first is the sign of a complex function. We define

(sgn(f))(x) :=
{

0 if f(x) = 0
f(x)|f(x)|−1 if f(x) 6= 0

Essential in the proof of Kato’s Inequality below will be the regularized absolute
value of f , defined by

fε(x) := (|f(x)|2 + ε2)1/2.

It is clear that limε→0 fε(x) = |f(x)| pointwise and |f(x)| = (sgnf) · f , the same as
in R.

Theorem 3.11 (Kato’s Inequality). Let f ∈ L1
loc(Rn). Suppose that the distribu-

tional Laplacian ∆f ∈ L1
loc(Rn). Then

(3.12) ∆|f | ≥ Re[(sgn f)∆f ]

in the distributional sense.

Proof. We begin with the assumption that f ∈ C∞(Rn). We would like to show
that (3.12) holds pointwise except in the case that |f | is not differentiable. For such
f , we have

(3.13) fε∇fε = Ref∇f.
Since fε ≥ |f |, we obtain

(3.14) |∇fε| ≤
|f | |∇f |
fε

≤ |∇f |.
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Taking the divergence of (3.13), we get

|∇fε|2 + fε∆fε = |∇f |2 + Ref∆f.

Together with (3.14), this shows that

fε∆fε ≥ Ref∆f,

which, dividing both sides by fε leads to the equation

(3.15) ∆fε ≥ Re [(sgnεf)∆f ] ,

where we have defined sgnεf := ff−1
ε . In fact, when |f | is smooth, sgnεf → sgnf .

Now we use regularization to finish. Let ϕ ∈ C∞0 (Rn), ϕ ≥ 0, and
∫
ϕ = 1. We

define
ϕδ(x) := δ−nϕ(x/δ)

and

(Iδf)(x) := (ϕδ ∗ f)(x) =
∫

Rn

ϕδ(x− y)f(y)dy.

(The family of operators Iδ, for δ > 0, is called an approximate identity. See [4]
for details.)

Replacing f with Iδf in (3.15), we see that

∆(Iδf)ε ≥ Re[sgnε(Iδf)∆(Iδf)].

Letting δ → 0 and then ε→ 0, we get (3.12), which completes the proof. �

Theorem 3.16. Let V ∈ L2
loc(Rn) and V ≥ 0. Then H is essentially self-adjoint.

Proof. H is clearly non-negative and symmetric. By Corollary 3.7, it suffices to
prove that ker(H∗ + I) = {0}. Therefore, we need to show that there exists a
unique solution for the PDE

(3.17) −∆f + V f + f = 0,

with f ∈ L2(Rn), namely f = 0.
We observe that f ∈ L2(Rn) and V ∈ L2

loc(Rn) imply that V f ∈ L1
loc(Rn).

Moreover, f ∈ L1
loc(Rn). By (3.17), ∆f ∈ L1

loc(Rn).
We now apply Kato’s inequality, thereby obtaining

∆|f | ≥ Re[(sgnu)∆f ] = Re[(sgnf)(V + 1)f ] = |f |(V + 1) ≥ 0.

As a result,
∆Iδ|f | = Iδ∆|f | ≥ 0.

Now, Iδ|f | ≥ 0 clearly holds. Also, Iδ|f | ∈ D(∆). This follows from the facts
that |f | ∈ L2(Rn) and

(∂iIδf) =
∫
∂iϕδ(x− y)f(y)dy.

Now,
(∆(Iδ|f |), (Iδ|f |)) = −‖∇(Iδ|f |)‖2L2(Rn) ,

but since the LHS is ≥ 0, we obtain that ∇(Iδ|f |) = 0. Hence, Iδ|f | = c ≥ 0.
Since |f | ∈ L2(Rn), c = 0. Hence, Iδ|f | = 0, which clearly implies that |f | = 0. �

In fact, a more general result using slightly different restraints on V is available
by Sear’s Theorem. We begin with a lemma, the proof of which is given in [1].
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Lemma 3.18. Let V (x) satisfy V (x) ≥ −Q(|x|) for some increasing positive func-
tion Q(x). Then if f ∈ D(H∗),

(3.19)
∫

Rn

|∇f(x)|2

Q(2|x|)
dx < +∞

We may use this result to prove Sear’s Theorem.

