COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM

JAYANTH GARLAPATI

ABsTRACT. This paper will introduce topics in Complexity Theory with the
goal of understanding and evaluating the RSA Cryptosystem as well as better
understanding the problem of whether P = NP. I will introduce formal no-
tions of algorithms as Deterministic and Probablistic Turing Machines, associ-
ated complexity classes of P, NP and RP, and NP-complete languages through
Cook’s Theorem, working towards understand One-way functions and present-
ing the Miller-Rabin test, an efficient algorithm for primality testing, which
are both central to understanding the RSA cryptosystem. Along the way, I
will discuss ways to think about P = NP.

CONTENTS
1. Introduction 1
2. Complexity Theory 2
2.1. Deterministic Turing Machines 2
2.2. Acceptor DTMs and Langauges 4
2.3. Time Complexity, Complexity Classes and P 4
2.4. Complexity of Functions 5
3. Non-Deterministic Polynomial time 6
3.1. Polynomial Time Reductions 6
3.2. NP Completeness 7
4. Relations Between Compexity Classes, Approaching P = NP 11
4.1. Complements of Langauges 11
4.2. Containments between Complexity Classes 12
5. Probabilistic Computation 12
5.1. Probabilistic Algorithms 12
5.2. Probabilistic Turing Machines 14
5.3. Primality Testing 15
6. Omne-way Functions 20
7. The RSA Cryptosystem 21
Acknowledgements. 23
References 23

1. INTRODUCTION

The problem of sending a message discretely between two parties has motivated
people throughout the ages to develop cryptosystems from simple ciphers to much
more complicated systems. Modern cryptographic systems, such as RSA, depend
on one way functions, functions that are easy to compute but difficult to invert.

1

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 2

This sounds like an elegant solution, but what exactly does it mean for a problem
to be easy or difficult? Complexity theory offers a formal solution to the problem.
Complexity theory is a field dedicated to studying the computational difficulty of
problems; in particular, it focuses on two questions:

(1) Is a given problem easy or diffucult
(2) Given two problems, which is harder?

2. COMPLEXITY THEORY

Complexity theory is the study of the practicality of computing problems. The
computational difficulty of a problem is defined by the running time of an algo-
rithm, which is measured in terms of the basic operations it uses, such as addition,
subtraction, etc.. The running time of an algorithm depends on the size of the
input, and the worst case situation is always considered.

To further define the distinction between easy and difficult problems, lets con-
sider an example. The following is an algorithm for testing the primality of a
number. We will begin with a general discussion and formalize concepts later.

Algorithm 2.1. Naive Primality testing
Input: an integer N > 2.
Output: true if N is prime and false otherwise.
Algorithm:
D2
P «— true
while P is true and D < VN
if D divides N exactly
then P «— false
else D — D+1
end while
output P

This algorithm will end at latest when D = v/N + 1, so the running time is on
the order of v/N, which will be denoted O(\/F) . The input however is an integer
encoded in binary, so it will have length n = [logN | + 1 where log is base 2. Thus,
N = 2"! and the running time is then O(2"/2), which for a 1024 bit number,
is 2512, Theoretically this algorithm is a solution to our probleml; however, if we
attempted a calculation of this magnitude with the largest computer imaginable,
one made out of every atom in the earth, performing 100 calculations per atom, it
would not finish if it started at the earth’s conception. Clearly, this is not a tenable
solution practically. Many modern cryptosystems need an algorithm to check the
primality of a number, but clearly one that depends on the input exponentially will
not be sufficient. Most algorithms that are useful run in a polynomial amount of
time with respect to the input. We will use this observation to define what it means
for an algorithm to be practical: an algorithm is tractable or practical if and only
if it has polynomial running time. This will be our working definition that will be
refined later on.

2.1. Deterministic Turing Machines. To formalize the notions discussed thus
far we will use Turing machines as models for algorithms.

Definition 2.2. A Detereministic Turing Machine or DTM is defined by

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 3

(1) A finite alphabet ¥ containing the blank symbol

(2) A 2-way infinite tape divided into square, one of which is the starting
square. Each square contains an element of the alphabet ¥ and all but a
finite number of the squares contain the blank symbol

(3) A read-write head that observes a single square at a time and can move left
(«) or right (—)

(4) A control unit along with a finite set of states I' including a unique starting
state, 79, and a set of halting states.

The computation of a DTM is controlled by a transition function.
§:I'xEX—->TXxXx{—,—}

Given the current state, 7.y, and the contents of the current square, o.y., the
value of 0(Yeur, Ocur) tells the machine three things:

(1) the new state for the control unit
(2) the symbol to write in the current square
(3) whether to move the read-write head to the left of to the right by one square

We use X to denote X\ {x}, the alphabet of non-blank squares. We will denote the
collection of all finite strings from ¥ by %§. For x € ¥, we will denote the length
of z by |z|. The set of strings n from 3 is denoted by Xf. The computation of a
DTM on an input is the result of repeatedly applying the transition function on the
input. If the machine never reaches a halting state then the compution does not
complete, otherwise the computation ends when a halting state is reached. A single
application of the transition function is called a step. The configuration of a DTM
is a complete description of the machine at a particular point in a computation.:
the contents of the tape, the position of the read-write head and the current state
of the control unit. If a DTM halts on an input, then the content of the tape once
the machine halts is called the output.

Let’s consider an example. To define a DTM, we need to describe a set of states
T", the alphabet X, and the transition function §. We will represent the transition
function by a list of quintuples. The first two entries of each quintuple represent
the current state and the content of the current square, and the last three entries
represent the new state, the symbol to write in the current square and the movement
of the read-write head.

(,YC’U/’I‘? UCUTT7 777;6’11)7 Une'wa — \ _))

The following DTM checks if a given string is a palindrome. For the sake of
brevity, I will use the word same in the spot for the new state or the symbol to
write if they are the same as the old state or symbol.

Example 2.3. Palindrome

The alphabet is ¥ = {0, 1, *} and the set of states is I" = {vo, 71, -, V5,77, YF },
7o is the start state, yp is the accept state, and g is the reject state. If the machine
ever encounters a state/symbol combination that it does not have a rule for then
it rejects. To follow the machine, simply start at the starting state, and follow the
quintuple that corresponds to what is in the current square, in the case of the first
quintuple this is the starting square, and proceed to the next quintuple indicated
by the new state and the contents of the square the read-write head is directed to
by the previous quintuple.

