ON GRAPH CONNECTIVITY AFTER PATH REMOVAL

GRAHAM CASEY GIBSON

1. Abstract

In this paper we show that for any two vertices x, y of a 6-connected graph G, there exists a path between them whose removal leaves G 3-connected. This proves the case of Lovasz's path removal conjecture (1975), where f(3) = 6.

This article examines the relationship between connectivity and path removal. The following definition of connectivity is used frequently

Definition 1. A graph G is k – connected if a set S of k vertices disconnects the graph into at least two components C_1 and C_2 and S and no set S' of k-1 vertices disconnects the graph.

Definition 2. A k vertex cut in a graph G is a set of k vertices which disconnects the graph into at least two components C_1 and C_2 .

Thus any k-connected graph must contain a k-vertex cut which disconnects the graph into at least two components.

By definition, the complete graph on n vertices, K_n , is n-1-connected.

In order to describe a graph in terms of sets we need the following definitions.

Definition 3. The set E(G) is the set consisting of edges of G.

Definition 4. The set V(G) is the set consisting of vertices of G.

The central question arising from connectivity is if a graph G is k-connected and a path P connecting two vertices is removed how well connected is the resulting graph G - V(P). This is a crucial question in building fail-safe networks because one may increase the connectivity accordingly such that any path removed will yield a connected graph with the desired connectivity. The given conjecture was made by Lovász (1975)

Conjecture 1 (Lovász). For each natural number k, there exists a least natural number f(k) such that, for any two vertices u, v in any f(k)-connected graph G, there exists a path P with end points u and v such that G - V(P) is k-connected.

Two cases of this conjecture have thus far been proven. It is well known that as a consequence of a theorem of Tutte that f(1) = 3, because all 3-connected graphs contain a $non-separating\ path$, a path whose removal does not disconnect the graph, between any two vertices. The case f(2) = 5 was proven by Chen, Gould, and Yu (1998).

2. The Case of
$$f(3) = 6$$

A quick counter example shows that $f(3) \neq 5$ and makes use of the Turán graph.

Definition 5. A Turán graph T(n,r) is graph with n vertices that may be partitioned into r subsets where no two vertices in the same partition are adjacent. In addition, each partition will have size $\lfloor n/r \rfloor$ or $\lceil n/r \rceil$ implying the Turán graph is a complete r-partite graph.

First, we show that indeed $f(3) \neq 5$ due to the turan graph on 8 vertices that does not contain K_4 . Let T(8,3) be the turan graph that does not contain K_4 . Because |V(T)| = 8 and there are 3 partitions. $\lfloor 8/3 \rfloor = 2$ and $\lceil 8/3 \rceil = 3$, so the size of the partitions R_1, R_2, R_3 are 2, 3, 3 respectively.

Theorem 1. Let $x, y \in R_1$ of T(8,3) then there does not exist a path P with endpoints x, y such that T(8,3) - V(P) is 3-connected.

Proof. By $x, y \in R_1$ there does not exist an edge joining them. Thus, a path P joining them would have to include at least one vertex of a second partition R_2 . Thus in G - V(P) $|R_2| \leq 2$. Let v_1, v_2 in R_2 in G - V(P). Then v_1, v_2 clearly induce a 2 vertex cut in the graph because $G - (V(P) \cup (v_1, v_2)) = R_3$ and by definition no vertices of R_3 are adjacent so the graph is disconnected.

Thus, $f(3) \neq 5$.

Theorem 2. Any 6-connected graph contains a path P between any vertices $x, y \in V(G)$ such that G - V(P) is 3-connected.

The following definition leads to a useful theorem about 6-connected graphs.

Definition 6. Let $x \in G$ then d(x) is the number of edges incident with the vertex x.

In addition, there is a fundamental operation on graphs, the edge contraction.

Definition 7. Let G be a graph. Let $x, y \in V(G)$ and let e be an edge incident with x and y. Let G' be the graph obtained by contracting the edge e. Then G' may be formed by identifying all edges incident with x and incident with y and directing these to a new vertex v while also deleting the vertices x, y and the edge e.

If G is a graph, the graph G' obtained by an edge contraction of an edge xy is denoted G/xy. The proof relies on the following characterization of 3-connected offered by Tutte (See [2].

