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Abstract. This paper will introduce the reader to field extensions at a rudi-

mentary level and then pursue the subject further by looking to its applications

in a discussion of some constructibility issues in the classical straight-edge and
compass problems. Field extensions, especially their degrees are explored at

an introductory level. Properties of minimal polynomials are discussed to this

end. The paper ends with geometric problems and the construction of polygons
which have their proofs in the roots of field theory.
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1. Introduction to the Classical Geometric Problems

One very important and interesting set of problems within classical Euclidean ge-
ometry is the set of compass and straight-edge questions. Basically, these questions
deal with what is and is not constructible with only an idealized ruler and compass.
The ruler has no markings (hence technically a straight-edge) has infinite length,
and zero width. The compass can be extended to infinite distance and is assumed
to collapse when lifted from the paper (a restriction that we shall see is irrelevant).
Given these, we then study the set of constructible elements. However, while it is
interesting to note what kinds objects we can create, it is far less straight forward to
show that certain objects are impossible to create with these tools. Three famous
problems that we will investigate will be the squaring the circle, doubling the cube,
and trisecting an angle.

The study of what is not actually constructible is the motivation for studying
field theory. Ultimately, it turns out, field theory, especially those theorems con-
cerning the multiplicativity of degrees, is a very useful tool when studying classical
geometric problems and in proving that certain constructions are impossible. The
three major problems that we will attempt to show are not constructible in this
paper are described below.
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Question 1.1. Squaring the Circle: Given a square of length l, is it possible to
construct a circle with the same area as the square, that is, l2?

Question 1.2. Doubling the Cube: Given a cube of length l, and hence volume l3,
is it possible to create a cube with volume exactly (2l)3?

Question 1.3. Trisecting the Angle: Is it possible with only compass and straight
edge to trisect any given angle �, that is, construct �/3?

With these questions in mind, we progress onwards to the field theory.

2. Fields, Field Extensions, and Preliminaries

Definition 2.1. Let F and E be fields, E is a field extension of F if F is a subfield
of E, F ≤ E. We will write this as E/F . It is important to note that the extension
E of F can be treated as a vector space in that it is abelian under addition and
any “vector” x ∈ E can be multiplied by a “scalar” � ∈ F .

Definition 2.2. The dimension of this vector space is called the degree of the
extension, which we will write as [E : F ].

Definition 2.3. If [E : F ] = n <∞ then we say the degree is finite, that is, E has
degree n, which means that E is a finite extension of F . Otherwise, E is an infinite
extension.

At this point, we already almost have the terminology necessary to talk about
the classical geometric constructions. However, we need to first prove two major
theorems regarding the degree of field extensions. The first is that the degrees of
field extensions are multiplicative, meaning that if E is an extension of F and K is
an extension of E; F ≤ E ≤ K then [K : F ] = [K : E] [E : F ]. The other major
theorem is that if E is a finite extension of F , then E is an algebraic extension
of F . (The exact meaning of this statement will be explained later). To get to
these results, however, we must first talk about the roots of polynomials that have
coefficients in our field.

Lemma 2.4. If f : F → E is a homomorphism of fields, then it is a monomor-
phism.

Proof. First note that a field F has no ideals except 0 and F . But if a ∈ F
is a nonzero member of ideal I, then ∃ b ∈ F such that ab = 1, since we have
multiplicative inverses in a field. But then 1 ∈ I which means that ∀a ∈ F , a ∈ I.
We now take I to be the kernel of f , I must either be 0 or all of F . However, if I
were all of F then f(1) = 0, but f is a homomorphism, so we have a contradiction.
Hence, I must be 0 which means that the kernel of f is 0 so f is injective, a
monomorphism. □

Theorem 2.5. If f is a nonconstant polynomial over field F , there exists an ex-
tension E/F such that � ∈ E such that f(�) = 0.

