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1. Abstract

In this paper we show that for any two vertices x, y of a 6-connected graph G, there

exists a path between them whose removal leaves G 3-connected. This proves the case of

Lovasz’s path removal conjecture (1975), where f(3) = 6.

This article examines the relationship between connectivity and path removal. The

following definition of connectivity is used frequently

Definition 1. A graph G is k − connected if a set S of k vertices disconnects the graph
into at least two components C1 and C2 and S and no set S

� of k − 1 vertices disconnects
the graph.

Definition 2. A k vertex cut in a graph G is a set of k vertices which disconnects the
graph into at least two components C1 and C2.

Thus any k-connected graph must contain a k-vertex cut which disconnects the graph

into at least two components.

By definition, the complete graph on n vertices, Kn, is n− 1-connected.

In order to describe a graph in terms of sets we need the following definitions.

Definition 3. The set E(G) is the set consisting of edges of G.

Definition 4. The set V (G) is the set consisting of vertices of G.

The central question arising from connectivity is if a graph G is k-connected and a path

P connecting two vertices is removed how well connected is the resulting graph G−V (P ).

This is a crucial question in building fail-safe networks because one may increase the

connectivity accordingly such that any path removed will yield a connected graph with the

desired connectivity. The given conjecture was made by Lovász (1975)

Conjecture 1 (Lovász). For each natural number k, there exists a least natural number
f(k) such that, for any two vertices u, v in any f(k)-connected graph G, there exists a path
P with end points u and v such that G− V (P ) is k-connected.
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Two cases of this conjecture have thus far been proven. It is well known that as a

consequence of a theorem of Tutte that f(1) = 3, because all 3-connected graphs contain a

non− separating path, a path whose removal does not disconnect the graph, between any

two vertices. The case f(2) = 5 was proven by Chen, Gould, and Yu (1998).

2. The Case of f(3) = 6

A quick counter example shows that f(3) �= 5 and makes use of the Turán graph.

Definition 5. A Turán graph T (n, r) is graph with n vertices that may be partitioned into r

subsets where no two vertices in the same partition are adjacent. In addition, each partition
will have size �n/r� or �n/r� implying the Turń graph is a complete r-partite graph.

First, we show that indeed f(3) �= 5 due to the turan graph on 8 vertices that does not

contain K4. Let T (8, 3) be the turan graph that does not contain K4. Because |V (T )| = 8

and there are 3 partitions. �8/3� = 2 and �8/3� = 3, so the size of the partitions R1, R2, R3

are 2, 3, 3 respectively.

Theorem 1. Let x, y ∈ R1 of T (8, 3) then there does not exist a path P with endpoints
x, y such that T (8, 3)− V (P ) is 3-connected.

Proof. By x, y ∈ R1 there does not exist an edge joining them. Thus, a path P joining

them would have to include at least one vertex of a second partition R2. Thus in G−V (P )

|R2| ≤ 2. Let v1, v2 inR2 in G − V (P ). Then v1, v2 clearly induce a 2 vertex cut in the

graph because G− (V (P )∪ (v1, v2)) = R3 and by definition no vertices of R3 are adjacent

so the graph is disconnected. �
Thus, f(3) �= 5.

Theorem 2. Any 6−connected graph contains a path P between any vertices x, y ∈ V (G)

such that G− V (P ) is 3-connected.

The following definition leads to a useful theorem about 6-connected graphs.

Definition 6. Let x ∈ G then d(x) is the number of edges incident with the vertex x.

In addition, there is a fundamental operation on graphs, the edge contraction.

Definition 7. Let G be a graph. Let x, y ∈ V (G) and let e be an edge incident with x

and y. Let G
� be the graph obtained by contracting the edge e. Then G

� may be formed
by identifying all edges incident with x and incident with y and directing these to a new
vertex v while also deleting the vertices x, y and the edge e.

If G is a graph, the graph G
�
obtained by an edge contraction of an edge xy is denoted

G/xy. The proof relies on the following characterization of 3-connected offered by Tutte

(See [2].

