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ABSTRACT. The de Rham cohomology is a cohomology based on differential
forms on a smooth manifold. It uses the exterior derivative as the boundary
map to produce cohomology groups consisting of closed forms modulo exact
forms. The existence of exact forms reflects 'niceness’ of the topology, in
that a potential for closed forms can often be constructed by integrating them
over some submanifold, if the manifold has topological properties that allow
this integral to be well defined. The failure of a closed form to be exact
therefore indicates that the manifold has some global structure which prevents
a potential from existing, such as holes or twists. Thus the de Rham groups are
a way of understanding, via the tangent bundle, a manifold’s global topology.
We also discuss the concept of a connection, which is a way to define the total
derivative of a vector field. If a manifold is equipped with an inner product,
we can also use it to take the derivative in the direction of another vector
field. We can then define a new connection which acts on the output of the
first connection, giving us something analogous to the second derivative when
we compose them. This composition is called the curvature tensor. It can
be used either via the Gauss-Bonnet theorem, giving us a link with the Euler
characteristic, or, as we will discuss, via characteristic classes, which are special
classes in the de Rham cohomology groups arising from the action of invariant
polynomials on the curvature tensor.

CONTENTS
1. The Basics
2. Zigzag Lemma and Mayer-Vietoris
3. Some Calculations
4. Connections and Characteristic Classes
5. Acknowledgements
References

1. THE BASICS
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The de Rham cohomology allows us to answer the question of when closed forms

we would get by using the fundamental group to calculate the same thing.

Date: August 2009.

on a manifold are exact. It turns out that the de Rham cohomology is homotopy
invariant, and in particular, invariant under homeomorphism. Thus knowing seem-
ingly unrelated properties about existence of closed but not exact forms gives us
information about the topology of a manifold. For example, we can compute the
number of ”holes” of various dimension in a manifold, which is related to results
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Let M be a smooth manifold, A™(M) the alternating n-tensor bundle, A™(M)
the vector space of differential n-forms on M, and d : A*(M) — A" (M) the
exterior derivative.

Definition 1.1. An n-form w: M — A™(M) is closed if dw = 0.
Definition 1.2. An n-form w is exact if w = dn for some n : M — A"~ 1(M).

Definition 1.3. An n-form is conservative if its integral over any n-dimensional
submanifold without boundary is zero.

Every exact form is closed, since d o d = 0. However, closed forms need not be
exact. For example, consider the 1-form on R? \ 0 defined by:

_ xdy — ydx
o x2 492
Then

(do A dy — dy A dx)x® + y? — (2xdz + 2ydy) (xdy — ydx)
(2% + y2)2
2(x? + y?)dx A dy — (22%dx A dy — 2y>dy A dx)
(22 + 12)2

dw =

=0

So, w is closed. But writing w in polar coordinates and integrating around a circle
centered at 0 in R? \ 0 gives [(; w = 2m. Since exactness implies conservativity
by Stokes Theorem, w cannot be exact. Note that writing w in polar coordinates
actually gives us w = df, but that  is not a continuous function on R?\ 0. However,
if we restrict the domain to the open upper half plane, for example, then 6 is a
smooth, continuous function, and w is exact. We will later prove that all closed
forms are locally exact, which perhaps gives an indication of why the presence of
closed but not exact forms might give clues to the global structure of the manifold.
Also, it can be shown that any closed 1-form w is exact in any star-shaped region,
by defining f(z) = f% w, where the region is star-shaped with respect to ¢ and ~,
is the straight-line path from ¢ to z. Thus, the example above with R?\ 0 indicates
that the failure of w to be exact perhaps results from the hole at the origin.

Definition 1.4. The n'* de Rham cohomology group of M (which is really a vector
space over R) is denoted H™(M), and defined by

H™(M) = {closed n-forms on M} ~{exact n-forms on M}

Note that the set of closed n-forms equals the kernel of d : A"(M) — A"T1(M),
and the set of exact n-forms equals the image of d : A"~1(M) — A™(M), by
definition, so the exterior derivative is the boundary map on the cochain complex
of the differential n-form modules. The equivalence class of a form w, denoted [w]
in H™(M), is called the cohomology class of w.

Definition 1.5. Let G : M — N be a smooth map, p € M, and X;,.. X, € T, M.
The pullback of G, denoted G*, is defined on any k-form w by G*(w)(p)(X1, ...Xk) =
wa(p) (G X1, ..., G. X)), where G is the pushforward of G.
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Proposition 1.6. If G : M — N is any smooth map, G* takes closed forms
to closed forms and exact forms to exact forms, and thus descends to a linear
map, still denoted G* : H"(N) — H"™(M), which we define in the obvious way:
G*[w] = [G*w].

Proof. Let w be an exact form. Then G*w = G*dn = d(G*n) for some 7. Similarly,
if w is closed, then d(G*w) = G*d(w) = G*0 = 0. Thus if [w] = [W'], G*|w] = G*[W],
so G* descends to a linear map on the cohomology groups. [l

Since pullbacks of diffeomorphisms are isomorphisms A™(N) — A™(M), we see
immediately that the de Rham cohomology groups of diffeomorphic manifolds are
isomorphic. However, we will now prove that even homotopy equivalent manifolds
have the same de Rham cohomology. First though, we will state without proof the
following important results:

Theorem 1.7 (Whitney Approximation on Manifolds). If F : M — N is a con-
tinuous map between smooth manifolds, then F is homotopic to a smooth map
F:M — N. If F is smooth on a closed subset A C M, then the homotopy can be
taken relative to A.