Theorem (Tutte 1961). A graph G is 3-connected if and only if there exists a sequence $G_0, ..., G_n$ of graphs that have the following two properties

- 1) $G_0 = K_4$ and $G_n = G$
- 2) G_{i+1} has an edge xy with d(x), $d(y) \geq 3$ and $G_i = G_{i+1}/xy$.

The concept of containing K_4 may be captured by the following definition.

Definition 8. A graph $H \subset G$ is an induced subgraph if $V(H) \subset V(G)$ and $E(H) \subset E(G)$.

This characterization shows that if G is a 6-connected graph and there exists a path P between any two vertices such that G - V(P) contains K_4 as an induced subgraph then the graph is 3-connected by $G_0 \in G - V(P)$. In light of this, we split the proof into two cases. First G is a 6-connected graph the does not contain K_4 , and second G is a 6-connected graph the does contain K_4 .

Consider two paths P_1 and P_2 both with endpoints x, y.

Definition 9. The paths P_1 and P_2 are internally disjoint if $V(P_1) \cap V(P_2) = (x, y)$.

A tool that is used frequently to examine connectivity is Menger's theorem (See [2]).

Theorem (Menger's Theorem). In a k-connected graph there exist at least k-internally disjoint paths between any two vertices.

We may establish a useful counting principle to employ Menger's thoerem.

Definition 10. Given a graph G and two vertices x, y in G the path count is the number of paths $P_1, P_2, ... P_n$ between x, y where $V(P_m) \in G$ for m = 1, 2, ... n.

The following definition is quite useful in gaining information about a vertex.

Definition 11. Let G be a graph. Let $x \in G$. Then N(x) is defined to be the set of vertices in G who are adjacent to x.

Claim 1. If a graph G is k-connected and there exists a path P between any two vertices x, y and $(G - V(P)) \cup (x, y)$ is (k-1)-connected then P is one of the k paths identified by Menger's theorem.

Proof. Let G be a k-connected graph and let $x, y \in V(G)$. Let S be the set of the paths between x, y. By Menger's theorem |S| = k in G. If P is a path with endpoints x, y then in G - V(P) let $S' = S \setminus P$. We know |S'| = k - 1 so the graph G - V(P) is (k-1)-connected and thus P is a path in G identified by Menger's theorem.

Let T be a tree with a root r and let $N(r) \neq \emptyset$. Consider a vertex $v \in N(r)$. The set of all children of v is called a branch of T. This is true $\forall v \in N(r)$, therefore the number of branches of T is simply the size of N(r).

In addition we define a tree that hits all vertices as the following.

Definition 12. A spanning tree of a graph G is a tree T such that V(T) = V(G).

Definition 13. The level of v, denoted l(v) is the length of the shortest path P with end points r and v such that $E(P) \subset E(T)$.

Definition 14. Let T be a tree with $(B_1, B_2, ..., B_n)$ branches from a root r. A pseudo-tree on T is the graph obtained from T by adding a collection of edges, called cross edges, that are disjoint from the edges connecting $(B_1, B_2, ..., B_n)$ to the root r of T. Let $d(B_n)$ is the number of cross edges of the branch B_n . Let $D(B_n)$ denote the set of cross edges which intersect nontrivially with B_n . Finally, for notational convenience let $d(B_n) = |D(B_n)|$.

Definition 15. Two branches B_n and B_m of a pseudo-tree are linked if there exists a path P with endpoints x, y with $x \in B_n$ and $y \in B_m$ such that x is the only vertex of $B_n \in P$ and y is the only vertex of $B_m \in P$ where the root r of T is not in P.

Case 1. G is a 6-connected graph that does not contain K_4 as an induced subgraph.

Theorem 3. Any 6-connected bipartite graph G contains a path P between any two vertices such that G - V(P) is 3-connected.