(70, 1,71, %, —) # found 1, erase it and store as state v,

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 4

(70, 0,72, %, —) # found 0, erase it and store as state o
(70, *, v, *, —) # empty string - accept (even length input)
(m /72, 0/1,same.same. —) # go right looking for the end of the string
(71, *,73, %, <) # end of string found, go back looking for 1
(2, *, 74, *, <) # end of string found, go back looking for 0
(73, 1,75, *, <) # found matching 1, erase it and start cycle to check next digit
(74, 0,75, *, <) # found matching 0, erase it and start cycle to check next digit
(v3/74, %, YT, %, <) # empty string - accept (odd length input)
(7vs5,0/1,7s5,same, <) # go back to the beginning of string
(s, *, Y0, %, —) # beginning found, start again
2.2. Acceptor DTMs and Langauges. Palindrome is a DTM that does not
compute a value, but rather either accepts or rejects an input, thus it is an acceptor
DTM. Any set of strings L C 3§ is called a language.

If M is an acceptor DTM, then the language accepted by M is defined as

L(M) ={z € f | M accepts z}

If M is an acceptor DTM, L = L(M) and M halts on all inputs = € 3§, then we
say that M decides L. There is a correspondence between languages accepted by
acceptor DTMs and decision problems. For example we can associate the decision
problem PALINDROME with a language

LpALINDROME = 17 | = is a binary string that is a palindrome}

Definition 2.4. For a general decision problem, IT, we have the associated langauge

Ly = {z € { | = is a natural encoding of a true instance of IT}

2.3. Time Complexity, Complexity Classes and P. The obvious way to mea-
sure the running time of a DTM is the number of steps it takes before it halts. If
a DTM halts on input = € Xf, then its running time on input z is the number of
steps the mahine takes during its computation, which is denoted ¢ps(x).

Definition 2.5. The time complexity of a DTM M that halts on every input
x € ¥, to be a function Ty, : N — N given by

T (n) = max{t | there exists x € X such that tys(x) = t}

In practice, we will not generally work with Turing machines since it is much
more conveniant to consider higher level descriptions of algorithms, so to talk about
complexity, we will accept the Church-Turing thesis, which states that any practical
deterministic algorithm can be implemented as a DTM with polynomial running
time.

Since the goal of complexity theory is to analyze the difficulty of problems, it
useful to consider collections of problems that can all be decided by DTMs with the
same bound on their time complexity. A collection of the languages corresponding
to these problems is called a complexity class.

One such class is the collection of languages that can be decided in polynomial
time, which by our working definition of a tractable problem, is the most immediate
class of tractable langauges.

P = {L CXj| thereis a DTM M which decides L and a polynomial p(n)
such that Ths(n) < p(n) for all n > 1}

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM

ot

If IT is a decision problem for which Ly € P, we say that there is a polynomial time
algorithm for II.

2.4. Complexity of Functions. In addition to considering the feasibilty of solving
problems, we will also consider the feasibility of computing functions.

Definition 2.6. The class of tractable functions analgous to the class of tractable
problems, P, is

FP = {f:X{ — X{ | there is a DTM M that computes f and a polynomial
p(n) such that Tps(n) < p(n) for all n > 1}
If f € FP, we say that f is polynomial time computable.

Algorithm 2.7. Euclid’s Algorithm
Input: binary integers a > b > 1
Output: ged(a,b)

Algorithm:

ro — a

r1+— b

17— 1

while r; # 0
1—1+1

T; < Tp—o mod r;_1
end-while

outpul r;—1

The algorithm works by repeatedly dividing the remainder

a=qob+ry 0<rys<b
b=qsros+ 13 0<r3<ry
To =qaT3 + T4 0<ry<rs
Th—3 = Qk—1Tk—2 + Tk—1 0<rp_1 <rg—2
Tk—2 = QpTh—1 + Tk T, =10

First, we will check that the algorithm works.
Claim 2.8. ged(a,b) = ri—1

Proof. 1, =0 = rg_1|rk—2. After substitution, ry_3 = (qx—19x + 1)rx—1, thus
Tr—1|rk—3, continuing up the list of equations, we see that ry_1|r; for 2 <i < k—2,
which implies that r5_1|b and ri_1|a, therefore ged(a,b) = ri_1. O

Now, we will consider the running time of the algorithm.
Claim 2.9. Euclid’s algorithm € FP

Proof. We need to show that the number of times the while loop repeats is bounded
by a polynomial that depends on the size of the input, which is loga + logb (log
base 2 since a and b are in binary). To do so, we will consider the relative sizes of r;
and Ti+2 for 2 S) S k—|—2 Since di+2 Z 1, Ty = qi4+27Ti+1 —|—Ti+2, and 0 S Titro < Tjt1
or else 712 would be too large to be a remainder, then r; 1o < r;/2. Thus, for every
two runs of the while loop, the remainder is reduced by at least 1/2 and since the

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 6

the input is encoded in binary, the running time is then 2[loga], and so Euclid’s
algorithm € FP O

In addition to Euclid’s algorithm, other functions that can be computed in poly-
nomial time are exponentiation modulo an integer c and integer multiplication. We
will use these results later.

3. NON-DETERMINISTIC POLYNOMIAL TIME

Consider the problem of deciding if a graph can be 3-colored. Given a graph,
it would be difficult to find a legal 3-coloring; we would have to use an algorithm
to check every possible coloring, which would run in exponential time. However,
given a graph and a correct 3-coloring of the graph, it would be easy to check if the
coloring is in fact legal in polynomial time. The languages for which every input
that belongs to the language has a succinct certificate that validates that fact make
up of the class of languages that can be decided in Non-Deterministic Polynomial
Time.

Definition 3.1. A language L C 3§ belongs to NP if there is a DTM and a
polynomial p(n) such that Tas(n) < p(n) and on any input = € Xj:

(1) if € L then there exists a certificate y € X such that |y| < p(|z|) and M
accepts the input string x y
(2) if x € L then for any sting y € X5, M rejects the input string = y
If a problem, II,belongs to NP, then if a particular instance of the problem is decided
to be true, then there is a polynomial length certificate of that fact and if not, then
no such certificate exists.

Proposition 3.2. PC NP

Proof. If L € P, then there is a DTM that decided L in polynomial time given only
x € X and there is no need for a certificate. In this case, the checking algorithm
would simply decide if the input was in the language or not. ([

The question of whether or not P = NP is a very important open problem in the
field of complexity theory.

3.1. Polynomial Time Reductions. To better understand the relative difficulty
of problems, we introduce the notion of polynomial time reductions

Definition 3.3. If A, B C X and f: 3§ — Xf satisfiying z € A < f(x) € B,
then f is a reduction from A to B. If in addition f € FP, then f is a polynomial time
reduction from A to B. When such a function exists we say that A is polynomially
reducible to B and we write A <,,, B.

This notation makes sense when we note that if one problem is easy, then the
problems that are polynomially reducible to it are also easy, which yields the fol-
lowing,

Lemma 3.4. If A<,, B, and B € P, then A€ P

Proof. A <,, B = 3 a DTM M that computes the function f : X — 3§
satistfying © € A <= f(z) € B and a polynomial p(n) such that Tps(n) < p(n).
B €P = JaDTM N that decides the language B and a polynomial g(n) such that
Tn(n) < g(n). We can now construct a polynomial DTM to decide the langauge

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 7

A. Given z € X7, we can pass « to M and it will output f(z), which we can input
into N, and accept or reject 2 depending on whether N accepts or rejects f(z).
Thus, our new DTM decides L 4.