Theorem 1.8. If G : M — N are homotopic smooth maps, then they are
smoothly homotopic. If they are homotopic relative to some subset A C M, then
they are smoothly homotopic relative to A.

The key idea in the proof that homotopy equivalent manifolds have the same de
Rham groups is to show that homotopic maps give the same induced maps between
cohomology groups, for then we have the following:

Theorem 1.9. Let ' : M — N be a homotopy equivalence between M and N,
with homotopy inverse G : N — M. Suppose that, for any two maps A and B ,
A~ B = A* = B* on the cohomology groups, where A and B are defined as in
the Whitney approzimation theorem above. Then F* is an isomorphism, and thus
H™(N)= H"(M) for all n.

Proof. By the Whitney approximation theorem, there exist smooth maps F,G
which are homotopic to F and G, respectively. Then F o G ~ F o G by the map
H = Hp o H¢;, where Hp is the homotopy between F and F and similarly for He.
Then FoG ~ Idy, so that (FoG)* = Id% by assumption. But (FoG)* = G*o F*
and Id}y = Idyn(y). Similarly, Go F ~ Idy = (G o F)* = Id} = Idyn(ur). Thus,
F* is bijective and thus an isomorphism between H™(N) and H"(M) for all n. O

Now we show that homotopic maps give the same induced maps between coho-
mology groups. To do this, we need to show that, if ' ~ G, then for any closed
form w, (F* — G*)w = dn for some n-1 form 7. In other words, (F* — G*)w is exact,
and thus 0 in the quotient. To do this, we will construct a collection of linear maps
so that for each n, there exists an h : A"(N) — A"~1(M) in the collection such
that

d(hw) + h(dw) = (G* — F*)w
An h which satisfies this equation for all w is called a homotopy operator, or a

cochain homotopy. Since dw is an n + 1 form, h also needs to extend to a map
A"TY(N) — A™(M). Note that this reduces to what we want in the case that w
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is closed. Following [Lee], we will present a special case of a homotopy operator first.

Definition 1.10. Let w be an n-form on M and v a vector field on M. Then the
contraction of v with w, denoted v_w, is an (n — 1)-form defined at a point p by

UJw(p)(le "'7X7l*1> = Wp(vp,Xla "'aanl)
where X; € T, M for all i.

Lemma 1.11. Let iy : M — M x I be the embedding i.(x) = (x,t). Then there
exists a homotopy operator h : A"(M x I) — A"~Y(M) between i and i}.

As we saw in the definition above, one way to make an n-form w on M x I into
an n-1 form on M x I is to contract it with any vector field on M x I. Since we
then need to make it into a form on M, it makes sense to contract this n-form with
2 and then integrate over ¢ € I to remove the dependence of w on t. So, we define

ot
1
0
hw = — w)dt
w /0 (ath)
where the action on vectors X1, ..., X,,—1 € T,M is given by
! )
hW(p)(Xl,...,anl) :/ W(p,t)(§7X1,...,Xn,1)dt
0

Note that w is either of the form f(x,t)dt A dz!, where I is a multi-index of
length p — 1, or it has no dt component, and has the form f(x,t)dz”, where .J is a
multi-index of length p.

The proof that h is indeed a homotopy operator then consists of expanding out
the definition of d(hw) — h(dw) and showing that it equals (¢ —if)w for both cases.
The proof can be found in [Lee].

Proposition 1.12. If F,G : M — N are homotopic smooth maps, then F* = G*,
where F* and G* are the induced maps on the cohomology classes.

Proof. Let h and i; be the homotopy operator and embedding, respectively, defined
above. Let H be a smooth homotopy between F and G (which exists because F
and G are smooth, by theorem 1.8), and H* its pullback. Define a new map
g: A"(N) — A" 1(M) by
Lo
g=hoH*=h(H'w) = / — J(H w)dt

We then have that
g(dw) + d(gw) = h(H*dw) + d(h(H*w))

Since pullbacks commute with d, we have
= hd(H*w) + d(h(H"w))

By definition of h being a homotopy operator between 4§ and 7,
— i (Hw) — iy (H"w)
=Hoi1)'w—(Hoip)'w=(G"— F"w
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So, when w is closed and we descend to the quotient, we have
(F* = G")[w] = [F'w — G*w]
= [g(dw) + d(gw)]
= [d(gw)] = [0]

2. 71GZAG LEMMA AND MAYER-VIETORIS

Now we will define a useful tool in actually computing de Rham cohomology
groups, namely the Mayer-Vietoris Theorem.

Definition 2.1. Let A* and B* be cochain complexes (i.e. sequences of modules
such that d? = 0, where d is the boundary map). A cochain map F : A* — B* is
a collection of linear maps (which we’ll also denote by F) F : A" — B"™ such that
foreachn,do F = Fod: A" — Bt

Since each F' commutes with d and is linear, F' induces a linear map F* on the
cohomology groups H™ (with the maps between individual cohomology groups also
denoted by F*, as above).

Definition 2.2. An exact sequence is one in which im(d : A"~ *(M) — A™(M)) =
ker(d : A" — Ant1).

Definition 2.3. A short exact sequence (SES) of complexes consists of three com-
plexes, A*, B* and C*, along with maps F* : A* — B* and G* : B* — C* such
that, for each n, the sequence

(2.4) 0 A" EprS oo
is exact.