Theorem (Tutte 1961). A graph G is 3-connected if and only if there exists a sequence
G0, ..., Gn of graphs that have the following two properties
1) G0 = K4 and Gn = G

2) Gi+1 has an edge xy with d(x), d(y) ≥ 3 and Gi = Gi+1/xy.
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The concept of containing K4 may be captured by the following definition.

Definition 8. A graph H ⊂ G is an induced subgraph if V (H) ⊂ V (G) and E(H) ⊂ E(G).

This characterization shows that if G is a 6-connected graph and there exists a path P

between any two vertices such that G−V (P ) contains K4 as an induced subgraph then the

graph is 3-connected by G0 ∈ G− V (P ). In light of this, we split the proof into two cases.

First G is a 6-connected graph the does not contain K4, and second G is a 6-connected

graph the does contain K4.

Consider two paths P1 and P2 both with endpoints x, y.

Definition 9. The paths P1 and P2 are internally disjoint if V (P1) ∩ V (P2) = (x, y).

A tool that is used frequently to examine connectivity is Menger’s theorem (See [2]).

Theorem (Menger’s Theorem). In a k-connected graph there exist at least k-internally
disjoint paths between any two vertices.

We may establish a useful counting principle to employ Menger’s thoerem.

Definition 10. Given a graph G and two vertices x, y in G the path count is the number
of paths P1, P2, ...Pn between x, y where V (Pm) ∈ G for m = 1, 2, ...n.

The following definition is quite useful in gaining information about a vertex.

Definition 11. Let G be a graph. Let x ∈ G. Then N(x) is defined to be the set of vertices
in G who are adjacent to x.

Claim 1. If a graph G is k-connected and there exists a path P between any two vertices
x, y and (G − V (P )) ∪ (x, y) is (k-1)-connected then P is one of the k paths identified by
Menger’s theorem.

Proof. Let G be a k-connected graph and let x, y ∈ V (G). Let S be the set of the paths

between x, y. By Menger’s theorem |S| = k in G. If P is a path with endpoints x, y then in

G− V (P ) let S
�
= S \ P . We know |S�| = k− 1 so the graph G− V (P ) is (k-1)-connected

and thus P is a path in G identified by Menger’s theorem. �
Let T be a tree with a root r and let N(r) �= ∅. Consider a vertex v ∈ N(r). The set of

all children of v is called a branch of T . This is true ∀v ∈ N(r), therefore the number of

branches of T is simply the size of N(r).

In addition we define a tree that hits all vertices as the following.

Definition 12. A spanning tree of a graph G is a tree T such that V (T ) = V (G).

Definition 13. The level of v, denoted l(v) is the length of the shortest path P with end
points r and v such that E(P ) ⊂ E(T ).

Definition 14. Let T be a tree with (B1, B2, ..., Bn) branches from a root r. A pseudo-tree
on T is the graph obtained from T by adding a collection of edges, called cross edges, that
are disjoint from the edges connecting (B1, B2, ..., Bn) to the root r of T . Let d(Bn) is the
number of cross edges of the branch Bn. Let D(Bn) denote the set of cross edges which
intersect nontrivially with Bn. Finally, for notational convenience let d(Bn) = |D(Bn)|.
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Definition 15. Two branches Bn and Bm of a pseudo-tree are linked if there exists a path
P with endpoints x, y with x ∈ Bn and y ∈ Bm such that x is the only vertex of Bn ∈ P

and y is the only vertex of Bm ∈ P where the root r of T is not in P .

Case 1. G is a 6-connected graph that does not contain K4 as an induced subgraph.

Theorem 3. Any 6-connected bipartite graph G contains a path P between any two vertices
such that G− V (P ) is 3-connected.

