
BEHIND THE INTUITION OF TILINGS

EUGENIA FUCHS

Abstract. It may seem visually intuitive that certain sets of tiles can be

used to cover the entire plane without gaps or overlaps. However, it is often

much more challenging to prove such statements rigorously. The Extension
Theorem justifies the visual intuition. It allows us to prove the existence of a

tiling by covering a circle of arbitrarily large finite radius. We clarify the proof

of the Extension Theorem, consider its necessary assumptions, and present
some interesting generalizations.
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1. Introduction

Consider a jigsaw puzzle assembled on an infinite tabletop. We shall look at a
finite set of potential puzzle pieces and see if the tabletop can be covered, without
gaps or overlaps, using only pieces identical to those in the set. In many cases, it
may be easy to believe that such a covering by puzzle pieces is possible. We will
discuss the machinery that enables us to prove just by looking at a finitely covered
surface that a tiling exists.

But first, let us drop the metaphors in favor of several definitions.

Definition 1.1. Let T1, T2, T3... be closed subsets of the Euclidean plane topolog-
ically equivalent - that is, homeomorphic - to a disc. These subsets form a tiling if
their union is the Euclidean plane, and their interiors are pairwise disjoint. Every
such Ti is called a tile. In other words, the tiles cover the plane without gaps or
overlaps.

Remark 1.2. The standard definition of a tiling does not require each tile to be
homeomorphic to a to a closed disk [1, p.16]. We include this condition for simplic-
ity. Moreover, we will be dealing predominantly with straight-edged polygons whose
edges touch each other completely. In other words, if the two edges of polygons
touch, they are in fact the same line segment. Such tilings are called edge-to-edge
[1, p.58].
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Figure 1. The shaded portion represents the “gluing” discussed
below. Note that the octagons are not regular.

Definition 1.3. Take a tiling T . The set S ⊂ T is a set of prototiles if, for every
tile Ti, Ti is congruent to some Si in S . Unless otherwise indicated, we will refer
to finite prototile sets. The set S is called minimal if for all Si, Sj ∈ S , the tiles
Si and Sj are congruent if and only if Si = Sj [1, p.20]. (We will let the symbol ∼=
denote congruence.)

Some examples of tilings include the square grid and the honeycomb, where the
prototiles are the regular quadrilateral and regular hexagon, respectively. The only
other regular polygon that can tile the plane by itself is the regular triangle. No
other regular polygons have the necesary interior angle measure. For an example of
a tiling with two prototiles, consider the tiling of an octagon and a square, as seen in
Figure 1. This picture requires little explanation to show that it will tile the entire
plane. To see this another way, we can “glue” an octagon and a square together
to obtain a new tile that easily translates horizontally and vertically. However, not
all tilings of the plane have such apparent symmetries. For such cases we have the
Extension Theorem.
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2. The Extension Theorem

Before stating the theorem and giving its proof, we present some additional
definitions.

Definition 2.1. A patch is the union of a finite number of tiles that is topoloically
equivalent to a disk. The interiors of the individual tiles making up the patch are
pairwise disjoint [1, p.19].

Definition 2.2. Let S be a set of tiles. S tiles over a subset X of the plane if
the there exists a patch PS (X) such that X ⊂ PS and every component tile is
congruent to an element of S [1, p.151].

Definition 2.3. The Hausdorff distance between two tiles X and Y , denoted
h(X,Y ), is defined as:

max {sup
y∈Y

inf
x∈X
‖x− y‖, sup

x∈X
inf
y∈Y
‖x− y‖}

When h(X,Y ) = 0 for X,Y closed, X and Y are the same set [1, p.153].

Definition 2.4. A sequence of tiles T1, T2, T3... converges to a limit tile T if
limi→∞ h(Ti, T ) = 0 [1, p.154].

Definition 2.5. U is a circumparameter of a prototile set S if for every T ∈ S ,
T is contained in some circle of radius U . Analogously, u is an inparameter of S
if for each T ∈ S , there exists a circle of raidus u contained in T [1, p.122].

We require an additional fact:

Fact 2.6. Take an infinite sequence of tiles T1, T2... such that all Ti are congruent
to some fixed tile T0, where T0 is bounded. Suppose that every Ti contains the
point P0. Then the sequence contains a convergent subsequence whose limit tile T
is congruent to T0 and contains P0 [1, p.154].

Remark 2.7. For an outline of the proof, see [1, p.156].