Theorem 3.20 (Sear’s Theorem). Let the potential V (x) satisfy the condition
V (x) ≥ −Q(|x|), where Q(x) is an increasing positive continuous function on
[0,+∞) such that

(3.21)
∫ ∞

0

dx√
Q(2x)

= +∞.

Then H is essentially self-adjoint on H2(Rn).

Proof. To show that H is essentially self-adjoint, it is sufficient to show that H∗ is
symmetric. Let f1, f2 ∈ D(H∗), gi := −∆fi + V (x)fi, so that gi ∈ L2(Rn). We
need to show that

(3.22)
∫

Rn

f1g2 =
∫

Rn

g1f2.

Assuming that fi ∈ S(Rn), we have∫
|x|≤t

f1g2 − g1f2 = −
∫
|x|≤t

f1∆f2 −∆f1 · f2

=
∫
|x|≤t

∇ ·
(
f2∇f1 − f1∇f2

)
=

∫
|x|=t

(
f2
∂f1

∂r
− f1

∂f2

∂r

)
.(3.23)

This formula also holds f1, f2 ∈ H2
loc(Rn), and in particular, for all f1, f2 ∈

D(H∗). Let

ρ(t) :=
1√
Q(2t)

.

Now, multiplying (3.23) by ρ(t), and integrating over [0, T ], we obtain

(3.24)
∫ T

0

ρ(t)

(∫
|x|≤t

(f1g2 − g1f2)dx

)
dt =

∫ T

0

ρ(t)
(∫ t

0

I(τ)dτ
)
dt,

where I(t) =
∫
|x|=t(f1g2 − g1f2)dS, so that

(3.25)
∫ ∞

0

|I(t)|dt < +∞.

We now define

P (T ) :=
∫ T

0

ρ(t)dt.

The right-hand side of (3.24) takes the form∫ T

0

ρ(t)
(∫ t

0

I(τ)dτ
)
dt =

∫ T

0

I(τ)

(∫ T

τ

ρ(t)dt

)
dτ =

∫ T

0

(P (T )− P (τ))I(τ)dτ .
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Now, we estimate half of the RHS of (3.23) with the help of the Cauchy-Schwartz
Inequality and Lemma 3.18:∣∣∣∣∣

∫ T

0

ρ(t)

(∫
|x|=t

f2
∂f1

∂r
dS

)
dt

∣∣∣∣∣ =

∣∣∣∣∣
∫
|x|≤T

ρ(|x|)f2(x)
∂f1(x)
∂r

dx

∣∣∣∣∣ ≤(∫
|x|≤T

|f2(x)|2dx

)1/2

·

(∫
|x|≤T

ρ2(|x|)
∣∣∣∣∂f1(x)

∂r

∣∣∣∣2 dx
)1/2

≤

‖f2‖ ·
∫

Rn

Q−1(|2x|)|∇f1|2dx ≤ C,

for some C ∈ R. The other half works similarly, leading to the equation

(3.26)

∣∣∣∣∣
∫ T

0

(P (T )− P (t))I(t)dt

∣∣∣∣∣ < K.

for some K ∈ R.
We divide both sides by P (T ) and let T → +∞. By (3.21), this implies that

P (T )→ +∞ as well. Hence, (3.26) shows that

(3.27) lim
T→+∞

∫ T

0

(
1− P (t)

P (T )

)
I(t)dt = 0.

Our aim was originally to prove that
∫∞

0
I(t)dt = 0. This can clearly be derived

by (3.27), since
∫
|I(x)|dx < +∞. We choose ε > 0 and take R > 0, so that∫∞

R
|I(t)|dt < ε. Fixing such R, if we take T > R, we have:∣∣∣∣∣

∫ T

0

(
1− P (t)

P (T )

)
I(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

(
1− P (t)

P (T )

)
I(t)dt

∣∣∣∣∣+ ε.

Then as T → +∞, we find by (3.27) that indeed
∫∞

0
I(t)dt = 0, and the proof

is complete. �

4. Characterization of the Spectrum

Another big problem in mathematical quantum mechanics is the description of
the spectral properties of the Schrödinger operator H. Some of the main results of
the spectral theory of Schrödinger operators are presented here.