Proof. Consider the graph G. Because G is bipartite we may consider the tree spanning

tree T grown from a root r we pick such that d(r) = 6. Thus this tree T has precisely 6

branches from the root r. Let these branches be labelled (B1, B2, ..., B6). Let G be the

pseudo-tree obtained from T by adding cross edges to T such that for x ∈ T d(x) ≥ 6 and

d(Bn) ≥ 6. Because G is 6-connected we know by Menger’s Theorem that there exist 6

internally disjoint paths between any two vertices x, y of G. The tree T clearly has only

one path between any of the branches, the path through the root r. Thus in order for G

to be 6-connected each branch (B1, B2, ..., B6) in G must have at least 5 edges leaving it,

in other words ∀B ∈ (B1, B2, ..., B6) we have d(B) ≥ 5.

Claim 2. There exists a path P between any two branches B1, B2 of the pseudo-tree G

such that B1, B2 are linked by P .

Proof. Let G be a 6-connected graph with 6-branches (B1, B2, ..., B6). Let Bk and Bn be

two branches. By Menger’s theorem there must exist 6-internally disjoint paths between

the branch Bk and the branch Bn. Let bk ∈ Bk be a vertex incident with a cross edge of

Bk. Let bn ∈ Bn. In order to show Bk and Bn are linked it suffices to show that there

exists a path P with end points bn and bk such that V (P )∩Bn = bn and V (P )∩Bk = bk.
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Consider a path P from Bn to Bk. It is clear that one can truncate P to get a path P
�
so

that V (P
�
) ∩Bn = bn and V (P

�
) ∩Bk = bk. �

Because Claim 1 was shown with two arbitrary branches we know the same is also true

for a third branch Bm ∈ G. Then for the three branches Bn, Bm, Bk we know any two are

linked. In addition we may show this useful property of the construction.

Claim 3. If G is a 6-connected pseudotree obtained from a tree T , then a path P defined
by E(P ) ⊂ E(T ) is one of the paths identified by Menger’s theorem.

Proof. By Claim 1 it suffices to show that there exists a path P ∈ G between any two

vertices x, y such that (G− V (P )) ∪ (x, y) is 5-connected. Consider the path P in G such

that E(P ) ⊂ V (P ). Then V (P ) ⊂ V (Bn) for some n and where the root r might also be

in P . However, consider the graph G−V (P ). Because V (P ) ⊂ V (Bn) for some n we know

d(Bk) ≥ 5 for all k �= n. Thus it suffices to show that Bn itself is 5-connected. Without

loss of generality assume l(x) < l(y). Consider a vertex v ∈ Bn such that l(y) = l(v) + 1.

�

As can be seen there is a cycle induced by the paths (P1, P2, P3) within the branches

Bk, Bm, BL in the graph G.

Consider a vertex v in the pseudo-tree G with an underlying tree T containing a root

r. In addition, for every Bn there exists a vertex vn such that vn ∈ N(r). Because G is

6-connected d(vn) ≥ 6. Clearly, one edge of vn is incident with the root. Suppose vn ∈ Bn

is incident with a cross edge e. Then clearly e is directed to some branch Bk. By above,

we know there exists a branch Bm such that Bk and Bn are linked by a path P2 and Bm

and Bn are linked by a path P3. Then we may choose P1 = e and the three paths identified

by Claim 1 become e, P2, P3. However, suppose ∀vn ∈ G all edges of vn are incident with

vertices in Bn. In this case the following claim holds.

Claim 4. At least 5 edges of vn must connect into the same branch, Bn that contains vn.
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Proof. There exists an ordering of vertices that are contained in the same branch. Consider

two vertices of Bn, x, y. Either l(x) < l(y) or l(x) > l(y) or l(x) = l(y) We know Bn

must have 5 distinct cross edges so let (w1, w2, ..., w5) be the vertices incident with the

cross edges the branch Bn. There must exist five disjoint paths (P1, P2, ..., P5) connecting

vn to (w1, w2, ..., wn) for the graph to be 6-connected. Because for all wn, wk we know

l(wn) �= l(wk) choose (w1, w2, ..., w5) such that (l(w1) < l(w2) < l(w3) < l(w4) < l(w5)).