Now, the statement of the Extension Theorem:

Theorem 2.8. Let S be a finite set of tiles. If S tiles over arbitrarily large disks
D, S admits a tiling of the plane [1, p.151].

Proof. Let S be a finite and minimal set of prototiles. Let u be an inparapeter
and U a circumparameter of the set. Because S is finite and the tiles are closed
topological disks, U exists and u is greater than 0. Now, we construct a lattice Λ
out of points with the cartesian coordinates (nu,mu), n,m ∈ Z. Since there are
countably many points, we can assign an order to them. Let L0 be the origin, and
then continue the labeling in a spiral as shown in Figure 2. Note that any disk of
radius u will contain at least one point of Λ. Since any tile in S contains such a
disk, any tile congruent to an element of S will also contain at least one point of
the lattice.

With that in mind, let D(x, r) denote the disk of radius r around a point x.
Consider D(L0, r) for every positive integer r. By the conditions of the theorem,
for every r ∈ N, there exists a patch P (r) that covers D(L0, r). If r is large
enough for D(L0, r) to contain some Ls, then let the tile Tr,s be that tile of P (r)
which contains Ls. If Ls is located on an edge or a vertex, there will be more
than one possible choice of Tr,s. In that case, we select any one of them. The
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Figure 2. Every point on the lattice Λ has the coordinates
(nu,mu) - integer multiples of the chosen inparameter of prototile
set S . As a result, any tile congruent to an element of S contains
at least one point of Λ.

sequence T1,0, T2,0, T3,0... contains a subsequence A0 of tiles congruent to one tile in
S . Because all the terms of A0 contain the common point L0, the fact mentioned
earlier states that a subsequence of A0, call it B0, converges to a limit tile T0

containing L0 and congruent to a prototile S0 ∈ S . For future reference, let IB0

represent the set of r values such that for every r ∈ IB0 , Tr,0 is a term in the
sequence B0.

We can follow a similar procedure with the point L1. Consider the sequence
of tiles Tr,1, where r ∈ IB0 and r large enough for L1 to be in D(L0, r). This
sequence too will have a subsequence A1 of tiles that are all congruent to some
single prototile in S which we will call S1. Note that it is possible to have S1 = S0,
but it is not important to know whether this is the case or not. In any event, by
the aforementioned fact, A1 has a subsequence B1 that converges to a limit tile T1

such that T1
∼= S1 and L1 ∈ T1. Let the definition of the set IB1 be analogous to

that of IB0 . Using this technique, for the nth sequence we consider all r ∈ IBn−1

and produce a subsequence Bn with a limit tile Tn containing Ln congruent to a
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prototile Sn. Now we will show that set X = {T1, T2, T3...} (with Ti the limit tile
of the sequence Bi) is a tiling of the plane.

Because every Ti is congruent to a tile in S , we know Ti s a closed topological
disk. We need to show that

⋃∞
i=0 Ti is the plane and that for all Ti, Tj the inter-

section of their interiors is empty, except when Ti = Tj . This follows if we take an
arbitrary point y and show that it belongs to at least one Ti (more than one if y
falls on an edge or vertex), and to the interior of at most one Ti (none if y falls on
an edge or vertex). Taking such an arbitrary point y, consider the disk D(y, U),
where U is the circumparameter of the tiles in S . From among the points Li such
that Li ∈ D(y, U) choose the one with the maximal index, and call that index k.
Then consider the set IBk

. Let Xr = {Tr,0, Tr,1...Tr,k} for all r ∈ IBk
. This means

that for every r in IBk
we consider the set of tiles containing the lattice point Li up

to Lk. (Some of these tiles may in fact be the same tile - a tile may contain more
than one lattice point.)

As r →∞ every Tr,j → Tj ∈ X. So we can say that when r →∞, Xr → X. In
every Xr, the Tr,j make up the patch P (r). Then every Tr,i and Tr,j have disjoint
interiors unless they are simply the same tile. So if y is in the patch, then it belongs
to the interior of no more than one tile. To show that y is indeed contained in the
patch, we need to show that the center of D(y, U) ⊂ P (r). The point y lies in the
interior, on an edge, or on the a vertex of a square that connects four points of Λ in
the plane. At any time a disk of radius u about y will enclose or touch at least two
points of Λ, one of which has a bigger index than the other. For a disk of radius U ,
which is greater than u, that will certainly be the case as well. Consider the line
segment between the two lattice points, say La and Lb. Without loss of generality
let a > b. If the the patch P (r) contains Lk, it also contains all Li with i < k. Thus
if it contains La, it will also contain Lb. Then the entire line segment is contained,
including the point y. Since Lk has the maximal index, a ≤ k, so P (r) contains La,
and therefore Lb, and therefore y. This holds for each of the r we are considering.