We begin with a relevant lemma that concerns variational principles, i.e., per-
turbation theory of operators. We recall that the spectral theorem allows us to
identify a self-adjoint operator in a Hilbert space H with a collection of projection
operators {Eλ}, called the spectral family of A, satisfying certain properties. (If
the reader is unfamiliar with the spectral theorem, he may skip ahead to the next
theorem and consult the results of the lemma.)

Recall that
Eλ+0 = Eλ ∀λ ∈ R

in the strong operator topology, and we define

Eλ−0 := lim
µ→λ,µ>λ

Eµ.

The distribution function of the spectrum of A is defined by letting

N(λ) := dim(EλH).
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N(λ) actually represents the number of eigenvalues of A less than λ.

Lemma 4.1 (Glazman). Let D be a subspace of D(A) such that an operator A in
H is essentially self-adjoint on D. Then for any λ ∈ R, we have

(4.2) N(λ− 0) = sup {dimL : L ⊂ D, (Af, f) < λ(f, f) for f ∈ L \ {0}} =: M.

Proof. We begin by showing that if L is a subspace of D and (Af, f) < λ(f, f)
for all f ∈ L \ {0}, then dimL ≤ N(λ − 0). In fact, if dimL > N(λ − 0), then
L ∩ (Eλ−0H)⊥ 6= {0}, since L ∩ (Eλ−0H)⊥ = {0} implies that Eλ−0 injectively
maps L into Eλ−0, in turn implying that dimL ≤ dim(Eλ−0H) = N(λ− 0). But if
f ∈ (Eλ−0H)⊥, then (Af, f) ≥ λ(f, f), so that the existence of a non-zero vector
f ∈ L∩(Eλ−0H)⊥ is a contradiction of the definition of L. Hence, dimL ≤ N(λ−0),
showing that M ≤ N(λ− 0).

We now confirm the converse inequality. Note that

Eλ−0 = lim
N→−∞

E(N,λ),

where E(N,λ) = Eλ−0 − EN , so that

N(λ− 0) = lim
N→−∞

dim [E(N,λ)H] .

Hence, it is sufficient to prove that dimE(N,λ) is not greater than M for anyN <
λ. In E(N,λ)H, pick an orthonormal basis and let {e1, . . . , em} be a finite number
of vectors of this basis. It suffices to show that m ≤ M . Since E(N,λ) ⊂ D(A),
ej ∈ D(A)∀j = 1, . . . ,m. Hence, for any ε > 0, there exist vectors ê1, . . . , êm ∈ D
such that

‖ej − êj‖ < ε, ‖Aej −Aêj‖ < ε∀j = 1, . . . ,m,
since A is essentially self-adjoint on D. If L is the span of the set {ê1, . . . , êm}, then
there is an ε > 0 such that dimL = m. (This follows from the non-degeneracy of
the matrix ‖(êi, êj)‖mi,j=1 for small ε > 0.) Furthermore, for ε > 0, (4.2) holds for
L. Hence, m ≤M , which finishes the proof. �

In fact, a slightly more specific result holds, which we shall use to prove the
following theorem. The proof is exactly the same as that of the above theorem,
except that it is unnecessary to approximate the vectors ei by êi.

Theorem 4.3. Let D be a subspace of D(A) such that A is essentially self-adjoint
on D. Then for any λ ∈ R, we have

(4.4) N(λ) = sup {dim : L ⊂ D, (Af, f) < λ(f, f)∀f ∈ L \ {0}} .

Theorem 4.5. Suppose that V ∈ L∞loc(Rn) and

(4.6) lim inf
|x|→∞

V (x) = lim
R→∞

inf
|x|≥R

V (x) ≥ a

for some a ∈ R. Then the operator H is self-adjoint, bounded below, and, for
all a′ < a, only a finite number of eigenvalues of H of finite multiplicity exist in
σ(H) ∩ (−∞, a′).

Proof. Clearly, V (x) ≥ −C for some C and therefore H is self-adjoint and bounded
below.

Step 1. Let us initially consider

(Hψ,ψ) =
∫

Rn

[−∆ψ + V (x)ψ]ψdx, ψ ∈ D(H).



MULTIDIMENSIONAL SCHRÖDINGER OPERATORS AND SPECTRAL THEORY 13

We intend to show that

(4.7) (Hψ,ψ) =
∫

Rn

[
|∇ψ|2 + V (x)|ψ|2

]
dx, ψ ∈ D(H).