To finish, we must show that it does so in polynomial time. Tys(n) < p(n) =
computing f(z) can take at most p(n) amount of time as well as p(n) steps =
|f(z)|] < p(n) + n, since we started with an input of size n and M can only take
p(n) steps and the read-write head can only move one square on the tape per step.
Since we pass f(z) to N, this implies that Tn(p(n) +n) < ¢(p(n) + n) = the

total running time of our new machine is Tps + Tn < p(n)+ q(p(n) +n). Therefore
AeP. (]

By similar proof, we have the following statement,
Lemma 3.5. If A <,, B, and B € NP, then A € NP

And by applying the definition of reducibility twice, we have the following
Lemma 3.6. A<,, Band B<,,C — A<, C

Polynomial time reductions are limited in that they must convert one instance of
a problem into one instance of another problem. However, there are situations where
the ability to solve one problem, II;, will allow us to solve another problem, Ils,
by solving multiple instances of II;. This process defines a more general reduction
known as a Turing reduction.

Definition 3.7. A function f is said to be NP-hard if there is an NP-complete lan-
gauge L such that L <p f, where we identify L with fr,, the function corresponding

to the language
1, ze€L
L 250 0,1}, =<
fuSi—{01) S {07 o

So an NP-hard function is at least as difficult as any langauge in NP and in
addition any language that is NP-complete is also NP-hard.

3.2. NP Completeness. We’ve discussed what it means for one problem to be
as hard as another, so the next natural question to consider is whether there is a
hardest problem, a problem that is at least as difficult as any other.

Definition 3.8. A language, L, is NP-complete if

(1) Le NP

(2) if A€ NP, then A <,, L
Such languages in fact do exist and are rather important in complexity theory, since
most languages in NP that are not known to be in P are NP-complete.

Proposition 3.9. If any NP-complete langauge belongs to P, then P = NP

Proof. We already know that P C NP, so we must show that NP C P. Suppose an
NP-complete language, L, belongs to P. L is NP-complete = if A € NP, then
A <,, L. By Lemma 3.4, L ¢ P — if A € NP, then A € P, so NP C P and
therefore P = NP. O

Proposition 3.10. If L is NP-complete, A € NP and L <,, A, then A is also
NP-complete.

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 8

Proof. This follows directly from Lemma 3.6 O

We will now show that an NP-complete language does exist, in particular, that
the problem of Boolean Satisfiability is NP-complete. A boolean function is a
function f : {0,1}" — {0,1}, where 1 is interpreted as true and 0 as false. Basic
boolean functions are negation (NOT), conjunction (AND), and disjunction (OR).
If x is a boolean variable, then the negation of z is

. 1 if x is false
)0 if 2 is true

A literal is a boolean variable or its negation. A boolean function f is in con-
junctive normal form if it is written as

flxe,...,xy) = /\ Ch
k=1

where each clause, Cy, is a disjuntion of literals. For example the following
boolean function is in conjunctive normal form

(@1, w6) = (01 V Z4) A (22 V 23) A (T2 V T5 V 26)

A truth assignment for a Boolean function, f(z1,...,2,), is a choice of values
x=(x1,...,2,) €{0,1}" . A satisfying truth assigment is an z € {0, 1}"such that
f(x) = 1. If such an x exists then f is said to be satisfiable. Boolean satisfiability,
otherwise known as SAT, is the following decision problem.

SAT

Input:a Boolean function f(z1,...,2,) = Aj—; Ck, in CNF

Question: Is f satisfiable?

The following result is known as Cook’s theorem and is the Fundemental Theo-
rem of Complexity Theory.

Theorem 3.11. SAT is NP-complete.

Proof. A succinct certificate for SAT is a satisfing truth assignment — SAT €
NP. So we need to show that VL € NP, we have L <,,,SAT. Let L € NP, then by the
definition of NP, there is a DTM M and a polynomial p(n) sich that Tas(n) < p(n)
and on any input xz € X§:
(1) if € L then there exists a certificate y € X such that |y| < p(|z|) and M
accepts the input string = y
(2) if # L then for any sting y € X, M refect the input string x y

We need a polynomial reduction from L to SAT that will take any input z € 3§
and construct an instance of SAT, S,,that is satisfiable if and only if z € L. Since
L € NP, this is equivalent to saying that S, is satisfiable if and only if, there exists
a certificate y € 3§ such that |y| < p(Jz|) and M accepts the input string = y.
Thus, the satisfiability of S, depends on whether the DTM M accepts the input
string x y, so we should use the characteristics of M to define S,.

To do so, we need to first better describe M. Let the alphabet be ¥ = {0y, ..., 0}
and the set of states be T' = {70, ..., vm}. Let the blanks symbol * be oy, the initial
state be 7y , and the accept state be ;. The running itme of M is bounded by
p(n), so the tape squares that can be scanned are at most p(n) squares from the
starting square, since the read/write head can only move one square per step. We
will label the tape squares with integer values using zero for the starting square to

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 9

reference them and note that only the contents of square —p(n),...,p(n) will be
relevant to the computation of M.
Now consider the following variables:

SQ; .45 SCit and sty

defined as follows:

5qi,j,t— at time ¢ squares ¢ contains symbol o

sc; ¢— at time ¢ the read-write head is scanning sqaure ¢

stx,.— at time ¢ the mahcine is in state

For x € X, we will construct S, from seven clauses defined using the above
variables such that it will be satisfiable only if M accepts z y. To define these
clauses, we will often need to express that only one term of a collection of variables

Z1,- .-, 2n 18 true. We will use the following notation to express that fact in CNF
n
Unique(z1,...,2,) = (\/ zl> A /\ (Z: V Z5)
i=1 1<i<j<n
Suppose Unique(zy, ..., 2,) is true, then both sides of the conjunction are true.

(Vi_, z) is true = at least one term must be true. Suppose more than
one term, zy and z;, are true, then (Zy V Z;) will be false which implies that

(/\19-<j§n(2i \/Ej)) will be false, which is a contradiction. Thus one term of

Z1,...,%n is true. Conversely, suppose exactly one term, z,, from the collection
21,...,2n = (Vi 2) and /\{1)”.@}\{1)) z; are true. Thus, Unique(z1,...,2,)
is true. Therefore Unique(z1,...,2,) is true if and only if exactly one term of
Z1,...,2%n 1S true.