Let P1 be one of the five paths (P1, P2, ..., P5) identified by Menger’s theorem with endpoints

v1 and w1. Because there must exist 6-internally disjoint paths from v1 to all vertices

v ∈ B2, B3, B4, B5, B6 we can choose P1 such that it does not contain (w2, w3, w4, w5).

Therefore, there must be an edge e
�
connecting v1 to a vertex c where l(v1) < l(c) < l(w1).

In addition, v1 is connected to a vertex x where l(x) = l(v1) + 1 by an edge e. Thus the

set of edges, e, e
�
, e

��
, e

���
, e

����
identify the 5 edges of vn that connect to vertices in Bn. �

In fact, taking any vertex v ∈ Bn as vn demonstrates the inequality l(vn) < l(wn) < l(c)

must hold for all vertices in Bn, otherwise there would not exist 6-internally disjoint paths

between v ∈ Bn and v ∈ Bm for n �= m. In addition, we see that the case where vn does

contain a cross edge e is actually just the case where vn = w1 in the proof of Claim 2

and thus E(P1) = e . Consider, again, the construction derived above of the branches

containing the cycle defined by (P1, P2, P3). By the Claim 2, in Bk there exists an edge g1

leaving vk and connecting below the vertex in Bk which is an endpoint of P1. Similarly,

there exists an edge g
�
1 leaving vk that connects below the vertex in Bk which is an endpoint

of P3. A similar argument implies the existence of edges g2, g
�
2 ∈ Bm and g3, g

�
3 ∈ Bl. Thus

given any two vertices (x, y) ∈ G a path P connecting them such that (vk, vm, vl) ∈ P can

be found by the following algorithm.

Step 1

Identify which branch x and y belong to. By Claim 1, there must exist a third branch such

that both branches any two of the three branches are adjacent.

Step 2

Identify the paths P1, P2, P3 by Claim 1 (where, as described above, it might be that all

of the paths are cross edges incident with vn). For each Bk, Bm, Bl identify each vertex

in Bk, Bm, Bl which is an endpoint of P1, P2, P3 and label them w1, w
�
1, w2, w

�
2, w3, w

�
3 since

there will be at most 2 for each branch.

Step 4

Compute l(wn) and l(w
�
n) for n = 1, 2, 3 and label wn such that l(wm) < l(w

�
m)

Step 5

Without loss of generality assume x ∈ Bk and y ∈ Bl Compute l(x).

(Case1) If l(x) > l(w
�
1) let P = (x, v1, w1, w2, v2, w

�
2, w

�
3, v3, y) plus any vertices∈ (B1, B2, ..., B6)

needed to reach any vertices of P

(Case 2) If l(x) < l(w1) let P = (x, v1, w
�
1, w

�
2, v2, w2, w3, v3, y) plus any vertices ∈ (B1, B2, ..., B6)

needed to reach any vertices of P

(Case3) If l(w1) < l(x) the same of case 2. �
Without loss of generality assume x ∈ B1 such that x �= w1, w

�
1orv1. Let (y1, y2, ..., y5) be

the vertices incident with the cross edges leaving the branch B1 such that l(y1) < l(y2) <
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l(y3) < l(y4) < l(y5). By G is 6-connected d(x) ≥ 6 and there must be 5 edges leaving x that

connect to 5 distinct vertices (q1, q2, q3, q4, q5 where l(q1) < l(q2) < l(q3) < l(q4) < l(q5).

By similar argument we know l(q1) < l(y1) < l(q2) < l(y2) < l(q3) < l(y3) < l(q4) <

l(y4) < l(q5) < l(y5).

Claim 5. Given the path P returned by Algorithm 1, at most 2 of (y1, y2, ..., y5) are in P

Using the above inequality we may prove the claim.

Proof. As above, let x ∈ B1.