Now, (4.7) is obvious for ψ ∈ C∞0 (Rn). In the case that ψ ∈ D(H), we initially
show that

(4.8)
∫

Rn

[
|∇ψ|2 + V (x)|ψ|2

]
dx < +∞.

Local elliptic regularity implies that if ψ ∈ D(H), then ψ ∈ H2
loc(Rn). Hence,∫

B

[
|∇ψ|2 + V (x)|ψ|2

]
dx < +∞

for any ψ ∈ D(H) and for any (bounded) ball B in Rn.
Let b ≤ inf V (x)− 1. Since ψ ∈ L2(Rn), (4.8) is equivalent to:

Hb(ψ,ψ) :=
∫ [
|∇ψ|2 + (V (x)− b)|ψ|2

]
dx < +∞.

If the quadratic form Hb is finite, this means that

(4.9)
∫
|∇ψ|2dx < +∞ and

∫
(1 + |V (x)|)|ψ|2 < +∞.

The quadratic form Hb is actually generated by the inner product

Hb(ψ1, ψ2) =
∫ [
∇ψ1∇ψ2 + (V (x)− b)ψ1ψ2

]
dx,

which is finite as long as ψ1 and ψ2 both satisfy (4.9).
If ψ ∈ C∞0 (Rn), we have

(4.10) ((H − bI)ψ,ψ) = Hb(ψ,ψ).

The LHS of the above equation is continuous with respect to the graph norm(
‖ψ‖2 + ‖Hψ‖2

)1/2 on D(H). Therefore, the same is true for Hb(ψ,ψ) and, by
continuity, Hb is well-defined on D(H).

Now, we clearly have
‖ψ‖2H1(Rn) ≤ Hb(ψ,ψ)

for ψ ∈ C∞0 (Rn). Hence, the convergence of elements of C∞0 (Rn) with respect to
the graph norm implies their convergence in H1(Rn). Since H1(Rn) is complete,
ψ ∈ D(H) implies that ψ ∈ H1(Rn), so that the first inequality in (4.9) is true.

Similarly, the weighted L2 space

L2(Rn, 1 + |V (x)|) :=
{
ψ ∈ L2(Rn) :

∫
Rn

(1 + |V (x)|) |ψ(x)|2dx < +∞
}

is complete, therefore implying that ψ ∈ L2(Rn, 1+|V (x)|) if ψ ∈ D(H). Therefore,
every ψ ∈ D(H) satisfies (4.9). Since (4.8) and (4.9) are equivalent, every such ψ
also satisfies (4.8).

Step 2. Now we use Theorem 4.3, keeping in mind that N(λ) is the number of
eigenvalues less than λ. To finish the proof of the theorem, we must show that if
a′ < a and L is a subspace of D(H) satisfying

(4.11) (Hψ,ψ) ≤ a′(ψ,ψ)

for all ψ ∈ L, then dim(L) < +∞.
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Due to step 1, we may rewrite (4.11) as

(4.12)
∫

Rn

[
|∇ψ|2 + (V (x)− a′)|ψ|2

]
dx ≤ 0.

We let δ ∈ (0, a − a′) and R > 0 be such that V (x) ≥ a′ + δ for |x| ≥ R, and
define

M := − inf V (x).
If C > 0 and C > M + a′, then (4.12) implies that

(4.13)
∫
|x|≤R

|∇ψ|2dx+
∫
|x|≥R

[
|∇ψ|2 + δ|ψ|2

]
dx ≤ C

∫
|x|≤R

|ψ|2dx,

for ψ ∈ L.
Now, consider an operator A : L→ L2(BR) defined by A : ψ 7→ ψ|BR

, where BR
is the ball of radius R about the origin. We consider L with the topology induced
from L2(Rn). A is clearly continuous. Inequality (4.13) shows that ker(A) = {0}.
It then suffices to prove that L̃ := AL is a finite dimensional subspace of L2(BR).
That L̃ ⊂ H1(BR) is clear, and by (4.13), we have

‖ψ‖H1(BR) ≤ K‖ψ‖L2(BR),

for ψ ∈ L̃ and some K ∈ R independent of ψ.
Hence, the identity operator I in L̃ may be written as a composition of the em-

bedding L̃ ⊂ H1(BR), which is continuous, and the embedding H1(BR) ⊂ L2(BR),
which is compact. It follows that I is a compact operator, since the collection of
compact operators is an ideal in the collection of continuous operators. Therefore,
dim(L̃) < +∞, which finishes the proof. �

Corollary 4.14. If V (x) ∈ L∞loc(Rn) and lim|x|→∞ V (x) = +∞, then H has a
discrete spectrum.