Lemma 2.5 (Zigzag Lemma). Given cochain complezes A*, B* and C*, and cochain
maps F* and G* as above, such that they form an SES of complexes, (i.e. are a
SES for each n), then there exists a linear map ¢ such that

1S an exact sequence.

Proof. We will give a sketch of the proof which illustrates the main idea. Let ¢”
be a cohomology class in C™. Since the map G into C"™ is surjective by our SES
hypothesis, there exists some b™ € B™ such that G(b"™) = ¢". Since G commutes
with d, G(db™) = dG(b™) = dc™ = 0 since ¢" is closed. Thus db" € KerG = ImF.
So, there exists a”*! € A"t such that F(a"*!) = db". This a™*! is closed, since
F(da"t') = dF(a™*!) = ddb™ = 0 and the fact that F is injective imply that
da™*! = 0. Thus [a" ] represents a cohomology class in H"T1(A*). We can then
define 6[c"] = [a"T!]. In other words, a"*! is any element of A" for which there
exists a corresponding b™ € B™ which satisfies the equations

Fa™! = "

and
Gb" ="
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It can be shown that this selection of [a"*!] is well-defined, makes & linear, and
makes the corresponding cohomology sequence exact. The details of the proof can
be found in [Hatcher]. O

Note that this lemma is true in general for any cohomology (or homology), where
H™(X™) is the kernel of the boundary operator modulo its image. In de Rham
cohomology, A*, B* and C* are sequences of vector spaces of differential n-forms
on subspaces of the manifold, and our boundary operator is d.

Let M be a smooth manifold which is covered by the open sets U and V. Consider
the inclusion maps k : U - M, 1 :V - M,i:UNV - Uand j:UNV — V.
These maps induce cohomology maps, which we will denote k*, [*, etc., which are
just the restrictions of classes in the cohomology groups to the subspaces U, V, etc.

Let k*@l* : A»(M) — A™(U)®A™(V) be defined by (k* ®!*)w = (k*w, l*w), and
let (¢*—5*) : A(U)@ A" (V) — A"(UNV) be defined by (¢* — j*)(w,n) = i*w—j*n.
Because restriction is linear, and pullbacks commute with d, these maps descend
to linear maps on the cohomology groups, which we will write the same way.

Theorem 2.6 (Mayer-Vietoris). Let U,V be as above. Let k* @ 1* : H"(M) —
H"U)® H"(V) and (i* —j*) : H*(U)@ H™(V) — H*(UNV) be the maps defined
above. Then for each n there exists a linear map 6 : H*(UNV) — H" (M) such
that the sequence

Sk
K3

g P8 gry e HN V) T HNUNV) S B M) — -

15 exact.

Proof. Using the zigzag lemma, it suffices to show that, for each n, the sequence
0— A"M)"E" Any @ An(V) S AN UNY) =0

is an exact sequence. Since k* is just the restriction of a form to U, and [* is the
restriction to V, it follows that any form in the kernel of k* & [* must be 0 on both
U and V, thus 0 on all of M. This proves exactness at A™(M). At the next step
of the sequence, we note that restricting a form to U, then further restricting it to
UNYV,is the same as restricting it to V' then U NV. Thus subtracting the resulting
forms is always zero. On the other hand, any element w which i* — j* takes to 0
is the direct sum of a form on U and a form on V which agree on the intersection.
But then this defines a single form on M, whose image under k* & [* is exactly w.
Thus we have exactness at A™(U) @ A" (V). Finally, we need to show exactness at
A™(UNV), which just means showing i* — j* is surjective. Let {¢, ¢} be a partition
of unity subordinate to {U, V'}, respectively. Given a form w on U NV, define a
form 1 on U by

| Yw onUNV
= 0 on U \ supp(¢)

and a form " on V by

;| pw onUNV
7= 0 onV\supp(g)

Then we have that i* —j*(n®&—1") = nlunv +7'lunv = pw+Yw = w, as desired. O
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Using the description in the zigzag lemma and our construction in the last part
of the Mayer-Vietoris theorem, we can define § explicitly. By the proof of the zigzag
lemma, we know that §[w] = [0] if and only if there exists (n,7') € A™(U) @ A™(V)
such that i*n — j*n’ = w and (k* @ I*)(c) = (dn,dn’). We can satisfy the first
requirement by defining, for any partition of unity {¢, ¢} subordinate to {U,V'}, n
and 7’ exactly as we did in the proof of the Mayer Vietoris theorem. We can then see
that w = n|lynv —7'|unv (remember that i* and j* are just restrictions to UNV'). If
we then extend dn to all of M by having it be 0 outside of UNV', then o = dn satisfies
the second equation. This is because on UNV, dn|ynv = d(w+7")|unv = dv'|uav,
where the last equality comes because w is closed. So, restricting dn to V is the
same as restricting dn’ to V, since they agree on the intersection of U and V and
are 0 elsewhere. Thus we can write explicitly that §jw] = [dn].

3. SOME CALCULATIONS

Note that the 0** de Rham cohomology group is just the set of closed 0-forms.
But closed 0-forms are just smooth functions such that df = 0, which implies that
they are locally constant. If M is connected, then any such function must be
globally constant. Hence:

Proposition 3.1. If M is connected, then
HY(M) = {the set of constant functions} = R

Similarly, if M is a zero dimensional manifold (i.e. is just a set of discrete points),
then HO(M) =[], . 4 R where the cardinality of A is the cardinality of M. All higher
cohomology groups are trivial, since if w is any differential n-form on a manifold of
dimension p < n, the dimension of the tangent space at any point is p, thus any n
vectors will be linearly dependent, making w zero.