Proof. Consider the graph G. Because G is bipartite we may consider the tree spanning tree T grown from a root r we pick such that d(r) = 6. Thus this tree T has precisely 6 branches from the root r. Let these branches be labelled $(B_1, B_2, ..., B_6)$. Let G be the pseudo-tree obtained from T by adding cross edges to T such that for $x \in T$ $d(x) \geq 6$ and $d(B_n) \geq 6$. Because G is 6-connected we know by Menger's Theorem that there exist 6 internally disjoint paths between any two vertices x, y of G. The tree T clearly has only one path between any of the branches, the path through the root r. Thus in order for G to be 6-connected each branch $(B_1, B_2, ..., B_6)$ in G must have at least 5 edges leaving it, in other words $\forall B \in (B_1, B_2, ..., B_6)$ we have $d(B) \geq 5$.

Claim 2. There exists a path P between any two branches B_1, B_2 of the pseudo-tree G such that B_1, B_2 are linked by P.

Proof. Let G be a 6-connected graph with 6-branches $(B_1, B_2, ..., B_6)$. Let B_k and B_n be two branches. By Menger's theorem there must exist 6-internally disjoint paths between the branch B_k and the branch B_n . Let $b_k \in B_k$ be a vertex incident with a cross edge of B_k . Let $b_n \in B_n$. In order to show B_k and B_n are linked it suffices to show that there exists a path P with end points b_n and b_k such that $V(P) \cap B_n = b_n$ and $V(P) \cap B_k = b_k$.

Consider a path P from B_n to B_k . It is clear that one can truncate P to get a path P' so that $V(P') \cap B_n = b_n$ and $V(P') \cap B_k = b_k$.

Because Claim 1 was shown with two arbitrary branches we know the same is also true for a third branch $B_m \in G$. Then for the three branches B_n, B_m, B_k we know any two are linked. In addition we may show this useful property of the construction.

Claim 3. If G is a 6-connected pseudotree obtained from a tree T, then a path P defined by $E(P) \subset E(T)$ is one of the paths identified by Menger's theorem.

Proof. By Claim 1 it suffices to show that there exists a path $P \in G$ between any two vertices x, y such that $(G - V(P)) \cup (x, y)$ is 5-connected. Consider the path P in G such that $E(P) \subset V(P)$. Then $V(P) \subset V(B_n)$ for some n and where the root r might also be in P. However, consider the graph G - V(P). Because $V(P) \subset V(B_n)$ for some n we know $d(B_k) \geq 5$ for all $k \neq n$. Thus it suffices to show that B_n itself is 5-connected. Without loss of generality assume l(x) < l(y). Consider a vertex $v \in B_n$ such that l(y) = l(v) + 1.

As can be seen there is a cycle induced by the paths (P_1, P_2, P_3) within the branches B_k, B_m, B_L in the graph G.

Consider a vertex v in the pseudo-tree G with an underlying tree T containing a root r. In addition, for every B_n there exists a vertex v_n such that $v_n \in N(r)$. Because G is 6-connected $d(v_n) \geq 6$. Clearly, one edge of v_n is incident with the root. Suppose $v_n \in B_n$ is incident with a cross edge e. Then clearly e is directed to some branch B_k . By above, we know there exists a branch B_m such that B_k and B_n are linked by a path P_2 and P_m and P_m are linked by a path P_m . Then we may choose $P_m = e$ and the three paths identified by Claim 1 become $e, P_m = e$ and e linked by e are incident with vertices in e linked by e l

Claim 4. At least 5 edges of v_n must connect into the same branch, B_n that contains v_n .

Г

Proof. There exists an ordering of vertices that are contained in the same branch. Consider two vertices of B_n , x, y. Either l(x) < l(y) or l(x) > l(y) or l(x) = l(y) We know B_n must have 5 distinct cross edges so let $(w_1, w_2, ..., w_5)$ be the vertices incident with the cross edges the branch B_n . There must exist five disjoint paths $(P_1, P_2, ..., P_5)$ connecting v_n to $(w_1, w_2, ..., w_n)$ for the graph to be 6-connected. Because for all w_n, w_k we know $l(w_n) \neq l(w_k)$ choose $(w_1, w_2, ..., w_5)$ such that $(l(w_1) < l(w_2) < l(w_3) < l(w_4) < l(w_5))$. Let P_1 be one of the five paths $(P_1, P_2, ..., P_5)$ identified by Menger's theorem with endpoints v_1 and v_1 . Because there must exist 6-internally disjoint paths from v_1 to all vertices $v \in B_2, B_3, B_4, B_5, B_6$ we can choose P_1 such that it does not contain (w_2, w_3, w_4, w_5) . Therefore, there must be an edge e' connecting v_1 to a vertex e where e e e0. Thus the set of edges, e1, e1, e1, e1, e1, e1, e2, e2, e2, e3, e4, e4, e5, e5, e6, e5, e6, e6, e7, e7