Proof. We lose no generality in assuming that f is irreducible (since if not, we can
factor f into irreducibles). We let the ideal I be the one generated by f(X) so
I = ⟨f(X)⟩. I in F [X] is prime, because f is irreducible. For further reference see
Robert Ash’s Abstract Algebra section 2.6.1 for details.[1] Since I is a prime ideal,
it must be maximal, which means that E = F [X]/I is a field. (Ash) We place a
isomorphic copy of F in E by taking the homomorphism ℎ : a → a + I, which is



FIELD EXTENSIONS AND THE CLASSICAL COMPASS AND STRAIGHT-EDGE CONSTRUCTIONS3

a monomorphism by above. Letting � = X + I, then image of f(�) in F [X]/I
satisfies f(�) = f(X) + I = 0 □

Definition 2.6. Let E be an extension of F , the element � ∈ E is said to be
algebraic over F if ∃ a nonconstant polynomial f ∈ F [X] such that f(�) = 0.
Otherwise, � is said to be transcendental. Likewise, if a field extension E/F is such
that ∀ � ∈ E, � is algebraic, then E is said to be an algebraic extension of F .

Lemma 2.7. Let f and g be polynomials over the field F . Then f and g are
relatively prime ⇔ f and g have no common root in any extension of F .

Proof. Assume first that f and g are relatively prime, this means that their greatest
common divisor is 1. This implies that ∃ polynomials a and b over F such that
a(X)f(X) + b(X)g(X) = 1. This means that they must have no common root in
any extension of F , if they did, we would substitute that common root � for X and
we would get 1 = 0. Conversely, assuming that f and g are not relatively prime,
then they would have a non-constant common divisor, call it d(X). We can show
from theorem 2.5 that d has a root, � in some extension E of F , which means that
both f and g have that same root � since d divides f and g. □

Note to Tom and Katie, I’m still not labeling correctly, can you look at what’s
wrong with my tex?

Corollary 2.8. If f and g are distinct, monic, irreducible polynomials over F ,
then f and g have no common roots in any extension of F .

Proof. If d is a nonconstant divisor of the irreducible polynomials f and g, then d
coincides with both f and g, making f a multiple of g. This contradicts f and g
being monic and distinct, hence relatively prime. □

Definition 2.9. Here, we define the minimal polynomial of � over F , written as
min(�, F ). Let � ∈ E be algebraic over F , we can construct an ideal I by taking the
set of all polynomials g such that g(�) = 0. Since F is a principal ideal domain(see
Robert Ash), I consists of all multiples of some m(X) ∈ F [X]. If we require that
m(X) to be monic then m(X) is unique. We call this polynomial m(X) the minimal
polynomial of � over F .

Proposition 2.10. The minimal polynomial m(X), as defined above, has the fol-
lowing properties:

(1) If g ∈ F [X], then g(�) = 0 if and only if m(X) divides g(X).
(2) m(X) is the monic polynomial of least degree such that m(�) = 0.
(3) m(X) is the unique monic irreducible polynomial such that m(�) = 0.

Proof. Property (1) holds because g(�) = 0 ⇐⇒ g(X) ∈ I. I is generated by our
minimal polynomial, m, so m must divide g. Property (2) holds because of property
(1). Specifically, we know that m(X) is monic of least degree because other wise
there could exist a g(X) ∈ F [X] such that g(�) = 0 but g(X) is not divided by
m(X). Property (3) is obvious from the previous lemma as soon as we show that
m is irreducible. If m is not irreducible then m(X) = ℎ(X)k(X) with deg ℎ, deg k
less than deg m. But this means that either ℎ(�) or k(�) = 0, which means that
either ℎ or k is a multiple of m, which contradicts our previous statement to show
that m is irreducible. □
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Definition 2.11. If E is the extension of F that contains � a root of some polyno-
mial f ∈ F then it is often interesting to study F (�), defined as the field generated
by F and �. It is basically the smallest field extension that contains all the elements
of F as well as �. Intuitively, the field F (�) would be all rational functions with
polynomials in � for both the numerator and denominator. However, with the basic
tools given to us by our study of the minimal polynomial, the field F (�) which is
the smallest subfield of the extension E that has both F and � develops a much
simpler representation, one that is related to F [�] which is the set of polynomials
in � with coefficients in F .

Theorem 2.12. If � ∈ E is algebraic over F and the minimal polynomial m(X)
of � over F has degree n, then F (�) = F [�] is the set of all polynomials in � with
coefficients in F . And, in fact F (�) = Fn−1[�], the set of polynomials of degree at
most n - 1, and furthermore, 1, �, �2, ..., �n−1 form a basis for the the vector space
F [�] over the field F .