Proposition 3.2 (Poincare Lemma). If U is any contractible subset of R™, then
H™U) =0 for any m > 1.

Proof. Any contractible subset of R™ is homotopy equivalent to a point, by defi-
nition. Since the de Rham cohomology groups are homotopy invariant, they are

isomorphic to those of a point. We showed above that, in this case, H*(U) = R,
and H™(U) =0 for all m > 1. O

Note that this tells us the cohomology for Euclidean space in general.

Corollary 3.3 (All Closed Forms are Locally Exact). Any closed form of degree
greater than or equal to 1 is exact on some open neighborhood around each point.

Proof. At every point on a smooth manifold, there exists an open ball B around
that point which is diffeomorphic to R™. Since R"™ is star-shaped, it has trivial
cohomology groups H" for all n > 1. Thus so does B by homotopy invariance
(and in particular, diffecomorphism invariance) of the de Rham cohomology groups.
Thus all closed forms on B are exact. (]

Upon seeing the previous lemma, the reader may wonder why, if all closed forms
w have some local potential i such that dn = w, it isn’t always possible to simply
use a partition of unity to patch together a global potential for w. One reason for
this is that if U and V' are overlapping open sets with n and 5’ the respective local
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potentials for w, they need not be equal in U N'V. This is because the requirement
that dn = dn’ only implies that d(n — ') = 0, in other words, that n — 7’ is closed,
not that n = n’. Thus, where they overlap, we have some potential ¢n + ¢n’ where
we cannot just factor out 7, and thus the exterior derivative of this patched-together
potential need not be w.

Next we show a connection between the first de Rham cohomology group and
the fundamental group. The following lemma will be stated without proof (a proof
can be found in [Lee]):

Lemma 3.4. If M is a smooth manifold, w is a closed 1-form, and 1 and o are
smooth, path homotopic paths between any two points on M, then

(3.5) /%w:/%w

Theorem 3.6. If M is a simply-connected smooth manifold, then H*(M) = 0 =
1 (M) .

Proof. Since closed 1-forms are exact if and only if they’re conservative, it suffices
to show that the integral of a 1-form around any closed loop is zero. But since M
is simply connected, any closed loop is path homotopic to the constant loop. Thus,
by the previous lemma, the integral around any loop is just the constant integral,
which is zero. Thus all closed 1-forms on M are conservative, which implies they
are exact. U

Now we’ll use Mayer-Vietoris to do a simple calculation of the cohomology groups
of S1 and S? as a stepping stone to more general calculations.

Example 3.7 (Cohomology of S'). Let U and V be open sets which cover every-
thing except for the north pole, and everything except for the south pole, respec-
tively. Then U and V form an open cover of S!, so we can apply Mayer-Vietoris.
We then have the following exact sequence, for some map §:

0— HY(SY) - HOU) ® HY(V) —» H'UNV) >

2 HY(SY) - H'(U) @ H'(V) - H{UNV) - 0

Since U and V are both punctured circles, they’re homotopy equivalent (in fact
homeomorphic) to R. Since R is star-shaped, H*(R) = H°(U) = H°(V) = R.
Since St is connected, H?(S1) 2 R. Since U NV is retracts to two discrete points,
H(UNV) =2 R®R. Since U and V are star-shaped, their first cohomology group is
0, and since U NV retract to points, which have dimension 0, the first cohomology
group of U NV is also 0. The image of § is equal to the kernel of the map from
HY(SY to HY(U)® HY(V), but HY(U)® HY(V) = 0, so § is surjective. The kernel
of § is equal to the image of the map from H°(U) @ H°(V) to H*(U NV). But
recall that this map is just the subtraction map, and since the difference of two
constant functions is a constant function, its image is the set of constant functions,
which is isomorphic to R. Thus H'(S') = R. So, we have that H°(S') = R and
HY(SYH) =R

Example 3.8 (Cohomology of S2). Now that we have S, we can solve for the
cohomology groups of S?, using the same methods as above. We will use as our
cover two open sets U and V which cover everything except the north and south



DE RHAM COHOMOLOGY, CONNECTIONS, AND CHARACTERISTIC CLASSES 9

pole, respectively. Note that each of these open sets is just a punctured S2%, which
is homeomorphic to R?, and that their intersection retracts to S'. This gives us
the following sequence:

(H°(S?) = R) — (HO(U) @ HO(V)) 2 (ROR) — (HO(UNV ~ 1) ~R) >
2 (HY(S?) = 0) - (H'(U) s HY(V)) 20— (H'(SY) =2R) >
2 (H2(S?) 2 R) — (HX(U) @ H2(V)) = 0 — (H*(S") 2 0)

Now we can use induction to find the cohomology groups of S™. Our calculations
for S? tell us that we should use

s - |

as our inductive hypothesis for m < n.