In fact, taking any vertex $v \in B_n$ as v_n demonstrates the inequality $l(v_n) < l(w_n) < l(c)$ must hold for all vertices in B_n , otherwise there would not exist 6-internally disjoint paths between $v \in B_n$ and $v \in B_m$ for $n \neq m$. In addition, we see that the case where v_n does contain a cross edge e is actually just the case where $v_n = w_1$ in the proof of Claim 2 and thus $E(P_1) = e$. Consider, again, the construction derived above of the branches containing the cycle defined by (P_1, P_2, P_3) . By the Claim 2, in B_k there exists an edge g_1 leaving v_k and connecting below the vertex in B_k which is an endpoint of P_1 . Similarly, there exists an edge g'_1 leaving v_k that connects below the vertex in B_k which is an endpoint of P_3 . A similar argument implies the existence of edges $g_2, g'_2 \in B_m$ and $g_3, g'_3 \in B_l$. Thus given any two vertices $(x, y) \in G$ a path P connecting them such that $(v_k, v_m, v_l) \in P$ can be found by the following algorithm.

Step 1

Identify which branch x and y belong to. By Claim 1, there must exist a third branch such that both branches any two of the three branches are adjacent.

Step 2

Identify the paths P_1 , P_2 , P_3 by Claim 1 (where, as described above, it might be that all of the paths are cross edges incident with v_n). For each B_k , B_m , B_l identify each vertex in B_k , B_m , B_l which is an endpoint of P_1 , P_2 , P_3 and label them w_1 , w'_1 , w_2 , w'_2 , w_3 , w'_3 since there will be at most 2 for each branch.

Step 4

Compute $l(w_n)$ and $l(w'_n)$ for n = 1, 2, 3 and label w_n such that $l(w_m) < l(w'_m)$ Step 5

Without loss of generality assume $x \in B_k$ and $y \in B_l$ Compute l(x).

(Case1) If $l(x) > l(w'_1)$ let $P = (x, v_1, w_1, w_2, v_2, w'_2, w'_3, v_3, y)$ plus any vertices $\in (B_1, B_2, ..., B_6)$ needed to reach any vertices of P

(Case 2) If $l(x) < l(w_1)$ let $P = (x, v_1, w'_1, w'_2, v_2, w_2, w_3, v_3, y)$ plus any vertices $\in (B_1, B_2, ..., B_6)$ needed to reach any vertices of P

(Case3) If $l(w_1) < l(x)$ the same of case 2.

Without loss of generality assume $x \in B_1$ such that $x \neq w_1, w'_1 or v_1$. Let $(y_1, y_2, ..., y_5)$ be the vertices incident with the cross edges leaving the branch B_1 such that $l(y_1) < l(y_2) < l(y_1) < l(y_2) < l(y_$

 $l(y_3) < l(y_4) < l(y_5)$. By G is 6-connected $d(x) \ge 6$ and there must be 5 edges leaving x that connect to 5 distinct vertices $(q_1, q_2, q_3, q_4, q_5)$ where $l(q_1) < l(q_2) < l(q_3) < l(q_4) < l(q_5)$. By similar argument we know $l(q_1) < l(y_1) < l(q_2) < l(y_2) < l(q_3) < l(y_3) < l(q_4) < l(y_4) < l(y_4) < l(y_5)$.

Claim 5. Given the path P returned by Algorithm 1, at most 2 of $(y_1, y_2, ..., y_5)$ are in P

Using the above inequality we may prove the claim.

Proof. As above, let $x \in B_1$.