Proof. To begin our proof, must first show that Fn−1[�] is a field. To do so is
simple given a trick we learned with the relative primeness of polynomials. Let
f ∈ Fn−1[�], we know that deg f must be less than deg m since m is our minimal
polynomial, irreducible and of degree n. Since these two polynomials are relatively
prime, we know that a(X)f(X) + b(X)m(X) = 1 for some polynomials a(X) and
b(X) over F . However, substituting � for X, we get a(�)f(�) = 1) which shows us
that f has an inverse and hence, Fn−1[�] is a field.
Next we show that Fn−1[�] ⊆ F [�] ⊆ F (�). This is true because it is obvious that
any field containing F and � must also contain all of the polynomials in � as well
as all of the polynomials of degree at most n − 1. However, F (�) is the smallest
field containing � and F so it must be a subset of the field Fn−1[�]. Hence, equality
is established.
To prove that a basis of this field is 1, �, �2, ..., �n−1 we just need to show that
they span Fn−1[�] and are linearly independent. To show they span is a trivial
matter because any polynomial in � that has degree less than n − 1 can certainly
be generated by those elements. To show that they are linearly independent, we
just note that if they were not then there would be a polynomial with non-zero
coefficients with � as its root. However, this polynomial is of degree less than n
which means it is a polynomial with degree less than our minimal polynomial m,
which is a contradiction. □

Importantly for the next theorem (the first of the two major ones we want to
cover), this shows that [F (�) : F ] = n.

Theorem 2.13. The degree of field extensions is multiplicative. In other words,
Let F ≤ E ≤ K, then [K : F ] = [K : E] [E : F ]. If either side is infinite, then
both sides of the inequality are infinite.

Proof. For this proof, we first look at a multiplicative property of bases. We note
that if �1, ..., �i form a basis for K over E and �1, ..., �j form a basis for E over F ,
then the set of �m�n, 0 < m < i, 0 < n < j form a basis for K over F . To see this
note that for a vector v ∈ K, v is a linear combination of coefficients ai ∈ E and
the basis �i. However, each of the ai ∈ E is a linear combination of �j and bj ∈ F .
This shows that the �i�j span K over F. To show linear independence, we note
that for �ij constants,

∑
i,j �ij�i�j = 0 then

∑
i �ij�i = 0 for all j, which means
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that �ij = 0 for all i, j, which proves that �i�j are linearly independent, hence a
basis of K over F.
Then for [E : F ] = j, and [K : E] = i, we have [K : F ] = i ∗ j □

Theorem 2.14. If E is a finite extension of F , then E is an algebraic extension
of F .

Proof. Let � ∈ E, and let the degree [E : F ] = n. We have that 1, �, �2, ...�n are
n + 1 vectors in an n-dimensional vector space, making them linearly dependent.
Hence, we have

�0 + �1�+ �2�
2 + ...+ �n�

n = 0

for � ∈ F not all 0. Hence � is a root of a nonzero polynomial with coefficients in
F , so � is algebraic over F . □

3. Geometric Problems

At this point, we now have a firm enough grasp of field extensions to take a stab
at some of the more interesting questions in classical geometry.

As stated before, we will look at specifically the compass and ruler constructions.
The most elementary actions one can make with these two tools are: drawing a line
between two points, drawing a circle centered a point with radius going out to
another point, drawing a point at the intersection of two lines, two circles, or a line
and a circle.

As a general rule, we begin the our constructions with only two points (and will
often designate the distance between them as 1) and with the ability to only make
the most elementary actions, but as we progress, we can assume more complicated
starting conditions and shortcut a lot of the more complicated actions.

Lemma 3.1. Given two points on a two dimensional plane A and B, with just
compass and straight-edge, we can find the point that is equidistant from A and B,
and we can find the perpendicular line that runs through this point. In other words,
we can bisect that line segment A-B with a perpendicular line.

Proof. Draw a circle centered at A through passing through B. Draw another circle
centered at B passing through A. These two circles intersect at two points, C and
D. Draw a line through C and D, this line will be perpendicular to line A-B,
and the intersection between these two lines will be the midpoint of the segment
A-B. □

Proposition 3.2. Given two points, call them (0, 0) and (1, 0) on a two dimen-
sional plane, with compass and straight-edge, we can construct the integer lattice.