Recall that the essential spectrum σess(H) consists of all non-isolated points
of σ(H) and eigenvalues of infinite multiplicity. Our first result regarding the
essential spectrum claims that the essential spectrum is maintained under certain
perturbations of the potential. We first introduce some results of functional analysis
that are necessary in the proof of the theorem.

Lemma 4.15. Let H be a Hilbert space. An operator A : H → H is relatively
compact with respect to B : H → H if and only if it is compact as an operator from
D(B) into H.

Lemma 4.16. Let A be a self-adjoint operator in H and B a symmetric operator
into H with D(B) ⊃ D(A). Suppose that B is relatively compact with respect to A.
Then the operator B = A+ C, with D(B) = D(A), is self-adjoint and

σess(B) = σess(A).

Lemma 4.17 (Rellich-Kondrashov Compactness Theorem). Let

2 ≤ p < 2n
n− 2

.

Then the embedding H1(Rn) ⊂ Lp(Rn) is compact.

We may now prove a beneficial result, namely that under “small” variations of
V , the essential spectrum remains the same.
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Theorem 4.18. Consider the operators H0 := −∆ + V0 and H = −∆ + V , where
V = V0 + V1. Let V0, V1 ∈ L∞loc(Rn) be bounded from below. Further assume that
lim|x|→∞ V1(x) = 0. Then

σess(H) = σess(H0).

Proof. We prove that the multiplication operator V1 is relatively compact with
respect to H0. The theorem will then follow by Lemma 4.16.

By Lemma 4.15, it is sufficient to prove that V1 is a compact operator from the
space D(H0), with the graph norm, into L2(Rn). Since D(H0) can be continuously
embedded into H1(Rn), it suffices to show that V1 is a compact operator from
H1(Rn) into L2(Rn).

Let
S := {V1f : f ∈ H1(Rn) and ‖f‖H1(Rn) ≤ 1}.

We must prove that S is a precompact set in L2(Rn). Let ε > 0. By assumption,
there exists an R > 0 such that |V (x)| ≤ ε if |x| ≥ R. Let BR be the ball of radius
R centered at the origin. Then we have

(4.19) ‖(1− χBR
)V f‖2L2(Rn) =

∫
Bc

R

|V (x)|2|f(x)|2dx ≤ ε2‖f‖2L2(Rn) ≤ ε
2.

Note that the set Sε := {χBR
V1f : f ∈ S} is precompact in L2(Rn). This

follows from the Rellich-Kondrashov Compactness Theorem, since the embedding
H1(Rn) ⊂ L2

loc(Rn) is compact and if f ∈ Sε, then f(x) = 0 for all x /∈ BR.
Now, S lies in a ε-neighborhood of Sε, which is precompact, and ε > 0 is arbitrary.

Hence, S is precompact and the proof is complete. �

The following theorem shows that under certain conditions, the essential spec-
trum is in fact exactly the set of non-negative real numbers.

Theorem 4.20. Let V (x) ∈ L∞loc(Rn) and lim|x|→∞ V (x) = 0. Then

σess(H) = [0,+∞).

Proof. We know from Theorem 4.5 that H can have only isolated eigenvalues of
finite multiplicity on (−∞, 0). It remains for us to show that [0,+∞) ⊂ σ(H). Let
λ ≥ 0 be fixed. The condition λ ∈ σ(H) is equivalent to the existence of a sequence
{ϕm}∞m=1, ϕm ∈ D(H), such that

(4.21) lim
m→+∞

‖(H − λI)ϕm‖
‖ϕm‖

= 0.

We shall describe the construction of such a sequence. We consider the function
eik·x, where |k| =

√
λ. It satisfies the equation (−∆)eikx = λeikx, so that since

lim|x|→∞ V (x) = 0, we have

(4.22) lim
|x|→∞

[−∆ + V (x)− λ]eikx = 0.

To obtain the sequence {ϕm}, we must choose cut-offs of the function eikx that
approach infinity as m increases. Let B ∈ C∞0 (Rn) satisfy B ≥ 0, B(x) = 1 for
|x| ≤ 1/2, B(x) = 0 for |x| ≥ 2. We set

Bm(x) := B
(
m−1/2(x−m)

)
.