If P is the path returned by Case 1 we know $l(x) > l(y_n)$ for n = 2, 3, 4, 5. However, $n \neq 1$ because w_1 must also exist and $l(w_1) < l(w'_1)$ and $l(y_1) < l(y_n)$ for n = 2, 3, 4, 5. By Algorithm 1 $x, v_1, w_1 \in P$. Consider the maximum number of $y_n \in P$. First, by Claim 3 $l(x) > l(y_n)$ for n = 2, 3, 4, 5 there must exist an edge e incident with v_1 and a vertex c where $l(c) > l(y_n)$ for n = 2, 3, 4, 5. Thus the path Q_1 from x to v_1 may be defined by $Q_1 = x, c, v_1$ and may reach v_1 without the removal of y_n . By $l(v_1) < l(y_1)$ and $l(y_1) < l(y_n)$ for n = 2, 3, 4, 5 there exists a path $Q_2 = v_1, y_1$ that contains only y_1 . Thus the path $P_1 = Q_1 \cup Q_2$ defines a path leaving P_1 that contains only P_1 . Suppose, the target vertex P_1 was also in P_2 . Let P_3 be the path into P_4 . Clearly, P_4 for P_4 is a vertex P_4 where only one side of the inequality necessarily holds. Let P_4 be a vertex P_4 we should be P_4 be the path P_4 exists an edge P_4 from P_4 to a vertex P_4 such that P_4 exists a log applies to P_4 is therefore, the path P_4 is P_4 contains only P_4 . The path P_4 is P_4 contains only P_4 . The path P_4 is P_4 contains only P_4 . The path P_4 is P_4 contains only P_4 .

Case 2 may be shown in the exact same manner except with the inequality reversed. Thus, given a path P returned by Algorithm 1 in the graph G, the graph G' = G - V(P) is 3-connected.

Claim 6. Algorithm 1 also returns a 3-connected graph if G is a 6-connected 3-partite graph.

Proof. Consider the graph G generated by first selecting a vertex r such that d(r) = 6 and subsequently identifying branches $B_1, B_2, B_3, B_4, B_5, B_6$. However, the difference between the bipartite case and the tripartite case is that in a tripartite graph G is 3 - colorable so there may now exist edges connecting $(v_1, v_2, v_3, v_4, v_5, v_6)$. However, because r clearly has a color c, $(v_1, v_2, v_3, v_4, v_5, v_6)$ can have at most 2 colors which means there can exist at most 3 edges between $(v_1, v_2, v_3, v_4, v_5, v_6)$. Thus, at most 3 of $(v_1, v_2, v_3, v_4, v_5, v_6)$ are in P returned by Algorithm 1. Thus G - V(P) will again yield a 3-connected graph. \square

Therefore, if G is a 6-connected bipartite or tripartite graph there exists a path P between any two vertices such that G - V(P) is 3-connected. The next case, where G does contain K_4 , follows.

Case 2. The graph G is a 6-connected graph that contains K_4 .

Let G be a 6-connected graph that contains K_4 . We know that if G is 6-connected the minimum degree is 6. Therefore, each vertex of K_4 must be incident with at least three other distinct vertices outside of K_4 .

Definition 16. Let $x \in K_4$ where $K_4 \in G$. Then let $N'(x) = N(x) \setminus V(K_4)$.

Thus, for G to be 6-connected $d(v_n) \geq 6$ where $v_n \in K_4$. Let $B = \bigcup N'(v_n) \ \forall \ v_n \in K_4$. Also, let a path P be a neighbor path if P has endpoints x, y such that $x, y \in B$ and $K_4 \not\subset V(P)$. Thus, a neighbor path is simply a path incident with the neighbors of $K_4 \in G$.

Claim 7. Let G be a 6-connected graph containing K_4 . Let $v_n \in K_4$. For any vertex $w \in G$ such that $w \notin (B \cup K_4)$ there must exist 2 paths, P and P', such that both P and P' have endpoints w and $x, x' \in N'(v_n)$ respectively.