The seven clauses of S, will ensure that the computation of M will occur ac-
cording to the definition of a DTM.
(i) The read/write head can only scan one square at any time.

p(n)
Ci = /\ Unique(sc_p ()¢5 -+ -5 SCp(n),t)
t=0
If Unique(sc_p(n),¢s- -+, SCpn),¢) is true, then at time ¢ the read-write head is
scanning exactly one square of the collection —p(n),...,p(n), the relevant range of
sqaures we defined earlier. Since C is a conjunction of such Unique statements for
0 <t <p(n), Cy is true if and only if at any time the read/write head is scanning
only one square.
(ii) Each square contains only one symbol.

p(n) p(n)
Cy = /\ /\ Unique(sqiyoﬁt7 . 7SQi,l,t)
i=—p(n) t=0

Similarly, Cs is true if and only if at any time, every square contains exactly one
symbol.
(iii) The machine is always in a single state

p(n)

C = /\ Unique(sto ¢, - - -, Stm,¢)
t=0

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 10

Similarly, Cs is true if and only if at any time ¢ the machine M is in a single
state.

(iv) The computation starts correctly

The following conditions define the starting condition of the DTM M. At time
t = 0 the squares —p(n), ..., —1 are blank, the squares 0,1, ..., n contain the string
* = 04,05 ...0j, and the square n + 1 to p(n) can contain anything (since any
string in these squares could be a possible certificate for various DTMs). Also, the
starting position of the read/write head must be at the zero square and the initial

state is o :
-1

04 —SCOO/\Stoo/\ /\Sqme/\ /\ quOO
i=0 i=—p(n)
(v) The computation ends in acceptance.
At some time ¢t < p(n), M enters the accept state 7;:

p(n)

\/Stlt

(vi) Only the symbol in the current square can change.
Only the symbol in the current sqaure can change from time ¢ to ¢t + 1

p(n) 1 p(n)

/\ /\ /\ SCi,t V'8Q, ¢ VB 1) A (SCie VBTG, 4V SU; jyi1)
i=—p(n) j=0 t=0

(vii) The transition function determines the computation of M
If at time ¢ the machine is in state 7, the read/write head is scanning square 1,
and this sqaure contains symbol o; then

(Y, 05) = (Vp, 0q, b)
describes the new state (,), the new symbol to write in square ¢ (o,), and

whether the read-write head moves right or left (We let b = 1 if it moves right and
b= —1 if it moves left)

p(n) 1 p(n) m

/\ /\ /\ /\ sty V SCit V 5Q; g)V (stp 1 A S g t41 N SCitbt+1)
i=—p(n) j=0 t=0 k=0

At t if the present state is 7, the scanning head is on square i and the symbol
in the square is o, then (stx; V8¢, V5, ;) is false and thus (stp 11 ASq; 4441 A
SCitb,t+1) must be true, which implies that the new state is y,, the new symbol in
square % is o, and the scanning head has moved right or left accordingly, essentially
given inputs the transition function will correctly compute the next step in the
algorithm.

For simplicity, C7 is not written in CNF, but can be rewritten in CNF:

p(n) (n) m
= A /\ /\ /\ St V Stp,e1) A (5Cije V SCisp,e+1) A (89, 5, V 5 g,041)
i=—p(n)j=01 =
If we take the conjunction of the above seven clauses to be S, we will have
an instance of SAT. We need to show that S, is polynomial in input size. The
number is distinct variables is (21 + 2)p(n)? + (I +m + 1)p(n) or O(p(n)?), which

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 11

follows from counting the permutations of the variables sq; j:, scit, str:. Also,
the total number of clauses is O(p(n)?), which is determined by Cy. Thus S, is
polynomial in input size. In addition, S, is satisfiable if and only if the DTM M
accepts the input = y for a certificate y € X in time bounded above by p(n). In
fact, given a satifying truth assignment, we can find the certificate for z by looking
ab SUn41,4,41,05 - - > 5p(n).j,1).0 which are the contents of the squares n + 1 to p(n)
at time t = 0. Therefore for any problem L € NP, L <,, SAT, which implies that
SAT is NP-complete. O

Cook’s result is very important in complexity theory because it provides a natural
example of an NP-complete language, and using Proposition 3.10, which states
that if L is NP-complete, A € NP and L <,, A, then A is also NP-complete,
many thousands of languages of problems in diverse areas have been shown to be
NP-complete.

4. RELATIONS BETWEEN COMPEXITY CLASSES, APPROACHING P = NP

Now that we have introduced several complexity classes, we will explore the
relations between them.

4.1. Complements of Langauges. To understand the relations between classes,
we must develop the notion of a complement of a language.

Definition 4.1. If L C ¥j is a language then the complement of L is
L={zeXi|z gL}
If C is a complexity class, then the class of complements of a languages in C is
co-C={L CX{|L°eC}.

If a language is in P, then we have a DTM that decides L in polynomial time,
telling us whether a given input is in the language or not in polynomial time, so by
simply reversing the output of the algorithm, we have a polynomial time DTM that
decides L¢. Thus, P = co-P. However,The same is not true for NP. From Definition
4.1, A language L C X} belongs to co-NP if there is a DTM M and a polynomial
p(n) sich that Thps(n) < p(n) and on any input x € 3j:

(1) if € L then there exists a certificate y € X such that |y| < p(|z|) and M
accepts the input string = y
(2) if z € L then for any sting y € X§, M rejects the input string x y

Thus to verify that a language is in NP, we simply must find a certificate that
M will accept, but to to check that a language is in co-NP, we must check every
possible certificate to ensure each one is rejected, so we can’t use the DTM given
by the definition of NP for L and produce a new DTM to check if L¢ € co-NP.
The question of NP = co-NP is an open problem in complexity, probably second in
importance to the question of whether P = NP. The following proposition provides
one avenue from which to attack the problem.

Proposition 4.2. If L is NP-complete and L belongs to co-NP then NP = co-NP

We know that P = co-P and P C NP, so we also have P C NP N co-NP. Another
important open problem is whether not P = NP N co-NP.

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 12

4.2. Containments between Complexity Classes. Thus far we know of the
following containments between complexity classes P C NP N co-NP C NP. The
question of whether or not these containments are strict are important in complexity
theory, in particular the question of whether P = NP is central to the field. There
are some results that give us a way to attack the problem. One approach is the
p-isomorphism conjecture, which if shown to be true, would imply that P # NP.

Definition 4.3. Two languages over possibly different alphabets, A C X and
B CII§, are p-isomorphic if there exists a function f such that:

(1) f is a bijection between X and IIj
(2) e A — f(x)eB
(3) both f and f~! belong to FP

Conjecture 4.4. All NP-complete languages are p-isomorphic.
Theorem 4.5. If p-isomorphism conjecture is true then P # NP

Proof. Suppose P = NP, then all languages in P are NP-complete. However, P
contains finite languages which cannot be p-isomorphic with infinite languages.

Thus, P # NP.
The task of proving this central result then is reduced to proving the p-isomorphism
conjecture. ([

5. PROBABILISTIC COMPUTATION

Many problems that would be difficult to solve using a deterministic Turing
machine or a traditional algorithm may be easier to solve if we apply an algorithm
that instead of outputing a certain answer, either outputs true or 'probably false’
with probablity of at least 1/2. This type of algorithm is known as a probabilistic
algorithm. Before formalizing this concept, we will discuss the general idea further
with an example.