R ifp=0m
0 otherwise

Example 3.9 (Cohomology of S™). Suppose that we know the cohomology groups
of 8™ for m < n. Analogously with S2, we’ll use as our cover for S™ two open
sets U and V which cover everything except the north and south pole, respectively.
Note that each of these open sets is just a punctured S™, which is homeomorphic to
R™. Thus HP(U) = HP(V) =0 for all p > 0, by the Poincare lemma. Also, UNV
is S™ with two holes in it, which is homeomorphic to R™ with one hole in it, which
retracts onto S"~!. Thus HP(U N V) = HP(S"" 1) for all p < n. So, we know all
the cohomology groups of everything except for HP(S™) itself, for p between 1 and
n. But we can solve for those using methods similar to the S! case because our se-
quence is exact, and we know the images and kernels of all the maps in the sequence.

The map from H°(S™) to H*(U)®H®(V) has trivial kernel and image isomorphic
to R. Thus H°(S™) 2 R. The map § from H°(S""1) to H'(S™) is surjective since
the map from H'(S?) to HY(U) ® H'(V) is trivial (since H (U) & H'(V) = 0 for
all i > 0 by the above). In fact, this is true for all the § maps in our sequence, for
the same reason. The kernel of this map is the image of the map which just the
subtracts the two constant functions, so it has kernel isomorphic to R. But that’s
exactly what H°(S"~1) is, by assumption, so it must be the trivial map. Thus
H'(S™) = 0. For 1 < p < n, the maps going into and out of H?(S™) are all trivial,
hence HP(S™) is trivial. Finally, for H™(S™), the § map is again surjective, and
since H"~1(S"~1) 2 R by assumption, and the image of the subtraction map into
H"=1(S"~1) is just 0, the last § map has trivial kernel and thus is an isomorphism.
So, H™"(S™) = R, as we wished to prove.

Now we’ll compute the cohomology of the torus, and use that to compute the
cohomology of any genus g surface. First we give two lemmas:

Lemma 3.10. If M is a compact, connected, oriented, smooth n-manifold, H™ (M)
is 1-dimensional.

The proof involves showing that the integration map I : H"(M) — R defined by
I([w]) = [,; w is an isomorphism. The proof can be found in [Lee].

Lemma 3.11. If M is a compact, connected, orientable, smooth manifold of di-
mension n > 2, and p is any point of M, then H™(M \ p) = 0.
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Proof. We will prove this explicitly for n = 2 since that’s all we need for the next
example, but the proof generalizes to higher dimensions. Let U, V' be an open cover
of our surface, consisting of M \ p and some neighborhood of p, respectively. First
we will show that the map § : HY(UNV) — H?(M) is an isomorphism, then we will
use Mayer-Vietoris to find H2(U). Note that U NV is diffeomorphic to R?\ 0, thus
the pullback of the diffeomorphism gives an isomorphism on the space of k-forms for
all k, and in particular the cohomology groups. So, instead of working with forms
on UNV, we can simply use R? \ 0 instead. Since U NV is homotopy equivalent
to S, we know that H'(U N'V) 2 R. By lemma 3.10 above, H*(M) = R as well.
Since they’re both 1-dimensional, it suffices to find some 1-form w on R?\ 0 such
that d([w]) # 0. In the general case, we would begin by considering the form

1 1 .
w= P E (=) tatdet A Adri A LA da”
x
i=1

defined on R™ \ 0, where the hat term is dropped. In the case n = 2, this reduces
to

xdy — ydx
(z* +y?)
which we showed at the beginning of this paper is closed but not exact, hence an
element of H!(R?\0). As shown earlier in our explicit description of 6, §([w]) = [dn]
extended by 0 to all of M, where we use the exact same characterization of 7 as
before (n = ¢Yw on UNV and 0 on U\ supp(v)). We will identify the bump function
Y on M with its image on R? under the diffeomorphism V + R2. Then we can say
that ¥(0) = 1, and ¥ (z) approaches 0 as x approaches oco. Then
dn = d(Ypw) = di ANw
since w is closed.
oY oY 1
= (=—dz + =—dy) A (= )(zdy — yd
(559 + 5, W) (|I|2)(w y — ydz)
1 oy oY
= — —y)dx A d
This form is defined on all of R?\ 0, and thus all of U (since it’s just 0 in U\UNV.
We extend it to include 0, and thus all of V', by defining it to be 0 at 0. This makes
dn into a smooth 2-form on all of R2. One can check that it is smooth at 0 because,
after taking any number of partial derivatives of

) )

I2 + y2
I’Hospital’s rule and the fact that 1 is a bump function whose partials of all orders
vanish at 0 give that the limit at 0 as approached from any direction is 0 (i.e.,

if we approach from the direction v, apply "'Hospital’s rule twice using % as the
derivative).

dn is closed, since d o d = 0. It is not exact since any potential for dn must be
of the form 7 + 7 for some closed form 7. This is because, if 3 is any potential for
dn, then dB = dn = d(n — 3) = 0= n — 3 = 7 for some closed form 7. But since
¥(0) = 1, n = Yw approaches oo as x — 0. Thus there cannot exist any smooth
potential for dn defined at 0, which implies there is no smooth potential defined at
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p € M, and thus dn is not exact. So, §([w]) = [dn] # 0 = ¢ is an isomorphism.