If P is the path returned by Case 1 we know l(x) > l(yn) for n = 2, 3, 4, 5. However,

n �= 1 because w1 must also exist and l(w1) < l(w
�
1) and l(y1) < l(yn) for n = 2, 3, 4, 5.

By Algorithm 1 x, v1, w1 ∈ P . Consider the maximum number of yn ∈ P . First, by

Claim 3 l(x) > l(yn) for n = 2, 3, 4, 5 there must exist an edge e incident with v1 and

a vertex c where l(c) > l(yn) for n = 2, 3, 4, 5. Thus the path Q1 from x to v1 may be

defined by Q1 = x, c, v1 and may reach v1 without the removal of yn. By l(v1) < l(y1) and

l(y1) < l(yn) for n = 2, 3, 4, 5 there exists a path Q2 = v1, y1 that contains only y1. Thus

the path P1 = Q1∪Q2 defines a path leaving B1 that contains only y1. Suppose, the target

vertex x
�
was also in B1. Let P2 be the path into B1. Clearly, yn for n = 2, 3, 4, 5 ∈ P2. Let

l(yn) < l(x
�
) < l(ym) where only one side of the inequality necessarily holds. Let c

�
be a

vertex ∈ N(yn). Because Claim 3 also applies to c
� ∈ B1 there exists an edge e

�
from c

�
to

a vertex c
��

such that l(yn) < l(c
��
) < l(ym). Therefore, the path P2 = yn, c

�
, c

��
, x

�
contains

only yn. The path P = P1 ∪ P2 contains only y1, yn.

Case 2 may be shown in the exact same manner except with the inequality reversed.

Thus, given a path P returned by Algorithm 1 in the graph G, the graph G
�
= G−V (P )

is 3-connected. �

Claim 6. Algorithm 1 also returns a 3-connected graph if G is a 6-connected 3-partite
graph.

Proof. Consider the graph G generated by first selecting a vertex r such that d(r) = 6 and

subsequently identifying branches B1, B2, B3, B4, B5, B6. However, the difference between

the bipartite case and the tripartite case is that in a tripartite graph G is 3 − colorable

so there may now exist edges connecting (v1, v2, v3, v4, v5, v6). However, because r clearly

has a color c, (v1, v2, v3, v4, v5, v6) can have at most 2 colors which means there can exist

at most 3 edges between (v1, v2, v3, v4, v5, v6). Thus, at most 3 of (v1, v2, v3, v4, v5, v6) are

in P returned by Algorithm 1. Thus G− V (P ) will again yield a 3-connected graph. �
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Therefore, if G is a 6-connected bipartite or tripartite graph there exists a path P

between any two vertices such that G−V (P ) is 3-connected. The next case, where G does

contain K4, follows.

Case 2. The graph G is a 6-connected graph that contains K4.

Let G be a 6-connected graph that contains K4. We know that if G is 6-connected the

minimum degree is 6. Therefore, each vertex of K4 must be incident with at least three

other distinct vertices outside of K4.

Definition 16. Let x ∈ K4 where K4 ∈ G. Then let N
�
(x) = N(x) \ V (K4).

Thus, for G to be 6-connected d(vn) ≥ 6 where vn ∈ K4. Let B = ∪N
�
(vn) ∀ vn ∈ K4.

Also, let a path P be a neighbor path if P has endpoints x, y such that x, y ∈ B and

K4 �⊂ V (P ). Thus, a neighbor path is simply a path incident with the neighbors of

K4 ∈ G.

Claim 7. Let G be a 6-connected graph containing K4. Let vn ∈ K4. For any vertex
w ∈ G such that w /∈ (B ∪ K4) there must exist 2 paths, P and P

�, such that both P and
P

� have endpoints w and x, x
� ∈ N

�
(vn) respectively.