Proof. Let our two points be A and B. We can assign the value (0, 0) to A and
(1, 0) to B. By drawing a line through the two points, we have generated the x-axis.
Drawing a circle with A as the center and B as the length of the radius, then finding
where that circle intersects the x-axis will grant us (−1, 0). Doing this similarly
with B as the center grants us (2, 0), and we can recursively construct the entire
set of points (n, 0) where n is an integer. To find the values of y that are integers,
we can use the previous lemma to construct the y-axis as well as all the other lines
perpendicular to the x-axis through it’s integer co-ordinates, which will give us the
entire two dimensional plane with points (x, y) where x, y ∈ ℤ. □
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Next we will construct the rational numbers, but first it is necessary to illustrate
two simple constructions that we can make.

Lemma 3.3. Given a line that goes through A and B, we can construct a line
parallel to it through a third given point, C.

Proof. Begin by drawing a circle centered at C through the point A — this will
give us a point D, at the intersection of the line and the circle. By the previous
lemma we can draw a perpendicular line through the midpoint of D and A, which
consequently passes through C. Now, take the previously drawn circle and find the
two points that intersect with this new line E and F . Finding the perpendicular
line that runs through the midpoint of these two points will give us a line that
passes through C, which is parallel to the line made by A-B. □

Lemma 3.4. Given a line-segment A-B, and a point C, we can construct a line-
segment C-D that is parallel to A-B and has the same length.

Proof. Begin by drawing a line, x, through A and C. Then construct a line, y,
parallel to this one through B. Construct a third line z parallel to A-B through C.
Where z intersects y is the point D that we are looking for. □

Note, with this lemma, we can then draw a circle through D centered at C to
rotate our newly constructed segment in whatever direction we want, giving us the
ability to “move” line segments from place to place.

Theorem 3.5. Given two line-segments a, and b (as well as a third length, 1) in
the two dimensional plane, we can add, subtract, multiply, and divide their lengths.

Before we begin the proof of this theorem, something ought to be said about
the concept of adding, subtracting, multiplying, dividing, and “length”. What we
mean by adding a length is that given two line segments x and y , we can construct
a third line segment such that the length is equal to the length of x added to the
length of y. This concept is analogous with subtracting, multiplying and dividing.

Proof. With lemma 3.4 , addition and subtraction become entirely trivial. For
multiplication and division we use similar triangles to get our desired values. For
multiplication, we can move segment a to have the end points (0, 0) and (xa, ya) to
share an endpoint with segment b which we place at (0, 0) (xb, yb), rotate a about
the origin so that it is over the positive x-axis and rotate b about the origin so
that it is over the positive y-axis (note, we do this so the lines are non-parallel,
although any angle that keeps them non-parallel will do). Marking the length 1
on the segment a (1, 0), we then draw a line x through (1,0) and the endpoint of
b, (xb, yb). We then make a line y, parallel to x that goes through the end point
of a, (xa, ya). Now draw a line z by extending the segment b infinitely in both
directions, this line will intersect y at a point D. The length of the segment created
by D and the origin will be a line segment with the length of the desired product.
The setup to division is the same as multiplication, only the first line we draw is
one from the endpoint of a, (xa, ya) through the endpoint of b, (xb, yb). A parallel
line to this one that goes through (0, 1) will intersect b at a point E. The segment
from E to the origin is one with length of the desired quotient b/a. □

Theorem 3.6. Given a line segment a in the two dimensional plane we can con-
struct a line segment whose length is equal to the square root of our original length.
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Proof. Let a have endpoints A and B. Add 1 to this length by adjoining a length
1 onto the endpoint B making a segment of length a + 1. Draw a circle from the
midpoint of this segment through A The perpendicular of the segment a that goes
through the point B will intersect the circle at two points, C and D. The length
of C-B is equal to

√
a. □

Hence, at this point we were able to construct the integer lattice, and given the
ability to add, subtract, multiply, and divide these co-ordinates, we are immediately
given the rational lattice. However, we are also capable of constructing the square
roots of the rationals as well (as well as the square roots of those numbers). In
short, we have constructed the rationals as well as the ability to square root these

numbers, giving us numbers such as
√

2 and
√

1 +
√

2. The resulting set of numbers
for the coordinates is a field. To see this, we note that any sum of two constructible
numbers is also constructible. Furthermore, we can construct the multiplicative
inverse of any constructible number by dividing that number from 1. We know
that this field is strictly bigger than the rationals because of the ability to construct
square roots. It is now of interest to find what field this extension of the rationals
actually is.