Now we can use Mayer-Vietoris to complete the proof. The last line of the exact
sequence for M is:

HYUNV) S H2(M) - H2U) ® HX(V) — HXUNV)
Which we know is isomorphic to:
RS R — HXU)S0— 0

Since § is an isomorphism, its image is R, so the direct sum map has kernel R, thus
its image is 0. That means the subtraction map into 0 has trivial kernel, so it is an
injection. But that implies H?(U) must be 0. O

Proposition 3.12. The de Rham cohomology groups of the torus are given by:

i 2\ R Zf’LZO,2
H(T)_{ ROR ifi=1

Proof. Imagine dunking a donut vertically into a cup of coffee, so that a little more
than half of it is submerged. The submerged part is what each of our open sets
U,V will look like (except on opposite sides of the torus, so that they overlap in the
middle). Then U NV retracts to two disjoint copies of S!, which has cohomology
groups that are just the direct sum of the groups for S', which we know. Also, both
U and V retract to S!, so they both have cohomology groups the same as those
for St. Given that, we see that HY(T?) = R since the torus is path connected. We
also have H'(T?) = R @ R since § has kernel isomorphic to R (because as usual
the subtraction map (H°(U) @ H°(V)) — (H°(U NV) has image R), and thus (by
the rank-nullity theorem) has image isomorphic to R. This implies that the kernel
of the direct sum map from H(T?) to H'(U) @ H'(V) is isomorphic to R. By
lemma 3.10, H?(T?) 2 R, thus the surjective map § going into H?(7?) has kernel
R, again by rank-nullity. This implies that the image of the subtraction map into
HYUNV)is R, and thus its kernel is R, since its domain is R?. Exactness tells us
that the image of the direct sum map is then also R. But the only way the image
and kernel of the direct sum map could be R is if H(T?) 2R & R. O

Proposition 3.13. The de Rham cohomology groups of the punctured torus are
given by:

o R ifi=0
HY(T*)={ R? ifi=1
0 ifi=2

Proof. Start with a non-punctured torus. Let U be the open set covering the whole
torus minus a point (it doesn’t matter where, since all we care about is homotopy
equivalence), and V' a small open ball over the point not contained in U. Then
since we know H*(V =2 R?), H*(T?), and H*(UNV ~ S1) for all k, we know every
term in the resulting Mayer-Vietoris sequence except for the H¥(U) terms. But
since U is connected, we know H°(U) = R and by lemma 3.11 above, H?(U) = 0.
Thus we only need to find H'(U) to know all the cohomology groups of U, the
punctured torus. The subtraction map from H°(U) ® H°(V) to H°(S!) has image
isomorphic to R, so that the § map into H'(T?) is trivial. Then the following direct
sum map is an injection, which tells us H*(U) has dimension at least 2. But the
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subtraction map going into H'(S') then has kernel isomorphic to R?, and image
isomorphic to either 0 or R (since H'(U N V) is 1-dimensional). So, H!'(U) can
have dimension at most 3. But if it were 3, then the subtraction map must be
surjective, which implies that the following 6 map into H?(T?) is trivial, which
means that the following direct sum map into 0 @ 0 must be an injection. But we
know H?(T?) = R, so this is impossible. Thus, H(U) = R?. O

Proposition 3.14. The de Rham cohomology groups of the genus-g surface are
given by:

; R ifi=0,2
H(ZQ)Z{RQQ ifi=1

Proof. We saw with the torus that the cohomology groups were R, R?, and R. Us-
ing the groups we calculated for the punctured torus above, it can be shown that
the cohomology groups for the genus-2 surface are R, R, and R. The cohomology
groups of any genus-g surface X, can now be calculated by using the open sets which
separate it into spaces homotopy equivalent to a punctured torus and a punctured
genus-(g-1) surface (denoted f)g,l), with the intersection homotopy equivalent to
S1. To find a general formula then, we’ll use induction on g. The examples above
suggest that the pattern for the de Rham groups of a genus-g surface is R, R?9, R
(for H°, H* and H?, respectively). Assuming this is true for all p < g, we will use
Mayer-Vietoris with a covering similar to the one for the punctured torus to show
that the de Rham groups for the punctured genus-(g-1) surface must then be R,
R2(9=1) and 0.

We know that H°(X,_ ;) = R since it is connected, and that H?(X, 1) = 0 by
lemma 3.11. Since the § map into H?(X,_1) is an isomorphism (from the proof of
lemma 3.11), the image of the map into H'(U N V) is trivial, and thus its kernel
is HY(X, 1) ® (H*(V) = 0). This implies the direct sum map into H'(X, ;) is
surjective. Since the subtraction map into H°(S') has image isomorphic to R as
usual, the § map into H'(X,_1) has trivial image, and thus the direct sum map
is injective as well. This tells us H'(X, 1) = H'(X, 1), which is isomorphic to
R2(9—1 by assumption.

By prop. 3.1 and lemma 3.10, H°(Z,) 2 R and H*(X,) 2 R. Our cohomology
sequence for ¥, looks like

H'(Z,) — H'(T?) ® H'(£y-1) — H'(S")

for i = 0,1, 2, where our open sets are those mentioned above. By our previous work,
we know all of these cohomology groups for all 4, except for H!(2,). Note that the &
map into H'(X,) is trivial, making the direct sum map into (H (T?)@H (2, 1)) =
R? @ R2(9-1) = R29 injective. Thus the image of this map is isomorphic to HY(Z,).
Its image is equal to the kernel of the subtraction map into H'(S*). Since H'(S!) =
R, by the rank-nullity theorem the kernel can only be either R29 or R29~1. Suppose
it is R29~1. Then the subtraction map’s image is isomorphic to R, so the following
§ map into H?(X,) is trivial. This implies that the next direct sum map into
(H*(T?) @ H?*(X,_1)) = 0 is injective, but this is impossible since H*(%,) = R.
So, we must have that H'(X,) = R?9. This completes the induction.