5.1. Probabilistic Algorithms.

Example 5.1. Let Z[z1,...,x,] denote the set of polynomial in n variables with
integer coefficients. Can we efficiently decide whether two such polynomials f and
g are identical. If f and g are identical, then f — g = 0, so efficiently deciding
whether a function is indentically zero will suffice to decide the problem. Consider
the following algorithm. We use ai,...,a, €r A to denote that aq,...,a, are
chosen randomly and independently from the set A

Algorithm 5.2. Probablistic algorithm to decide if a polynomial is not identically
zero

Input: an integer polynomial f € Z[x1,...,xy] of degree k

choose ay,...,a, € [1,2,...,2kn]

if f(ar,...,an) #0

then output true

else output false

If the algorithm ever outputs true, then we know with certainty that the function
is not identically zero. If f is not identically zero, then the algorithm will output
false only if one of the aj is a root of the polynomial, which seems to be fairly
unlikely. Suppose then we repeated the algorithm a hundred times, randomly and

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 13

independently choosing a1, ... a, each time, it would be very unlikely that we pick
a root each of the hundred runs. Thus, if the algorithm did output false all 100
iterations of the algorithm, then we can say with a high degree of certainty that
the function is identically zero. This process allows us to avoid checking every
certificate; instead we randomly pick one and chcek if it works. The reason this
works is that if the polynomial is not identically zero, then there are lots of good
certificates, choices of aq, ..., a,, of that fact and the chances a random certicficate
will work are very good; however if the polynomial is identically zero then the
algorithm will always correctly output false. The following theorem formalizes this
intuition. If the probability of an event occuring is at most z/y, we denote this
Pr[Event] < %

Theorem 5.3. Suppose f € Z|x1,...,x,] has degree at most k and is not identi-
cally zero. If a1,...,an €r [1,...,N], then Pr{f(a1,...a,) =0] < %

Since the algorithm randomly chooses from a set of 2kn, applying this theorem,
we have Pr[f(as,...a,) = 0] < 1, so if the input polynomial is not identically zero,
then the probablity of the algorithm correctly outputting true is at least 1/2, but
if the algorithm is identically zero, then the output will always be false. At first
glance, having only 1/2 chance of being correct if the algorithm is not identically
zero doesn’t seem great, but if we rewrite the algorithm to repeat itself 100 times,
we have that the probablity of incorrectly deciding that a polynomial is identically
zero is less than 1/2'%0 which is practical terms is excellent.

Now let’s consider the efficiency of this procedure. Since the polynomial can be
evaluated at ay,...,a, in polynomial time, the algorithm is efficient in that sense.
However, when we consider probabilistic algorithms, we also need randomness which
must also factor into efficiency. The resource of randomness is measured in the
number of random bits used during the computation. We assume that we have a
source for random bits, such as a sequence of coin-flips, but often algorithms require
more than just random bits, such as the one we introduced in the example which
require random integers from an interval. The following is one way to produce
random integers from random bits.

Algorithm 5.4. Choosing an integer a €g {0,...n} using random bits
Supposing we have an infinite sequence of independent random bits, we can use

the following procedure to choose a random integer a € {0,...,n}. Suppose that
2k=1 < p < 2k,
read k random bits, by, ..., bk, from our infinite sequence.

Ifa=0b1...b, €{0,...n}, where a is encoded in binary
then output a
else repeat

After a single interation the probablity that a number from the interval is chosen
is
n+1 1
2k - 2
So it is expected that an output will occur after fewer than two iterations and
with probablity 1 — 1/219° an output will occur after 100 iterations. We can be
confident that we will get an output in a reasonable amount of time, but we also
need to ensure that the outputted integer will have been chosen at random from

Prja € {0,...,n}] =

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 14

the interval {0,...,n}. If m € {0,...,n} and we let a; denote the value of a chose
in the jth iteration of this procedure then

Pr[Output is m| = ZPr[aj =mand ai,...a;—1 > n+1]
j=1

1S n+1\’
5> (- 5)
=0
1
n—+1

Thus, the integer that is chosen using this method is chosen randomly from the
interval.

5.2. Probabilistic Turing Machines. Earlier we stated that a problem is tractable
or practical if and only if there is a polynomial time algorithm for its solution, but
in fact, this algorithm can be either deterministic or probabilistic. We will now
fomalize the notion of a probabilistic algorithm as a probabalistic Turing machine
or PTM and adjust our definition of a tractable problem.

Definition 5.5. A Probabilistic Turing Machine or PTM is a DTM with an ex-
tra tape, the coin-tossing tape, which contains an infinite sequence of uniformly
distributed independent random bits. This tape has a read-only head called the
coin-tossing head. The machine performs computations like a DTM except the
coin-tossing tape can read a bit from the coin-tossing tape in a single step, so the
running time of the algorithm will take into account the amount of randomness the
algorithm requires.

The transition function of a PTM depends on not only the current state and the
symbol in the current square, but also on the random bit in the square currently
scanned by the coin-tossing head. The transition function now outputs the new
state, the new symbol to write in the current square, and the movements of both
the read/write head and the coin-tossing head.

Since the computation of a PTM depends on the random bits used, the running
time and whether or not the machine halt on an input are both random variables,
so we say that a PTM is halting if it halts after finitely many steps on every input
x € X regardless of the random bits used in its computation. the time complexity
of a halting PTM, M, is Tjs : N — N defined by

Tr(n) = max{t|Ix € Xf such that Pr[ty(z) =t] > 0}

A PTM has polynomial running time if there is a polynomial, p(n), such that
Tr(n) < p(n), for every n € N. If a PTM is not halting we can still define its
expected running time

ETy(n) = max{t|3z € Ef such that E[ty (x)] =t}

We can now define the complexity class of languages that can be decided in
randomized polynomial time or RP.

Definition 5.6. A language L € RP if and only if there is a polynomial time PTM,
M, such that on any input x € Xf:

(1) if x € L then Pr[M accepts x] > 1/2
(2) if ¢ L then Pr[M accepts z] =0

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 15

Our example of a probabilistic algorithm that determine whether a given polyno-
mial is not identically zero could be implemented as a PTM in this class. If a
zero polynomial is inputed into the algorithm, the polynomial always rejects, so
condition (2) is satisfied and we showed earlier that the probability of incorrectly
rejecting a non-zero polynomial is less than 1/2, so condition (1) is also fulfilled.

Another way of thinking of RP is the collection of languages L such that a
random input will be a succicnt certificate for the problem at least 1/2 of the time,
but if x € L, then no such certificate exists and all inputs will be rejected. This
leads to the following ontainments.

If a language belongs to RP, then we can reduce the probability of error by re-
peating the computation a polynomial number of times as we did with our example
algorithm.