Proof. Let $x, y \in B$. Consider a vertex $w \in G$ incident with $K_4 \cup B$. By Menger's theorem there must exist 6-internally disjoint paths between w and $V(K_4)$. Let (v_1, v_2, v_3, v_4) denote $V(K_4)$. Let P_1 be the path identified by Menger's theorem with endpoints w and v_1 and P_2 the path identified by Menger's theorem with endpoints w and v_2 . Clearly there exists an edge e with endpoints v_1 and v_2 . Thus, we may identify a path $P'_1 = P_1 \cup e$ with endpoints v_2 such that $v_1 \in V(P'_1)$. In addition, we may identify a path $P'_2 = P_2 \cup e$ with endpoints v_1 such that $v_2 \in V(P'_2)$. Similarly, we may identify a set of three paths, denoted S for

Thus by Claim 2 we may identify the vertices x and y such that $x, y \in N'(v_n)$. Let Q_1 be the path defined by $Q_1 = w, x, v_1$ and let Q_2 be the path defined by $Q_2 = w, y, v_1$

Claim 8. The path Q_2 may only increase the path count of v_1 by one and does not change the path count of v_2 , v_3 , v_4 .

Proof. We know Q_1 and Q_2 may contribute 2-internally disjoint paths between w and v_1 . However, consider the path Q_3 defined by $Q_3 = w, x, v_1, v_2$ between w and v_2 . Thus $V(Q_1) \subset V(Q_3)$. However, by $v_1 \in Q_3$, $V(Q_2) \subset V(Q_3)$ and Q_1 and Q_2 do not contribute 2-internally disjoint paths between w and v_2 , but only contribute one, namely the path Q_3 . Thus, in order for Q_1 and Q_2 to contribute 2-internally disjoint paths between w and v_2 there must exist a path P from $y \in N'(v_1)$ to v_2 . Thus Q_2 may be replaced by $(Q_2 \setminus v_1) \cup P$.

Consider the path $(Q_2 \setminus v_1) \cup P$ described in Claim 4. There must exist at least three such paths with endpoints $x \in N'(v_1)$ to $v_n \in K_4$ where $n \neq 1$ in order to account for at least 6-internally disjoint paths given by Menger's theorem. In addition, three such paths must exist $\forall v \in K_4$. Thus let $x \in N'(v_n)$ and let $y \in N'(v_k)$. Then we know there exists a path P with endpoints x, y such that $V(P) \cap V(K_4) = \emptyset$.

Claim 9. Given a 6-connected graph G for any two vertices $x, y \in G$ there exists a path P with endpoints x and y such that for some $v_n \in K_4$ we know $N'(v_n) \subset P$.

Proof. Given (x, y) in G. Let $q \in N'(v_n)$. By Claim 5 there exists a path Q_1 with endpoints x and q. By above there must exist a path from $N'(v_n)$ to $N'(v_k)$. Let this path be called Q_2 . Again, there exists a path from $N'(v_k)$ back to $N'(v_n)$. Let this path be called Q_3 . There again exists an path from $N'(v_n)$ to $N'(v_m)$ (where $N'(v_m)$ and $N'(v_k)$ are not necessarily distinct). Let this path be called Q_4 . Also, there must exist a path from $N'(v_m)$ to $N'(v_n)$. Let this path be called Q_5 . In addition, y must have a path to $N'(v_n)$. Let this path be called Q_6 . We know $(Q_1, Q_2, Q_3, Q_4, Q_5, Q_6)$ are internally disjoint. Thus the path $P = (Q_1, Q_2, Q_3, Q_4, Q_5, Q_6)$ defines a path such that $N'(v_n) \subset P$.

Claim 10. Given P above, G - V(P) is 3-connected.

Because $N'(v_n) \subset P$, $N'(v_n)$ in G - V(P) is the \emptyset . Thus $N(v_n) = V(K_4) \setminus v_n$. We know $V(K_4) \setminus v_n$ induces a 3-vertex cut in the graph G - V(P). Thus, G - V(P) is 3-connected.

Acknowledgments. It is a pleasure to thank my mentor, Khalid, for his extremely helpful advice and guidance throughout the paper process. In addition, I would like to thank Erica Fagin for illustrating the diagrams throughout the paper.

References

- [1] G. Chen, R. Gould, X. Yu, Graph connectivity after path removal, Combinatorica 23 (2003) 185203.
- [2] R. Diestel, Graph Theory, third ed., Springer-Verlag, 2005
- [3] K. Kawarabayashi et al, A weaker version of Lovszs path removal conjecture, Journal of Combinatorial Theory, Series B 98 (2008) 972979
- [4] L. Lovsz, Problems in graph theory, in: M. Fielder (Ed.), Recent Advances in Graph Theory, Acadamia Prague, 1975