O
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4. CONNECTIONS AND CHARACTERISTIC CLASSES

Now we’ll take a look at certain special equivalence classes in the de Rham
cohomology groups which come from invariant polynomials, called characteristic
classes. These will tell us various things, though it is beyond the scope of this
paper to say what those things might be.

Let T'M be the tangent bundle over a manifold M, and let T* M denote the com-
plexified cotangent bundle (i.e. the tensor product of the usual cotangent bundle
with C, defined pointwise). Then the complex tensor product T*M @ T'M is also a
vector bundle over M.

Definition 4.1. Let C*°(T*M ® T M) denote the vector space of smooth sections
of this bundle. A connection
V:C®(TM)— C(T*MQTM)
is a C-linear map which satisfies the Leibnitz formula:
V(fs)=df @ s+ fV(s)
for every smooth function f : M — C and vector field s. V(s) is called the covariant

derivative of s.

Lemma 4.2. We can define V'’s action on any section by its action on a local
frame s1,...s, by the formula

VY (fisi) =Y V(fisi)
where nabla obeys the Leibnitz rule on each f;s;
Proof. We just need to show that V still obeys the Liebnitz rule on fs. In other
words, if we write s = 3 g;s;, then V(fs) = V> (fg¢:8:), where we use the first

definition on the left, and the second definition on the right. Expanding the right
side, we get:

VY (fgisi) =Y d(fg:) @ si+ f9:V ()
=Y ((g:df + fdgi) @55+ Y f9:V(51))

We can distribute the s; in the first part of the sum, and since by definition
> 9iV(s;) = V(s) — > dg; ® s;, we can rewrite the second part, giving:

=df @ gisi+fY (dgi®si)+ [V(s) = f> dgi @ s
=df ®s+ fV(s)
=V(fs)
O
Note that V decreases supports: if a section s vanishes in some region, then V(s)
vanishes as well. It is a theorem of Peetre that any operator C*(A) — C*°(B)
which decreases supports (also called a local operator) can be written locally as
a finite linear combination of partial derivatives with coefficients in C*°(B) (see

[Milnor]). In addition to the fact that it satisfies the Liebnitz formula, this gives
some justification as to why V can be thought of as the total derivative of a section.

Since V is a linear map, by the above lemma we have the following;:
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Lemma 4.3. Let U be some small open set on M such that the tangent bundle over
U is trivial. Then there exists a local frame s1, ..., Sn, defined on U. V restricted to
sections on U is then uniquely determined by V(s1),...,V(sn). We can then write
V as an nxn matriz of 1- forms [w;;|, where the multiplication is the tensor product
over C.

This gives us another way to see that V is essentially a derivative. Define
V.i(fs) = V(fs)z!, where 2' is the i*" section in some local frame. Then we
have that Vi (fs) = 86;1- dr'® s+ fV,:(s), which we can think of as the directional
derivative of the section s in the direction of the constant vector field z*.

Note that this conception of V as a matrix is a bit unusual in that V is linear over
C, but the entries in the matrix are not elements of the field; instead they are 1-
forms. Fortunately we can avoid having two multipications by noting that the tensor
product of an element of C with a section is just the usual scalar multiplication.
Given a basis s1, ...S,, a connection whose matrix is just the zero matrix is called a
flat connection. In this case, the Leibnitz formula reduces to V'Y _(fis;) = > dfi®s;.
Note that, because connections are not linear over C*°(M), the matrix of a flat
connection is not necessarily zero in other bases.

Definition 4.4. Given a connection V, define a C-linear map V : C®(T*M @
TM) — C®(A*(M)®TM) by the Leibnitz rule

Viw®s)=dw®s—wAV(s)
for any 1-form w and any s € C°(T'M).

Lemma 4.5. As with V, we can define Vs action on any section by defining its
action on a local frame s1,...s, by the formula

@Zwi ® S; = Z@(wl X Sz)
where N acts on each w; ® s; by the Leibnitz rule.

The proof just involves writing out the definition and gathering terms, and fol-
lows from the second definition of V above. From this we also get that

(4.6) V(flw®s) =df AMw®s)+ fV(w®s).

Definition 4.7. Given some connection V, let K = VoV : C®(T'M) — C®(A2(M)®
TM). Then K is called the curvature tensor of V.

Lemma 4.8. The value of K(s) at a point = depends only on s(x), and not the
values s takes at nearby points. Thus if s(x) = §'(x), then K(s)(x) = K(s')(z). We
can therefore think of K as a section of the complex vector bundle Hom (T M, A*(M)®
TM).

Proof. Note that
VoV(fs)

(df @ s+ fV(s))
(df) @ s —df AV (s)+df AV (s)+ fV(V(s))

=d
= V(V(s))
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where the last two terms come from equation 4.6 above. This tells us that K is
linear over C*°(M). So, if s(z) = §'(z), then we can write s —s" = f181+... + fnSn,
where s1, ...s, is any local basis and f;(x) = 0 for all <. But then

K(s—s') = K(s) = K(s') = Y _ fild(s:)
which is just 0 when evaluated at x. Sections, in general, assign to each point
x on the manifold an element of the fiber over x, and every such assignment is
completely determined by x. So, we can think of K as a section of the bundle
Hom(T M, A?>(M)®TM) by defining K (s(x)) as the element K, of the Hom bundle
evaluated at s(z), thus giving us an element of A%2(M) ® TM. O

Since K is linear over C, we can express it in terms of a matrix, just as we did
for V. In fact, since K is also linear over C*° (M), its matrix representation is more
natural than that of V, in that we get K(fs;) directly from evaluating the matrix
of K at fs;, without having to add on an extra term afterwards like the df ® s;
that we had to for V.