Proposition 5.7. If L € RP and p(n) > 1 is a polynomial then there exists a
polynomial time PTM, M, such that on input x € X7 :

(1) if x € L then Pr[M accepts x| > 1 — 27P(")
(2) if € L then Pr[M accepts] =0

Proof. L € RP = there is a polynomial time PTM, N, such that on any input
T € Xj:

(1) if © € L then Pr[N accepts z] > 1/2

(2) if € L then Pr[N accepts 2] =0
We can construct a PTM, M, by repeating the computation of N p(n) times.
This new machine accepts the input if and only if the input is accepted on one
of the iterations. Since if ¢ L then Pr[N accepts z] = 0, then if 2 ¢ L then
Pr[M accepts z] = 0, satisfying (2) of the proposition. Also, N incorrectly rejects
x € L with probability less than 1/2, so then after p(n) iterations, the probability
of M incorrectly rejecting a good certificate is less than 272" thus if z € L then
Pr[M accepts z] > 1 — 2-7(") The new machine M also runs in polynomial time.
Suppose that the running time of N was bounded by a polynomial O(z*), then if
M repeats the computation p(n) times, the running time of M is bounded by a
polynomial O(p(n)x*), thus M is a polynomial time PTM O

Now that we have developed the notion of probabilistic algorithims, we can
return to the question of primality testing introduced earlier.

5.3. Primality Testing. Many crytographic systems require large random prime
numbers. We have already discussed how to choose a random £ bit integer given a
source of randomness. Now we need to be able to check whether the large number
chosen is prime. Earlier we described the naive primality algorithm, which was
an example of an intractable algorithm, but in 2002, Agrawal, Kagal and Saxena
discovered the striking result that there exists a deterministic polynomial time
algorithm for primality testing, that PRIME € P! However, this algorithm has
running time O(log®n) which is still not very efficient. Fortunately, there is an
efficient probablistic algorithm for primality testing, the Miller-Rabin algorithm.
To discuss the Miller-Rabin algorithm, we need some number and group theory.

Definition 5.8. A group is a set G together with a binary operation - denoted
(G,), satisfying the following conditions

(1) if g,h € G, then g - h € G (Closure)

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 16

(2) if g,h,k € G then g- (h-k) = (g-h) - k (Associativity)

(3) there exists I¢ € G such that Vg € G,g-1g = g = I - g (Identity Element)

(4) Vg € G, there exists g~ € G such that g- g~ ! = Ig = g~ - g (Inverse
Element)

Definition 5.9. If (G,) is a group, then H C G is a subgroup of G iff it forms a
group under the binary operation of GG, more specifically iff it satisfies the following
conditions

(1) if gh e H theng-he H
(2) lce H
(3) if h€ H, then h=' € H

Theorem 5.10. Lagrange’s Theorem. If H is a subgroup of G then |H| divides |G|
exactly

Corollary 5.11. If H is a proper subgroup of a group G then |H| < |G|/2

Theorem 5.12. Prime Number Theorem. ©w(N) is the number of prime numbers
p<N
. m(N)InN
1 _ =
A weaker statement of the theorem provides upper and lower bounds for m(N)

*(ew) == (i)

We denote the fact that d divides n by d | n. If d | n and d # n , then d is a proper
divisor of n, and if d | n and d # 1, then d is a non-trivial divisor of n,

Two integers, a and b, are congruent modulo an integer n iff n | a —b. We denote
this by a = b mod n

If N is a positive integer then the set of residues mod n is

Zp={a|0<a<n-1}

1

This is a group under addition mod n with identity 0. The set of non-zero
residues mod n is
ZF={a|1<a<n-1}

Theorem 5.13. Chinese Remainder Theorem. If ni,ns...,ni are pairwise co-
prime (that is ged(ni,nj) = 1 for i # j), and N = T1¥_n;, then the following
system of congruences has a uniqie solution mod N

T = a; mod n

T = ag mod no

T = ar mod ng
Writing N; = N/n; and using Euclid’s algorithm to find by, ..., by such that b;N; =
1 mod n;, the solution is

k

i—1

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 17

The set of units modn is
7 ={a|1<a<n—1and ged(a,n) =1}

This is a group under multiplication modn with identity 1
If p is prime, then Z, is a field.

Theorem 5.14. Fermat’s Little Theorem. If p is prime and a € Z, then
a? ' =1modp

Now we can approach the problem of primality testing. Consider the comple-
mentary problem to PRIME

COMPOSITE

Input: integer n

Question: Is n composite?
We will show that COMPOSITE € RP using the Miller-Rabin algorithm, but the
proof will require the following Lemma

Lemma 5.15. Let n > 3 be odd and a € Zj;. Write n — 1 = ka, where m 1s odd.
If either of the following conditions hold, then n is composite

(1) a" ! #1modn

(2) a» ! = 1 mod n,a™ # 1 modn and none of the values in the sequence

k
k 2k 4k a2 m

a®,a*",a ", ..., are congruent to —1 mod n.

Proof. By Fermat’s Little Theorem, if p is prime, then Va € Z;{, aP~! = 1 mod p,
so (1) holds if n is composite. If (2) holds then let b be the last integer in the
sequence a™,a?™,...that is not congruent to 1 mod n. Then b? = 1 mod n, but
b # +1 mod n, so n divides b> — 1, but not b+ 1 or b— 1, thus b+ 1 and b — 1 must

be non-trivial factors of n, so n is composite. O

If a € Z;, satisfies condition (1), then it is a Fermat witness to the compositeness
of n, and if it satisfies (2), then it is a Miller witness. Let the set of Fermat witnesses
for an integer n be

F, = {a € Z] | a is a Fermat witness for n}

Suppose a € Z;} is not a Fermat witness for n, then a"~! = 1modn = n |
(a""!—1) = 3k € Z such that a"! — kn = 1. Since ged(a,n) | a” ! — kn, then
ged(a,n) = 1. Thus, every a € Z that is not coprime with n, is a Fermat witness
for n.

Definition 5.16. A composite integer is a Carmicheal number if the only Fermat
witnesses for n are a € Z; that are not coprime with n. The smallest such number
is 561 =3-11-17.

For Carmicheal numbers there are relatively few Fermat witnesses, but by the
following proposition if n is not a Carmicheal number then there are quite a few.