If, for every r ∈ IBk
, at least one tile in Xr contains y and the interior of no more

than one tile Xr contains it, the same can be said for the limit set. This means
that the limit set X also forms a tiling. Thus we obtain a tiling of the entire plane
- a circle with a radius of infinity, so to speak - while starting with a patch of tiles
covering an arbitrarily large finite circle [1, pp.153-5]. �

3. Extensions of the Extension Theorem

In some cases, the Extension Theorem seems self-evident. Consider, for example,
the square grid and tilings built up from the center. The theorem gains significance
when the tiling cannot be achieved by an immediate and obvious construction from
the center outwards. More complex sets of prototiles allow multiple combinations
around each vertex, which means that there is no simple way of finding a radial
expansion guaranteed to continue indefinitely. To see how tricky finding one may
be, consider the tiles shown in Figure 3. This particular set of six prototiles,
discovered by Roger Penrose, admits only nonperiodic tilings - that is, tilings that
lack translational symmetry.

Definition 3.1. Let S be a prototile set. S is aperiodic if it admits only nonpe-
riodic tilings.

The reader is invited to make physical copies of this set and try to devise a
simple rule for tiling the plane with them [2, p.33].
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Figure 3. The above is the first set of Penrose tiles. These are of-
ten referred to as P1, the first of three surprisingly simple aperiodic
tile sets discovered by physicist Roger Penrose [2, p.33]. All three
sets, especially the other two, have numerous astonishing proper-
ties worth reading about. For a lively and engaging discussion, see
[3, p.73-93]. For a more rigorous approach, see [1, pp.531-39].

Remark 3.2. A word of caution: some authors use the terms “nonperiodic” and
“aperiodic” interchangeably, while others favor one exclusively.

Exercise 3.3. Consider the set of tiles in Figure 3, which Grünbaum and Shepard
call P1, the first set of Penrose tiles [1, p.531]. By gluing together elements of P1,
find a set of five prototiles that admits exactly the same set of possible tilings as
P1 does. Is it possible reduce the number still futher to four prototiles [2, p.33]?

All this time we have dealt with a finite set of nice, bounded prototiles. Would
the Extension Theorem still hold if we relaxed some of these conditions?

If we remove the restriction of a finite prototile set and make no other modi-
fication, we lose the basis of the entire proof. Without a finite set of prototiles,
the existence of a positive inparameter is no longer certain. Also, the sequence Ai,
as defined in the proof, is a sequence of tiles containing the lattice point Li, all
congruent to one prototile. The existence of this sequence is guarnateed only when
the prototile set is finite. Grünbaum and Shepard give an example of the theorem’s
failure under these conditions: prototiles whose sides consist of arcs from circles of
varius radii. These tile a quadrant of the plane, but not the entire plane.
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Figure 4. Tiles with infinite diameter violate the extension the-
orem. This example shows why the Extension Theorem requires
tiles to be bounded.

Also, if we let the tiles have unbounded diameter, such as an infinite stripe with
one end rounded off, as shown in Figure 4, then the conditions of the Extension
Theorem are fulfilled but the conclusion is false. Such tiles cannot tile the plane
because becuase nothing fits about the rounded edges. Given that they the tiles are
infinite in one direction and can be placed next to each other indefinitely, copies of
this figure can tile over a circle of arbitrarily large radius.

One generalization of the Extension Theorem, however, allows infinite prototile
sets that are compact.

Definition 3.4. A set S of prototiles is compact if there exists a bounded set
containing all elements of S , and every infinite sequence of tiles in S converge to
a limit tile that is also in S .

This generalization is the following:

Theorem 3.5. Let S be a set of prototiles in which each tile is a closed topological
disk. If S is compact, and if for every disk of radius r there exists a patch P (r)
made of tiles of S that covers the disk, then S admits a tiling of the entire plane
[1, p.155].

Another interesting generalization regards the preservation of symmetry of an
admitted tiling.

Theorem 3.6. Let S be a finite set of prototiles, each of them a closed topological
disk. If there exist patches covering arbitrarily large disks so that each patch has a
particular symmetry σ,then S admits a tiling of the plane that also possesses the
symmetry σ [1, p.155].

There are other interesting generalizations and applications of this theorem. As
we have seen, it plays a significant role in rigorously proving something that is often
left to intuition.
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