Then we have

(4.23) supp(Bm) ⊂ {x : |x−m| ≤
√
m},
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so that

(4.24) lim
m→+∞

sup
x∈supp(Bm)

|V (x)| = 0.

We now explicitly define

ϕm(x) := Bm(x)eikx.

We proceed to check that (4.21) holds for the above-defined {ϕm}. Note that

(4.25) ‖ϕm‖2 =
∫
|Bm(x)|2dx = mn/2

∫
|B(x)|2dx = Cmn/2,

where C > 0. We clearly have

Hϕm = −(∆Bm)eikx − (∇Bm)(∇eikx) + k2Bme
ikx + V (x)Bmeikx.

Therefore,

(4.26) (H − λI)ϕm = eikx[HBm − ik · ∇Bm].

Now,

|∇Bm| ≤ Cm−1/2 and |∆Bm| ≤
C

m
.

Noticing (4.24), we can now see from (4.26) that

lim
m→+∞

sup
x∈Rn

|(H − λI)ϕm(x)| = 0.

But by (4.23), this implies that

lim
m→+∞

m−n/2‖(H − λI)ϕm‖2 = 0.

Along with (4.25), this implies (4.21). This concludes the proof. �

5. Eigenvalue Bounds

Another critical area of mathematical quantum mechanics lies in finding bounds
for the numbers of eigenvalues of H with a given potential. In this section, we
will introduce three theorems involving eigenvalue bounds: the Birman-Schwinger
bound, the Lieb-Cwikel-Rozenblum bound, and Kato’s Theorem. We shall not
prove our results, since they use more sophisticated methods than the rest of the
theorems contained in this text.

We begin with the Birman-Schwinger bound. As we see, this is only to be used in
the three-dimensional case, but since this is a physically important scenario, it is an
invaluable method of eigenvalue bound calculation. It is quite an astounding result
because of its generality (that is, it is easily computed given any V ∈ L∞(R3)) and
because it is such a simple formula.

Theorem 5.1 (Birman-Schwinger). Suppose that V (x) ∈ L∞(R3) and

(5.2)
∫

R3

∫
R3

|V (x)V (y)|
|x− y|2

< +∞.

If N(H) is the total number of eigenvalues of H counted with multiplicities, then

(5.3) N(H) ≤ 1
16π2

∫
R3

∫
R3

|V (x)V (y)|
|x− y|2

.
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The formula actually holds for a more general class of functions called the Roll-
nick class. See [6] for details.

A stronger result of Theorem 4.20 holds if V quickly goes to 0 as |x| → ∞. Not
only are there no negative numbers in the essential spectrum, there are no negative
eigenvalues at all. This result is often referred to as Kato’s Theorem, and instead
of being an eigenvalue bound, it describes a case in which the conditions imposed
on V are not too strong, but in which a powerful result exists. The proof is not
provided, due to its length. However, a (rather long) proof is presented in [1].

Theorem 5.4 (Kato). Suppose that V (x) ∈ L∞loc(Rn) and

(5.5) lim
|x|→∞

|x|V (x) = 0.

Then H has no positive eigenvalues.

Kato’s Theorem brings forth an important question. Is there a general formula
for the number of negative eigenvalues of an arbitrary Schrödinger operator similar
to the one provided by the Birman-Schwinger bound? The answer to this question
happens to be yes. In fact, there are many estimates of the number of negative
eigenvalues of H (which we denote by N−(H)), but there is one particularly well-
known and valuable theorem that bounds N−(H) of a Schrödinger operator for
dimension greater than three.

Theorem 5.6 (Lieb-Cwikel-Rozenblum). Let V (x) ∈ L∞loc(Rn). If N−(H) is the
number of negative eigenvalues of H counting multiplicities, then

N−(H) ≤ cn
∫

Rn

|min[V (x), 0]|n/2 dx,

where cn depends only on n.

Note that this theorem is in a way stronger for bounding negative eigenvalues
than the Birman-Schwinger is for bounding both positive and negative eigenvalues.
Whereas the Birman-Schwinger bound requires the dimension to be equal to three,
the Lieb-Cwikel-Rozenblum bound has no restraints on dimension other than that
it be greater than three.
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