Proposition 5.17. If n is composite but not a Carmicheal number then |F,| >

Proof. As we noted earlier, the set of integers less than and coprime to an integer
form a multiplicative group Z; = {1 < a < n | ged(a,n) = 1}. Denote the elements
of this group that are not Fermat witnesses B = Z}\ F},, so

B={acZ|a" " =1modn}

B is a subgroup of Z; since

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 18

(1) if a,b € B then (ab)" ' =a" " 1p" 1 =1-1=1=1mod n, so ab € B

(2) 1" '=1=1modn,so 1€ B

(3) Ifa € B, then (a7 !)" 1 =(a"!)"'=1"'=1modn,soa"! € B
Thus B is a subgroup of Z7 . Since n is a composite number that is not a Carmicheal
number, there exists a Fermat witness that is coprime with n = 3b € Z}\B,

so B is a proper subgroup of Z;,. Hence, by the corollary to Langrange’s theorem,
|B| < (n—1)/2 = n—|B|>1/2 and since |Z}| =n —1,

Bl = |2~ |B| > 5

Algorithm 5.18. Miller-Rabin Primality Test
Input: an odd integer n > 3
choose a €g Z;}
if ged(a,n) # 1, then output ’composite’
let n — 1 = 2*m, where m is odd
if a™ = 1 mod n then output ’prime’
fori=0tok—1

if @™2 = —1 mod n then output ’prime’
next 4
output ‘composite’

Theorem 5.19. The Miller-Rabin Primality test is a probabilistic polynomial time
algorithm. Given input n

(1) if n is prime then the algorithm always outputs ’prime’
2) if n is composite then
p

1
Prfthe algorithm outputs ’composite’] > B
Hence COMPOSITE € RP or equivalently PRIME € co-RP

Proof. The Miller-Rabin test is clearly a probabilistic polynomial time algorithm
since it only uses basic operations can be computed in polynomial time such as
multiplication, calculation of the greatest common divisor and exponentiation mod
n, so we must show that the two conditions hold to complete the proof.

Suppose n is prime, then Va € Z}, ged(a,n) = 1, by definition of primality,
so the algorithm cannot output ’composite’ at line 2. The only other way the
algorithm could output ’composite’ is if a™ # 1 mod n and none of the values in
the sequence a™,a®™,a*™, ..., a**™ are congruent to —1 mod n. In which case,
either ¢! # 1 mod n and a is a Fermat witness or ¢! = 1 mod n and a is a
Miller witness, but by Lemma 5.15 this is impossible since n is prime. Thus (1)
holds.

Now it is left to prove (2). To do so, we must consider two cases.

Case 1. The input n is composite, but not a Carmicheal number.

Suppose the algorithm incorrectly outputs ’prime’; then either ¢”™ = 1 mod n or
a™? = —1modn for some 0 < i < k—1. If @™ = 1modn, then a?'m =
lmodn = a"‘l_: 1 modn. If C_Lm'T = —1mod n for some 0 < ¢ <k — 1, then
nlam™? +1. (a2 —1) = (a™? +1)(a™? —1), so since n | a™2 + 1, then n |
(@2 —1) = a™?" =1modn = a?™ =1mod n = ¢" ! =1mod n.
In both cases, a® ' = 1 mod n, so a is not a Fermat witness, and by Proposition

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 19

5.17, we have that if n is composite and not a Carmicheal number, then |F),| >
Since |Z;7| =n — 1, then |F,| > |Z;|/2, so since the algorithm chooses a €g Z;,

|3

1
Pr[algorithm outputs 'composite’] > 3

Case 2. The input n is a Carmicheal number.
There are two subcases depending on whether or not n is a prime power. (n is a
prime power if n = p* where p is prime and k£ > 1).

We will first examine the case where n is not a prime power.
Let

t =max{0 <i <n—1|3aeZ such that ™2 = —1 mod n}
and
B, ={a€Z,| a™? = +1 mod n}

Note that if a € By, then the algorithm will output ’composite’. Since if the
algorithm outputs prime then either ™ = 1 mod n or by the definition of ¢, there
exists 0 < i < ¢ such that a™? = —1modn. In either situation, by similar
argument as in Case 1, this implies that a™?" = +1 mod n, . We need to show
that By < |Z%]/2 to complete the proof in this case.

B; is a subgroup of Z,

1. a,be B, = (ab)™2 =am™?2 .p™2" = (£1)- (+1) = £1 mod n, so ab € B,
2. 12 =1modn = 1€ B,
3.a€B = (a)™ =(am?)! = (+1)"! =+l mod n

Now if we can show that B; is a proper subgroup of Z}, that is B; # Z}, then
we can apply Langrange’s Theorem as we did in Proposition 5.17, to show that
|Bi| < |Z7]/2.

The definition of ¢ implies the existence of a € Z;, such that a™? = —1 mod n.
Since n > 3 is not a prime power, we can factor n as n = cd where ged(c,d) =
1. Now by the Chinese Remainder Theorem, we have that there exists b € Z}
satisfying

b=amodc
b=1modd

The theorem also gives us that b = a mod n (this follows from the result b =
S¥ | b;Nja; mod N). This implies that n | (b—a) = 3k € Z#such that b—kn =
a. Note that ged(b,n) divides the left side of this equation so ged(b,n) | a and
a € Z!, = gcd(a,n) = 1. Thus, we have that ged(b,n) =1 = b € Z;.
However,

t t
b2 =a™2 = —1mod ¢

b2 — 1m2 — 1 mod d

imply that b™2" # +1 mod n, so b ¢ B,.Thus, B, # Z.

The other possibility is that the input n is both a prime power and a Carmicheal
number. However, no Charmicheal number is a prime power (the proof for this
requires number theory beyond what we have not introduced, so we will just accept
it), so this case is not relavant. Therefore COMPOSITE € RP or equivalently,
PRIME € co-RP. O

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 20

6. ONE-wAY FUNCTIONS

As we state earlier, one-way functions are functions that are easy to compute,
but difficult to invert. Many cryptosystems depend on the comlpexity theoretic
gap created by one-way functions between those trying to share a secret, say Alice
and Bob, and an intruder trying to eavesdrop, Eve. Alice can encrypt a message
with a one-way function and Bob, with his secret key, can easily invert the function
and decrypt the message. Without this key, it is difficult for Eve to invert the
function. We need to determine what the nature of the complexity this gap should
be for an effective cryptosytem, in essence, how exactly must the one-way function
be difficult to invert.

For such a gap to exist, there must be some limit to Eve’s computational re-
sources, but it would be unreasonable to assume that Alice and Bob have any
greater computational abilities than Eve, so we will assume that all parties can
only perform polynomial time computations. This means that for it to be easy for
Alice and Bob to encrypt and decrypt a message, there must be a polynomial time
algorithm to do so, but what does it mean for it to be difficult for Eve to decrypt
the message. One option would be for Alice and Bob to use a system in which
the problem of decryption is NP-hard for Eve, but this will not necessarily be a
secure system since a problem can be NP-hard if many instances are easy, but a few
instances are particularly difficult because hardness is measured in the worst-case
situation. Hence, it is not sufficient for the problem of decryption to be NP-hard
for an effective cryptosystem.

On the other hand, it is also unreasonable to suppose that it impossible for Eve
to retrieve the message since if she were to randomly guess a message, then she
would still have a very small chance of guessing the correct message.