Theorem 3.7. The field consisting of all constructible points using only compass
and straight-edge is the quadratic closure of ℚ

Proof. Let F be a field that we have generated through compass and straight-edge
constructions. Given our basic methods of constructing points, there are basically
only three different types of actions we can make to construct a new point, �. Note
here that the act of constructing new points is equivalent to constructing a field
extension E that is F adjoined �. The first action is to construct a point � by
intersecting two lines. In other words, we can construct a point by solving for the
equations of two lines. However, these lines are of the form ax − by = c where
a, b, c ∈ F so solving for two such equations will result with another point in F . We
see that intersecting lines will not give us points that are not in F . On the other
hand, intersecting a circle with a line will give us points that are not in F , to see
this, note that solving for x and y given

(x− d)2 + (y − e)2 = f2

and

ax− by = c

with a, b, c, d, e, f ∈ F . Solving for these two equations gives us a point in at most
a quadratic extension of F (of degree 2). Finally, solving for a point constructed
by the intersection of two circles is the same as solving for a point constructed by
the intersection between a circle and a line (specifically the line that is created, in
fact, by the two points).

Hence we end up with a field extension K of F where [K : F ] = ∞ and any E
such that K ≥ E ≥ F and [E : F ] = 2m where m is a power of two. □

Theorem 3.8. Given only a straight-edge and a compass. It is impossible to (1)
square the circle (2) double the cube (3) trisect an angle.

Proof.
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(1) To square the circle, as stated above, we are trying to construct the circle
that has the same area as a square of given length. Hence we solve the
equation, l2 = 2�r for r in terms of l. This eventually simplifies to whether
or not we can construct �, which we say without proof, is transcendental.
Hence the field extension that is required is ℚ(�). Noting that the field
extension is not algebraic, because � is transcendental, we know that the
degree [ℚ(�) : ℚ] is not finite from theorem 2.14, and hence not a power of
2.

(2) To double the cube, we need to construct 3
√

2 from 1. But [ℚ( 3
√

2) : ℚ] = 3,
which is not a power of two.

(3) To trisect a certain angle is equivalent to constructing cos(�/3) from cos(�).
This is not always possible (note, it is sometimes possible, for example,
� = 180 ∘). Consider the triple angle formula for cosine:

cos(�) = 4 cos3(�/3)− 3 cos(�/3),

Letting � = 60 ∘ then cos(�) = 1/2. Subsituting x for cos(20 ∘), we get

4x3 − 3x− 1/2 = 0.

Letting u = 2x, we then get

u3 − 3u− 1 = 0.

This is the minimal polynomial of ℚ(u). We previously showed that the
degree of the minimal polynomial is the degree of the field extension, but
that means that [ℚ(u) : ℚ] = 3 which is not a power of 2, so u is not
constructible. Hence 10 ∘ is not constructible.

□

4. Constructing Regular Polygons

Finally, to conclude our discussion of field extensions and classical geometry, we
look to some problems on the construction of regular polygons.

Examples 4.1. Now, given our prior knowledge, we can easily construct the reg-
ular 3-gon or the equilateral triangle, and the 4-gon a square. To construct a
square, we merely need to construct the integer lattice and connect the points
(1, 0), (0, 1), (−1, 0), and (0,−1). An equilateral triangle is constructed by taking
two given points, A and B and drawing a circle centered at each going through the
other. We now have two circles of equal radius that go through the center of the
other. This means that if we take one of the points of intersection between the two
circles, call this point C, C is the same distance away from B as it is from A, since
it lies on both circles and is exactly the radius away. Hence C −B −A would be a
regular triangle.

Since we know how to bisect angles, we immediately obtain the 6-gon and 8-gon.
The 5-gon is constructible, but the proof is complicated and does not add much to
our investigation of fields, for a proof of the 5-gon reference Dummit and Foote’s
Abstract Algebra.[2] That leaves us with the 7-gon and the 9-gon.

Theorem 4.2. Given only a straight-edge and compass, it is impossible to construct
a 9-gon.
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Proof. The proof of this is given to us directly from the previous theorem. Attempt-
ing to construct any polygon is equivalent to finding the internal angles. Given the
internal angles, we can just draw a circle centered at the vertices of our angles and
connect the points. Given a polygon, we can find the angles by drawing lines to
the center of the polygon. However, we have already proven that it is impossible
to trisect certain angles. Within that proof, we specifically showed that it was
impossible to construct the 40∘ angle, which is the internal angle of the regular
9-gon. □
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