Proposition 4.9. Let s1,...s, be a local frame, with V(s;) = > w;; ® sj, where the
entries of the matriz [w;;] are written in row-column notation. Then we can write

(4.10) K(si)=) 9 ®s;
where
(411) jS = dwjl- - Zwm A Wi

This equation for Q;; is different by a sign from what [Milnor] has, and even if
we use his convention that V(s;) = > w;; ® s; rather than ) wj; ® s;, the order of
the indices is still different. [Milnor] is probably right, but he does not provide a
proof, and neither I nor my mentor could see anything wrong with my version. So,
here is the justification for what we have written above:

\Y oV(s;) = @Zwﬂ X S
Since V is linear, for simplicity fix j=k. Then
@(Wk-i ® Sk) = dwy; ® S — Wi N\ V(Sk)

Writing out V(s;) = > wjr ® s; gives

= dwp; @ s — (Wri A Wik ® 81+ Whi A wak, ® 52+ .o + Wi A Wi @ 8p,)

Now, summing over all k (and thus turning k back into j), we get
= Z(dwﬁ — Zwm- A\ w]'a) X Sj
J «
= jS = dw]'i — Zwai AN Wia
(03

Since K(s;) gives us the i'" column of the matrix for K.
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Equivalently, we can write €;; = dw;; — ), waj A Wia-

We finish this section by defining characteristic classes and showing that they
are actually independent of the connection V.

Definition 4.12. Let A be an algebra, and M, (A) the algebra of n x n matrices
with entries in A. An invariant polynomial P : M,,(A) — A is a polynomial function
on the entries of a matrix, which has the property

P(AB) = P(BA)
for any matrices A, B € M, (A).

Examples of such polynomials are the determinant and trace. In fact, all in-
variant polynomials on the entries of n x n matrices are just polynomial functions
of the first n elementary symmetric functions. The reason we are interested in
invariant polynomials is because they are invariant under a change of basis; i.e.
P(SAS~1) = P(A), so the output of the polynomial gives information about the
underlying linear map. We can apply these polynomials to our curvature matrix
[€2;5] to give us elements in the algebra of differential forms. Because of their invari-
ance, given such a polynomial P, each curvature tensor K has a unique polynomial
P([Q;;]) assigned to it in every local frame. Since every point has a neighborhood
in which a local frame exists, we can then patch these locally defined forms together
to get a global form, which we call an exterior form. This form is denoted P(K).

One can show that all exterior forms are closed (see [Milnor]), thus they are
elements of the de Rham cohomology. We will now show that the exterior form
P(K) does not depend on the choice of connection V, even though K itself does.
Thus given some curvature tensor K, the invariant polynomial P determines a
cohomology class, called the characteristic class of P.

Definition 4.13. Given a map g : M — N the induced pullback map g* on
connections is the unique map such that ¢g*V(g*(s)) = (¢* o V)(s) for any section
s, where, from left to right, the first ¢g* is the one we’re defining, the pullback on
connections, the second ¢g* is the pullback on sections of TM, and the third g* (just
to the right of the equal sign) is the pullback on sections of T*M @ T'M (which is
defined by pulling back the cotangent bundle sections and tangent bundle sections
separately and tensoring them together). Thus, if V(s;) = > w;; ® s, then

g"Vi(g*s) = Zg*(%‘i ®s;) = Zg*wji ®g"s;
Lemma 4.14. Characteristic classes ‘commute’ with pullbacks:
9" P(Kv) = P(Kgv)

where the g* on the left side is the induced map on the cohomology classes, and the
g* on the right is the induced map on connections.

Proof. For the sake of clarity, some pullbacks by g will simply be marked with a
prime; i.e. g*V = V', g*s = &', etc. On the right side of the equation above, we
have, for some s,

Kyi(o') =V @)
=dv' ®@s +w AV'(s)
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And on the left side we have:
g Kv(s) =g V(wes)

=g (dw®s+wAV(s))
Since pullbacks of forms commute with d,

=dg*w®s +w AV'(s)

=dv' ®@s +w AV'(s)

d

Theorem 4.15. The cohomology class P(Kv) is independent of the connection V.

Proof. Let Vi and V7 be any two connections on a manifold M. Let 7 : M xR — M
be the projection which takes (z,t) to x, and let TM denote the induced bundle
7 TM over M x R. Define

V=tVi+(1-1t)V,
, where V{ and V/ are the induced connections over M x R. Consider the map

ic : M — M x R which takes x — (x,€), where € is 0 or 1. Define the induced map
i, on V by evaluating ¢ at €, then pulling back to M. Thus

(V) = i)V} = Vo

since for fixed ¢ = 0, m and ¢y are inverses. The map ¢, induces a map on the
cohomology groups, denoted ¢}, which has the property that

i.(P(Kv)) = P(Kv,)

by the previous lemma. But since ig is homotopic to i1 by the map H(z,t) = is(x)
(i.e. the identity on M x R), the cohomology classes i;(P(Kv)) = P(Kv,) and
ij(P(Kv)) = P(Kv,) must be equal, by Prop. 1.12. O
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