So given these requirements, a reasonable level of security to demand from a
cryptosystem is if Eve uses any probabilistic polynomial time algorithm then the
probability that she decrypts a random encrypted message is negligible, where
negligible is defined as follows

Definition 6.1. A function r : N — N is negligible if for any polynomial p : N — N|
there is an integer ko such that r(k) < 1/p(k) for k > ko. A negligible function is
one that is less than any polynomial after a finite number of integer values.

This definition ensures that if Eve repeats an attack that has a negligible prob-
ablity of succeeding a polynomial number of times, she is still unlikely to succeed
since each attempt would be represented a seperate negligible functon r; and the
probability that one attempt would succeed would be the sum of these functions,
and since each of these functions is small relative to any polynomial for & sufficiently
large, their sum is small as well.

In addition to these secuirty requirements of inverting a one-way function, we
need to impose one more condition. To invert f(z) means to find the preimage
of a value. To invert y = f(x) means to find z such that f(z) = y. Let the set
of preimages be f~1(f(z)) = {z € {0,1}* | f(2) = f(z)}. We want a function
to be difficult to invert because the preimage is difficult to find, not because the
preimage is too long to invert in polynomial time. To avoid this problem, we will
suppose that the input to any inverting algorithm will include both the image to
invert, f(z), as well as the length of = in unary. So if |x| = k, then the input
to an inverting algorithm would be (f(x), 1) and the algorithm should output a

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 21

preimage z € f~1(f(z)). This ensures that at least one preimage of f(z) can be
written in polynomial time. We can now give a formal definition for a one-way
function

Definition 6.2. A function f : {0,1}* — {0,1}* is one-way iff
(1) f is computable in polynomial time
(2) For any probabilistic polynomial time algorithm A, the probability that A suc-
cessfully inverts f(z), for random x € {0, 1}*, is negligible.
using our definition of negligible, we can rewrite 2 as
(2’) For any positive polynomial ¢(-) and any probabilistic polynomial time algo-
rithm A the following holds for & sufficiently large:
PAG (). 1) € S (7(@) | €n 0.1} € o

One computation that is believed to be very difficult is factoring the prod-
uct of two large prime numbers. Currently, the most efficient factoring algo-
rithms are the Quadratic Sieve and the Number Field Sieve, both are probabilis-
tic algorithms that have expected runnings times of O(exp(v/c; In Nlnln N)) and
O(exp(ca(In N)/3(Inln N)?/3)), where ¢; ~ 1 and ¢o < (64/9)'/% ~ 1.923. The
following is the formal statement that given a product of two large primes, an
instruder should have a negligible chance of factoring it.

Assumption 6.3. Factoring Assumption. For any positive polynomial r(-) and
probabilitic polynomial time algorithm A, the following holds for k sufficiently large

Pr[A(n) = (p,q)] £ —=

where n = pq and p,q are random k-bit primes.

Proposition 6.4. Under the factoring assumption, Prime multiplication, pmult,
is a one-way function.

Proof. pmult is computable in polynomial time since it is simply multiplying two
integers, so condition (1) of Definition 6.2 is satisfied, and the factoring assumption
gives us (2) of the definition. O

Since this proof depends on the factoring assumption, it is still not certain that
pmult is a one-way function. If one-way functions do in fact exist, there are large
implications for complexity theory such as the following.

Theorem 6.5. If one-way functions exists, then NP # P

7. THE RSA CRYPTOSYSTEM

The RSA cryptosystem works as follows

(1) Setup. Bob secretly chooses two large distinct prime p and ¢, and then
forms his public modulus n = pq. He then chooses his public exponent e to
be coprime to (p — 1)(¢ — 1), with 1 < e < (p —1)(¢ — 1). The pair (n,e)
is his public key that he publishes. His private key is the unique integer
1<d<(p—1)(g—1) such that

ed=1mod (p—1)(¢—1).

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 22

(2) Encryption. Alice has a message M she wishes to send to Bob. She splits
the message into a sequence of blocks My, Ms, ..., M; where each M, sat-
isfies 0 < M; < n. She knows Bob’s public key, (n,e), and she uses it to
encrypts these blocks as

Ci = M7 modn

and sends the encrypted blocks,Cy,Cs, ..., C; to Bob.
(3) Decryption. Bob decrypts the blocks using his private key d by raising each
encrypted block to the dth power resulting in

M; = C% mod n
Proposition 7.1. Decryption in RSA works

Proof. From the setup, we have that ed = 1 mod (p — 1)(¢ — 1) = Ik € Z such
that ed =1+ k(p — 1)(¢ — 1). Thus we have

Cd = (Me) = M&d = Mi1+k(p—1)(q—1)
= My(MP~)*a=Y = M mod p
Since either p divides M;, in which case M; = 0 mod p and both sides are 0, or p
does not divide M;, in which case ged(p, M;) = 1, then by Fermat’s Little Theorem,
we have szil =1lmodp = (Mf*l)k(qfl) =1lmodp = M(Mipfl)k(qfl) _
(M£)? = M; mod p . By similar argument, we have

(M) = M; mod q
p and ¢ are distinct primes so by the Chinese Remainder Theorem,
Cd = (Mf)* = M; mod n
O

Now it is left to show that the setup and encryption\decryption are easy for Alice
and Bob and that the system is secure, or deciphering the message is an intractable
problem for Eve.

First, we will show that the setup is easy. Bob can choose two random k-bit
integers using the random integer algorithm (5.4), and test their primality using
the Miller Rabin Algorithm in polynomial time. Note that a k-bit integer can be
at most N = Zle 2F=1 By the Prime Number Theorem, 7(N), the number of

N

primes p < N is bounded below by a polynomial O (log ~

). For k large enough,

0] (%) > % thus Bob can expect to find a prime in less than k picks. He then
forms n by multiplication, a basic operation. To find e, he chooses k-bit integers at
random untill he finds one that is co-prime with (p — 1)(¢ — 1). To find d, he can
use Euclid’s algorithm. Therefore, the setup can be completed in polynomial time.

Next, we will show that encryption/decryption are easy. Both encryption and
decryption require only exponentiation modn, so both can be done in polynomial
time.

Finally, we will discuss the security of the system. Eve faces a difficult problem,
computing eth roots modn since she needs to find the private key. One way to do
this would be for her to factor n to find p and g and she construct the private key
herself as Bob did during the setup. Thus, if factoring is easy, the RSA is insecure;
however, the converse may not be true. Whether or not the problem of factoring

COMPLEXITY THEORY AND THE RSA CRYPTOSYSTEM 23

and breaking RSA are equivalent is a large open problem, the solution to which
will better cement RSA’s security.

Acknowledgements. I'd like to thank my mentor David Chudzicki for his guid-
ance and feedback.

REFERENCES

[1] Talbot, John and Dominic Welsh. Complexity and Cryptography. Cambridge: Cambridge
University Press, 2006.
[2] Rothe, Jorg. Complexity Theory and Cryptology. Berlin: Springer, 2005.