Proof. Let x, y ∈ B. Consider a vertex w ∈ G incident with K4 ∪B. By Menger’s theorem

there must exist 6-internally disjoint paths between w and V (K4). Let (v1, v2, v3, v4) denote

V (K4). Let P1 be the path identified by Menger’s theorem with endpoints w and v1 and P2

the path identified by Menger’s theorem with endpoints w and v2. Clearly there exists an

edge e with endpoints v1 and v2. Thus, we may identify a path P
�
1 = P1∪ e with endpoints

v2 such that v1 ∈ V (P
�
1). In addition, we may identify a path P

�
2 = P2 ∪ e with endpoints

v1 such that v2 ∈ V (P
�
2). Similarly, we may identify a set of three paths, denoted S for
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each vn ∈ K4 such that V (K4) \ vn ∈ S. Consider a path Q from w to vn. We know Q

must include some x ∈ B because Q reached V (K4) via N
�
(vn) for each vn ∈ K4. In fact,

since Menger’s theorem identifies at least 6 paths from w to each vn ∈ K4. Because there

exist at most 4 disjoint sets of N
�
(vn) We know by the Pigeon Hole principle that there

must exist some vn such that two paths identified by Menger’s theorem P and P
�
have end

points w and x, x
� ∈ N

�
(vn). Thus the claim is proven. �

Thus by Claim 2 we may identify the vertices x and y such that x, y ∈ N
�
(vn). Let Q1

be the path defined by Q1 = w, x, v1 and let Q2 be the path defined by Q2 = w, y, v1

Claim 8. The path Q2 may only increase the path count of v1 by one and does not change
the path count of v2, v3, v4.

Proof. We know Q1 and Q2 may contribute 2-internally disjoint paths between w and

v1. However, consider the path Q3 defined by Q3 = w, x, v1, v2 between w and v2. Thus

V (Q1) ⊂ V (Q3). However, by v1 ∈ Q3, V (Q2) ⊂ V (Q3) and Q1 and Q2 do not contribute

2-internally disjoint paths between w and v2, but only contribute one, namely the path

Q3. Thus, in order for Q1 and Q2 to contribute 2-internally disjoint paths between w

and v2 there must exist a path P from y ∈ N
�
(v1) to v2. Thus Q2 may be replaced by

(Q2 \ v1) ∪ P . �
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Consider the path (Q2 \ v1)∪P described in Claim 4. There must exist at least three such

paths with endpoints x ∈ N
�
(v1) to vn ∈ K4 where n �= 1 in order to account for at least

6-internally disjoint paths given by Menger’s theorem. In addition, three such paths must

exist ∀v ∈ K4. Thus let x ∈ N
�
(vn) and let y ∈ N

�
(vk). Then we know there exists a path

P with endpoints x, y such that V (P ) ∩ V (K4) = ∅.
Claim 9. Given a 6-connected graph G for any two vertices x, y ∈ G there exists a path
P with endpoints x and y such that for some vn ∈ K4 we know N

�
(vn) ⊂ P .

Proof. Given (x, y) inG. Let q ∈ N
�
(vn). By Claim 5 there exists a path Q1 with endpoints

x and q. By above there must exist a path from N
�
(vn) to N

�
(vk). Let this path be called

Q2. Again, there exists a path from N
�
(vk) back to N

�
(vn). Let this path be called Q3.

There again exists an path from N
�
(vn) to N

�
(vm) (where N

�
(vm) and N

�
(vk) are not

necessarily distinct). Let this path be called Q4. Also, there must exist a path from

N
�
(vm) to N

�
(vn). Let this path be called Q5. In addition, y must have a path to N

�
(vn).

Let this path be called Q6. We know (Q1, Q2, Q3, Q4, Q5, Q6) are internally disjoint. Thus

the path P = (Q1, Q2, Q3, Q4, Q5, Q6) defines a path such that N
�
(vn) ⊂ P . �
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Claim 10. Given P above, G− V (P ) is 3-connected.

Because N
�
(vn) ⊂ P , N

�
(vn) in G−V (P ) is the ∅. Thus N(vn) = V (K4) \ vn. We know

V (K4) \ vn induces a 3-vertex cut in the graph G−V (P ). Thus, G−V (P ) is 3-connected.
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